курсовая работа Регрессионный анализ
Применение регрессионного анализа для моделирования и изучения данных в математической статистике. Оценивание коэффициентов регрессии с помощью метода наименьших квадратов. Составление алгоритма регрессионного анализа линейного уравнения в Mathcad.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 12.12.2014 |
Размер файла | 213,3 K |
Подобные документы
Основные задачи регрессионного анализа в математической статистике. Вычисление дисперсии параметров уравнения регрессии и дисперсии прогнозирования эндогенной переменной. Установление зависимости между переменными. Применение метода наименьших квадратов.
презентация [100,3 K], добавлен 16.12.2014Прямолинейные, обратные и криволинейные связи. Статистическое моделирование связи методом корреляционного и регрессионного анализа. Метод наименьших квадратов. Оценка значимости коэффициентов регрессии. Проверка адекватности модели по критерию Фишера.
курсовая работа [232,7 K], добавлен 21.05.2015Расчеты с помощью метода наименьшего квадрата для определения мольной теплоёмкости. Составление с помощью метода программирования системы нелинейных уравнений. Получение в среде Mathcad уравнения, максимально приближенного к экспериментальным данным.
лабораторная работа [469,6 K], добавлен 17.06.2014Вероятностное обоснование метода наименьших квадратов как наилучшей оценки. Прямая и обратная регрессии. Общая линейная модель. Многофакторные модели. Доверительные интервалы для оценок метода наименьших квадратов. Определение минимума невязки.
реферат [383,7 K], добавлен 19.08.2015Знакомство с уравнениями линейной регрессии, рассмотрение распространенных способов решения. Общая характеристика метода наименьших квадратов. Особенности оценки статистической значимости парной линейной регрессии. Анализ транспонированной матрицы.
контрольная работа [380,9 K], добавлен 05.04.2015Описание способов нахождения коэффициентов регрессии модели полнофакторного эксперимента. Проверка многофакторных статистических гипотез на однородность ряда дисперсий, значимость и устойчивость математических коэффициентов множественной корреляции.
контрольная работа [1,2 M], добавлен 05.08.2010Функциональные и стохастические связи. Статистические методы моделирования связи. Статистическое моделирование связи методом корреляционного и регрессионного анализа. Проверка адекватности регрессионной модели.
курсовая работа [214,6 K], добавлен 04.09.2007Понятие доверительного интервала, сущность и определение критерия согласия Пирсона. Особенности точечного оценивания неизвестных параметров, основные требования к оценкам и статистикам. Характеристика классической линейной модели регрессионного анализа.
дипломная работа [440,4 K], добавлен 23.07.2013Особенности метода аппроксимации табулированных функций. Рассмотрение преимуществ работы в среде математической программы Mathcad. Метод наименьших квадратов как наиболее распространенный метод аппроксимации экспериментальных данных, сферы применения.
курсовая работа [1,2 M], добавлен 30.09.2012Изучение аппроксимации таблично заданной функции методом наименьших квадратов при помощи вычислительной системы Mathcad. Исходные данные и функция, вычисляющая матрицу коэффициентов систему уравнений. Выполнение вычислений для разных порядков полинома.
лабораторная работа [166,4 K], добавлен 13.04.2016Значения коэффициента регрессии (b) и сводного члена уравнения регрессии (а). Определение стандартной ошибки предсказания являющейся мерой качества зависимости величин Y и х с помощью уравнения линейной регрессии. Значимость коэффициента регрессии.
задача [133,0 K], добавлен 21.12.2008Исследование вопросов построения эмпирических формул методом наименьших квадратов средствами пакета Microsoft Excel и решение данной задачи в MathCAD. Сравнительная характеристика используемых средств, оценка их эффективности и перспективы применения.
курсовая работа [471,3 K], добавлен 07.03.2015Проверка адекватности линейной регрессии. Вычисление выборочного коэффициента корреляции. Обработка одномерной выборки методами статистического анализа. Проверка гипотезы значимости с помощью критерия Пирсона. Составление линейной эмпирической регрессии.
задача [409,0 K], добавлен 17.10.2012Применение системы MathCAD при решении прикладных задач технического характера. Основные средства математического моделирования. Решение дифференциальных уравнений. Использование системы MathCad для реализации математических моделей электрических схем.
курсовая работа [489,1 K], добавлен 17.11.2016На основе корреляционно-регрессионного анализа выявление зависимости успеваемости учащихся от таких факторов как: табакокурение; проблемы в семье; времяпровождение в сети Интернет; время, уходящее на телефонные разговоры; посещение дополнительных занятий.
научная работа [212,8 K], добавлен 23.05.2012Алгоритм проведения регрессионного анализа для создания адекватной модели, прогнозирующей цены на бензин на будущий период. Основы разработки программного обеспечения, позволяющего автоматизировать исследования операций в заданной предметной области.
контрольная работа [182,0 K], добавлен 06.02.2013Установление корреляционных связей между признаками многомерной выборки. Статистические параметры регрессионного анализа линейных и нелинейных выборок. Нахождение функций регрессии и проверка гипотезы о значимости выборочного коэффициента корреляции.
курсовая работа [304,0 K], добавлен 02.03.2017Определение частных производных первого и второго порядков заданной функции, эластичности спроса, основываясь на свойствах функции спроса. Выравнивание данных по прямой методом наименьших квадратов. Расчет параметров уравнения линейной парной регрессии.
контрольная работа [99,4 K], добавлен 22.07.2009Описание методов решения системы линейного алгебраического уравнения: обратной матрицы, Якоби, Гаусса-Зейделя. Постановка и решение задачи интерполяции. Подбор полиномиальной зависимости методом наименьших квадратов. Особенности метода релаксации.
лабораторная работа [4,9 M], добавлен 06.12.2011Числовые характеристики выборки. Статистический ряд и функция распределения. Понятие и графическое представление статистической совокупности. Метод наибольшего правдоподобия для нахождения плотности распределения. Применение метода наименьших квадратов.
контрольная работа [62,6 K], добавлен 20.02.2011