контрольная работа  Методы прогнозирования экономических объектов

Определение наилучшей функции по методике наименьших квадратов. Порядок вычисления интерполяционного полинома Лагранжа, который проходит через все заданные точки. Принципы и особенности представления приближенной функции многочленом второй степени.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

                                                               
   ,a8888a,         88  8888888888    ad888888b,    ad8888ba,  
 ,8P"'  `"Y8,     ,d88  88           d8"     "88   8P'    "Y8  
,8P        Y8,  888888  88  ____             a8P  d8           
88          88      88  88a8PPPP8b,       ,d8P"   88,dd888bb,  
88          88      88  PP"     `8b     a8P"      88P'    `8b  
`8b        d8'      88           d8   a8P'        88       d8  
 `8ba,  ,ad8'       88  Y8a     a8P  d8"          88a     a8P  
   "Y8888P"         88   "Y88888P"   88888888888   "Y88888P"   
                                                               
                                                               

Введите число, изображенное выше:

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 15.05.2014
Размер файла 40,5 K

Подобные документы

  • Понятие интерполяционного многочлена Лагранжа как многочлена минимальной степени, порядок его построения. Решение и оценка остаточного члена. Нахождение приближающей функции в виде линейной функции, квадратного трехчлена и других элементарных функций.

    курсовая работа [141,5 K], добавлен 23.07.2011

  • Вероятностное обоснование метода наименьших квадратов как наилучшей оценки. Прямая и обратная регрессии. Общая линейная модель. Многофакторные модели. Доверительные интервалы для оценок метода наименьших квадратов. Определение минимума невязки.

    реферат [383,7 K], добавлен 19.08.2015

  • Изучение аппроксимации таблично заданной функции методом наименьших квадратов при помощи вычислительной системы Mathcad. Исходные данные и функция, вычисляющая матрицу коэффициентов систему уравнений. Выполнение вычислений для разных порядков полинома.

    лабораторная работа [166,4 K], добавлен 13.04.2016

  • Интерполяция с помощью полинома Ньютона исходных данных. Значение интерполяционного полинома в заданной точке. Уточнение значения корня на заданном интервале тремя итерациями и поиск погрешности вычисления. Методы треугольников, трапеций и Симпсона.

    контрольная работа [225,2 K], добавлен 06.06.2011

  • Разделенные разности и аппроксимация функций методом наименьших квадратов. Интерполяционные многочлены Лагранжа и Ньютона. Экспериментальные данные функциональной зависимости. Система уравнений для полинома. Графики аппроксимирующих многочленов.

    реферат [139,0 K], добавлен 26.07.2009

  • Аппроксимация и теория приближений, применение метода наименьших квадратов для оценки характера приближения. Квадратичное приближение таблично заданной функции по дискретной норме Гаусса. Интегральное приближение функции, которая задана аналитически.

    реферат [82,0 K], добавлен 05.09.2010

  • Постановка задачи аппроксимации методом наименьших квадратов, выбор аппроксимирующей функции. Общая методика решения данной задачи. Рекомендации по выбору формы записи систем линейных алгебраических уравнений. Решение систем методом обратной матрицы.

    курсовая работа [77,1 K], добавлен 02.06.2011

  • Основные задачи регрессионного анализа в математической статистике. Вычисление дисперсии параметров уравнения регрессии и дисперсии прогнозирования эндогенной переменной. Установление зависимости между переменными. Применение метода наименьших квадратов.

    презентация [100,3 K], добавлен 16.12.2014

  • Построение графика непрерывной функции. Определение множителя Лагранжа. Критические точки - значения аргумента из области определения функции, при которых производная функции обращается в нуль. Наибольшее и наименьшее значения функции на отрезке.

    контрольная работа [295,5 K], добавлен 24.03.2009

  • Определение погрешности вычислений при численном дифференцировании. Алгебраический порядок точности численного метода как наибольшей степени полинома. Основной и вспомогательный бланк для решения задачи Коши. Применение интерполяционной формулы Лагранжа.

    реферат [1,4 M], добавлен 10.06.2012

  • Оценка неизвестных величин по результатам измерений, содержащим случайные ошибки, при помощи метода наименьших квадратов. Аппроксимация многочленами, обзор существующих методов аппроксимации. Математическая постановка задачи аппроксимации функции.

    курсовая работа [1,9 M], добавлен 12.02.2013

  • Построение массива конечных разностей. Выполнение экстраполяции. Вычисление приближенной функции с помощью многочлена Лагранжа. Определение значения функции с помощью формул Ньютона. Квадратичная сплайн-интерполяция. Среднеквадратичная аппроксимация.

    контрольная работа [1004,9 K], добавлен 01.12.2009

  • Исследование точности прогнозирования случайного процесса с использованием метода наименьших квадратов. Анализ расхождения между трендом и прогнозом, последующая оценка близости распределения расхождений наблюдений и распределения сгенерированного шума.

    курсовая работа [1,0 M], добавлен 29.01.2010

  • Методы условной и безусловной нелинейной оптимизации. Исследование функции на безусловный экстремум. Численные методы минимизации функции. Минимизация со смешанными ограничениями. Седловые точки функции Лагранжа. Использование пакетов MS Excel и Matlab.

    лабораторная работа [600,0 K], добавлен 06.07.2009

  • Исследование вопросов построения эмпирических формул методом наименьших квадратов средствами пакета Microsoft Excel и решение данной задачи в MathCAD. Сравнительная характеристика используемых средств, оценка их эффективности и перспективы применения.

    курсовая работа [471,3 K], добавлен 07.03.2015

  • Построение приближающей функции, используя исходные данные, с помощью методов Лагранжа, Ньютона и Эйткена (простая и упрощенная форма реализации). Алгоритм вычисления интерполяционного многочлена. Сравнение результатов реализации методов в среде Mathcad.

    курсовая работа [299,3 K], добавлен 30.04.2011

  • Уравнение прямой, проходящей через две заданные точки. Вычисление площади ромба. Разложение квадратного трехчлена на линейные множители. Нахождение производной функции и асимптот графика. Правила дифференцирования частного произведения и сложной функции.

    контрольная работа [158,8 K], добавлен 24.04.2009

  • Доказательство существования и единственности интерполяционного многочлена Лагранжа. Понятие лагранжевых коэффициентов. Способы задания наклонов интерполяционного кубического сплайна, его использование для аппроксимации функций на больших промежутках.

    презентация [251,7 K], добавлен 29.10.2013

  • Решение системы линейных уравнений методом Якоби вручную и на Бейсике. Построение интерполяционного многочлена Ньютона с помощью Excel. Получение аппроксимирующей функции методом наименьших квадратов. Построение кубического сплайна по шести точкам.

    курсовая работа [304,9 K], добавлен 07.09.2012

  • Определение годовых издержек пополнения и хранения запасов, приращения и дифференциала заданной функции, ее абсолютного и относительного отклонение. Выведение нормальных уравнений методом наименьших квадратов и формул Крамера для линейной функции.

    контрольная работа [277,4 K], добавлен 29.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.