автореферат  Іррегулярні підмножини многовидів Грасмана та їх застосування у теорії відображень

Наведення теорії критичних точок довільного відображення Rn в Rm. Дослідження проекцій k-вимірних підмножин Rn на k-вимірні площини. Доведення теорем, використовуючи властивості іррегулярних підмножин Gnk. Дослідження теорій розмірності та відображень.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

  ####     ####     ####       #       ###   
 #    #   #    #   #    #     ##      #      
 #    #   #    #   #    #      #     #       
 #    #    ####     ####       #     #####   
 #    #   #    #   #    #      #     #    #  
 #    #   #    #   #    #      #     #    #  
  ####     ####     ####       #      ####   
                                             

Введите число, изображенное выше:

Рубрика Математика
Вид автореферат
Язык украинский
Дата добавления 05.01.2014
Размер файла 26,4 K

Подобные документы

  • Сутність і предмет вивчення нарисної геометрії, історія її зародження та розвитку як науки, яскраві представники. Методи проекцій точки та прямої, види та властивості проеціювання. Головні лінії площини. Відображення та проеціювання точок на площинах.

    курсовая работа [1,7 M], добавлен 13.11.2009

  • Вивчення теорем Чеви та Менелая на площині та в просторі, доведення нетривіальних наслідків цих теорем та розв’язання задач за їх допомогою. Застосування Теореми Менелая при доведенні теорем (наприклад, теорем Дезарга, Паппа, Паскаля, Гаусса та інших).

    дипломная работа [4,0 M], добавлен 12.08.2010

  • Елементарний математичний апарат плоских геометричних проекцій. Ортографічне косокутне проектування на площину, застосування матриць. Розгляд проекцій картинної площини в лівосторонній системі координат спостерігача, погодження з екраном дисплея.

    лабораторная работа [233,0 K], добавлен 19.03.2011

  • Аксіоматика і основні метричні формули псевдоевклідової площини. Канонічні рівняння кривих другого порядку (параболи, еліпса, гіперболи). Елементи загальної теорії кривих другого порядку псевдоевклідової площини. Перетворення координат рівняння.

    презентация [787,6 K], добавлен 17.01.2015

  • Динаміка розвитку поняття ймовірності й математичного очікування. Закон більших чисел, необхідні, достатні умови його застосування. Первісне осмислення статистичної закономірності. Поява теорем Бернуллі й Пуассона - найпростіших форм закону більших чисел.

    дипломная работа [466,6 K], добавлен 11.02.2011

  • Простір швидкостей і геометрія Лобачевського. Фрідманська модель Всесвіту. Рівняння синус-Гордона. Вивчення гідродинаміки, аеродинаміки і теорії пружності. Топологія тривимірних многовидів. Розвиток теорії нелінійних хвиль і функцій комплексної змінної.

    курсовая работа [490,5 K], добавлен 02.04.2014

  • Основні поняття поворотної симетрії. Означення, задання та властивості повороту площини. Формула повороту площини в координатах. Поворотна симетрія в природі. Розв'язання задач з геометрії за допомогою повороту (на обчислення, на побудову, на доведення).

    курсовая работа [2,6 M], добавлен 02.11.2013

  • Поняття диференційованості, похідної, диференціала. Теореми про диференційованість деяких відображень. Частинні похідні вищих порядків та матриця Якобі. Достатні умови диференційованості. Теореми про "скінченні прирости". Диференціали вищих порядків.

    курсовая работа [1,8 M], добавлен 08.10.2011

  • Поняття добутку формацій. Операції на класах груп, відображення множини. Однорідні, локальні, композиційні та порожні екрани. Формації з однорідним екраном. Побудова локальних формацій із заданими властивостями. Доведення теорем Подуфалова та Слепова.

    курсовая работа [189,3 K], добавлен 26.12.2010

  • Застосування конгруенцій: ознаки подільності, перевірка арифметичних дій, перетворення десяткового дробу у звичайний та навпаки, індекси. Вчені, що займалися питанням застосування конгруенцій. Основні теореми в теорії конгруенцій - Ейлера і Ферма.

    курсовая работа [226,2 K], добавлен 04.06.2011

  • Комічні вибірки з конспектів студентів механічно-математичного факультету. Особливості доведення теорем Зільберта-Штольца та Штрассермана. Принцип локалізації в’язів до (n-8) порядку включно. Аналіз та характеристика N-кутників у просторі Зільберта.

    учебное пособие [315,9 K], добавлен 28.03.2010

  • Лінійні різницеві рівняння зі сталими коефіцієнтами. Теоретичне дослідження основних теорій інваріантних тороїдальних многовидів для зліченних систем лінійних і нелінійних різницевих рівнянь, що визначені на скінченновимірних та нескінченновимірних торах.

    курсовая работа [1,3 M], добавлен 18.12.2013

  • Джерела теорії впорядкованих і частково впорядкованих алгебраїчних систем. Лінійно впорядкований простір ординальних чисел. Цілком упорядковані множини і їхні властивості. Кінцеві ланцюги і їхні порядкові типи. Загальні властивості ординальних чисел.

    курсовая работа [143,7 K], добавлен 24.03.2011

  • Способи завдання площини на кресленні та її сліди. Положення площини у просторі відносно площин проекцій. Пряма та точка в площині, прямі особливого положення в площині. Взаємне розташування площин. Пряма, паралельна площині, перетин прямої з площиною.

    реферат [1,2 M], добавлен 11.11.2010

  • Предмет теорії ймовірностей. Означення та властивості імовірності та частості. Поняття та принципи комбінаторики. Формули повної імовірності та Байєса. Схема та формула Бернуллі. Проста течія подій. Послідовність випробувань з різними ймовірностями.

    курс лекций [328,9 K], добавлен 18.02.2012

  • Історія виникнення лабіринту. Лабіринт крітського царя Міноса - одне із семи чудес світу. Перші здогади "Правило руки". Лабіринти і замкнені криві, розв'язування різних лабіринтних задач, застосування елементів теорії графів і теорії ймовірностей.

    реферат [7,3 M], добавлен 29.09.2009

  • Загальні відомості про комплексну площину, визначення інверсії. Формула інверсії в комплексно сполучених координатах. Нерухливі крапки, образи прямих і окружностей при узагальненій інверсії. Застосування інверсії при рішенні задач і доказі теорем.

    дипломная работа [381,1 K], добавлен 14.02.2011

  • Властивості числових характеристик системи випадкових величин. Обчислення кореляційного моменту. Ведення комплексної випадкової величини, характеристичні функції. Види збіжності випадкових величин. Приклади доказів граничних теорем теорії ймовірностей.

    реферат [113,9 K], добавлен 12.03.2011

  • Елементи загальної теорії багатомірних просторів, аксіоматика Вейля. Геометрія k-площин в афінному і евклідовому просторах: паралелепіпеди, симплекси, кулі. Застосування багатомірної геометрії: простір-час класичної механіки і теорії відносності.

    дипломная работа [1,0 M], добавлен 28.01.2011

  • Ознайомлення з історією виникнення теорії множин. Способи опису характеристичних властивостей множин. Декартовий добуток та бінарні відношення. Ін’єктивні, сюр’єктивні та бієктивні відображення. Поняття та властивості бінарної алгебраїчної операції.

    лекция [2,5 M], добавлен 28.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.