доклад Доказательство формулы Ньютона-Лейбница
Формула Ньютона-Лейбница как один из ключевых элементов математического анализа и основа для интегрального исчисления. Характеристика теоремы о среднем значении для определенного интеграла. Определение производной как предела разностного отношения.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Математика |
Вид | доклад |
Язык | русский |
Дата добавления | 02.11.2014 |
Размер файла | 62,1 K |
Подобные документы
Функция одной независимой переменной. Свойства пределов. Производная и дифференциал функции, их приложение к решению задач. Понятие первообразной. Формула Ньютона-Лейбница. Приближенные методы вычисления определенного интеграла. Теорема о среднем.
конспект урока [147,7 K], добавлен 23.10.2013Ознакомление с историей понятия интеграла. Распространение интегрального исчисления, открытие формулы Ньютона–Лейбница. Символ суммы; расширение понятия суммы. Описание необходимости выражения всех физических явлений в виде математической формулы.
презентация [1,9 M], добавлен 26.01.2015Задачи, приводящие к понятию определенного интеграла. Определенный интеграл, как предел интегральной суммы. Связь между определенным и неопределенным интегралами. Формула Ньютона-Лейбница. Геометрический и механический смысл определенного интеграла.
реферат [576,4 K], добавлен 30.10.2010Производная определенного интеграла по переменному верхнему пределу. Вычисление определенного интеграла как предела интегральной суммы по формуле Ньютона–Лейбница, замена переменной и интегрирование по частям. Длина дуги в полярной системе координат.
контрольная работа [345,3 K], добавлен 22.08.2009Понятие первообразной функции, теорема о первообразных. Неопределенный интеграл, его свойства и таблица. Понятие определенного интеграла, его геометрический смысл и основные свойства. Производная определенного интеграла и формула Ньютона-Лейбница.
курсовая работа [232,5 K], добавлен 21.10.2011Способы определения точного значения интеграла по формуле Ньютона-Лейбница и приближенного значения интеграла по формуле трапеций. Порядок нахождения координаты центра тяжести однородной плоской фигуры ограниченной кривой, особенности интегрирования.
контрольная работа [459,6 K], добавлен 16.04.2010Понятие интеграла Римана, анализ его определений. Интеграл как предела интегральных сумм Римана, единственное число, разделяющее верхние и нижние суммы Дарбу. Интеграл от непрерывной функции как приращение первообразной (формула Ньютона-Лейбница).
курсовая работа [2,2 M], добавлен 30.10.2015Решение задачи по нахождению площади криволинейной трапеции. Определение и свойства определённого интеграла. Необходимое условие интегрируемости и критерий Дарбу. Интегрируемость непрерывных и монотонных функций. Доказательство формулы Ньютона-Лейбница.
контрольная работа [383,6 K], добавлен 25.03.2011Понятие и геометрический смысл определенного интеграла, его свойства. Формула Ньютона–Лейбница. Замена переменной в определенном интеграле. Интегрирование по частям. Объем тела вращения. Несобственные интегралы с бесконечными пределами интегрирования.
курс лекций [514,0 K], добавлен 31.05.2010Идеи интегрального исчисления в работах древних математиков. Особенности метода исчерпывания. История нахождения формулы объема тора Кеплера. Теоретическое обоснование принципа интегрального исчисления (принцип Кавальери). Понятие определенного интеграла.
презентация [1,8 M], добавлен 05.07.2016Расчет неопределенных интегралов, проверка результатов дифференцированием. Вычисление определенного интеграла по формуле Ньютона-Лейбница. Нахождение площади фигуры, ограниченной заданной параболой и прямой. Общее решение дифференциального уравнения.
контрольная работа [59,8 K], добавлен 05.03.2011Расчет неопределенных интегралов по частям и по формуле Ньютона-Лейбница. Вычисление несобственного интеграла или доказательство его расходимости. Расчет площади фигуры, ограниченной кардиоидой. Расстановка пределов двумя альтернативными способами.
контрольная работа [251,2 K], добавлен 28.03.2014Необходимое и достаточное условие существования определенного интеграла. Равенство определенного интеграла от алгебраической суммы (разности) двух функций. Теорема о среднем – следствие и доказательство. Геометрический смысл определенного интеграла.
презентация [174,5 K], добавлен 18.09.2013Определённый интеграл — аддитивный монотонный нормированный функционал, заданный на множестве пар, его компоненты, свойства. Вычисление определённого интеграла; формула Ньютона-Лейбница. Геометрические приложения: площадь, длина дуги, объем тела вращения.
презентация [308,0 K], добавлен 30.05.2013Сущность и методы определения первообразной в математическом анализе. Особенности вычисления первообразной как нахождение неопределённого интеграла. Анализ техники интегрирования. Формула Ньютона–Лейбница. Основные положения дифференциальной теории Галуа.
контрольная работа [71,8 K], добавлен 05.11.2011Применение первой и второй интерполяционной формул Ньютона. Нахождение значений функции в точках, не являющимися табличными. Bспользование формулы Ньютона для не равностоящих точек. Нахождение значения функции с помощью интерполяционной схемы Эйткена.
лабораторная работа [481,0 K], добавлен 14.10.2013Изучение понятия интегральной суммы. Верхний и нижний пределы интегрирования. Анализ свойств определенного интеграла. Доказательство теоремы о среднем. Замена переменной в определенном интеграле. Производная от интеграла по переменной верхней границе.
презентация [487,1 K], добавлен 11.04.2013Теоремы дифференциального исчисления, как основа для правила Лопиталя и формулы Тейлора. Правило Лопиталя и методы раскрытия всех типов неопределенностей. Вывод формулы Тейлора и ее применение для нахождения эквивалентных функций и вычисления пределов.
курсовая работа [261,6 K], добавлен 05.09.2009Связь с помощью формулы Грина криволинейного интеграла по замкнутому контуру с двойным интегралом по области, ограниченного этим контуром. Преобразование двойного интеграла по контуру, обходимого в положительном направлении. Доказательство теоремы.
презентация [44,7 K], добавлен 17.09.2013Введение понятия переменной величины. Развитие интегральных и дифференциальных методов. Математическое обоснование движения планет. Закон всемирного тяготения Ньютона. Научная школа Лейбница. Теория приливов и отливов. Создание математического анализа.
презентация [252,6 K], добавлен 20.09.2015