контрольная работа  Неопределённые интегралы

Основные аспекты вычисления объема тела, образованного вращением фигуры, ограниченной линиями. Особенности поиска неопределенных интегралов. Основы применения формулы Ньютона-Лейбница. Расчет площади криволинейной трапеции, ограниченной линиями.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

   ##   #####  #####   ###   ##### 
  #     #   #  #   #  #   #  #   # 
 #          #      #  #   #      # 
 ####       #      #   ###       # 
 #   #     #      #   #   #     #  
 #   #     #      #   #   #     #  
 #   #    #      #    #   #    #   
  ###     #      #     ###     #   
                                   
                                   

Введите число, изображенное выше:

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 09.03.2015
Размер файла 209,0 K

Подобные документы

  • Поиск площади фигуры, ограниченной графиками функций с помощью двойного интеграла. Получение вращением объема тела вокруг оси ОХ фигуры, ограниченной указанными линиями. Пределы интегрирования в двойном интеграле по области, ограниченной линиями.

    контрольная работа [166,9 K], добавлен 28.03.2014

  • Неопределенный интеграл. Объем тела вращения. Эмпирическая формула. Сходимость ряда. Вычисление объема тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями. Исследование на условную сходимость по признаку Лейбница.

    контрольная работа [25,8 K], добавлен 27.05.2004

  • Рассмотрение основных способов решения задач на вычисление неопределенных и определенных интегралов по формулам Ньютона-Лейбница и Симпсона. Ознакомление с примерами нахождения области, ограниченной линиями, и объема тела, ограниченного поверхностями.

    контрольная работа [194,2 K], добавлен 28.03.2014

  • Расчет неопределенных интегралов по частям и по формуле Ньютона-Лейбница. Вычисление несобственного интеграла или доказательство его расходимости. Расчет площади фигуры, ограниченной кардиоидой. Расстановка пределов двумя альтернативными способами.

    контрольная работа [251,2 K], добавлен 28.03.2014

  • Вычисление пределов функций. Нахождение производные заданных функций, решение неопределенных интегралов. Исследование функции и построение ее графика. Особенности вычисления площади фигуры, ограниченной линиями с использованием определенного интеграла.

    контрольная работа [283,1 K], добавлен 01.03.2011

  • Расчет неопределенных интегралов, проверка результатов дифференцированием. Вычисление определенного интеграла по формуле Ньютона-Лейбница. Нахождение площади фигуры, ограниченной заданной параболой и прямой. Общее решение дифференциального уравнения.

    контрольная работа [59,8 K], добавлен 05.03.2011

  • Исследование заданной функции и построение ее графика. Расчет объема тела, полученного вращением вокруг оси абсцисс фигуры, ограниченной линиями и осями координат. Вычисление интеграла при заданной силе. Работа, которую нужно совершить для сжатия пружины.

    контрольная работа [425,4 K], добавлен 18.10.2010

  • Из всех прямоугольников с площадью 9 дм2 найдите тот, у которого периметр наименьший.Вычислить площадь фигуры, ограниченной линиями (сделав рисунок). Вычислить площадь фигуры, ограниченной линиями.

    задача [20,9 K], добавлен 11.01.2004

  • Нахождение неопределенных интегралов (с проверкой дифференцированием). Разложение подынтегральных дробей на простейшие. Вычисление определенных интегралов, представление их в виде приближенного числа. Вычисление площади фигуры, ограниченной параболой.

    контрольная работа [123,7 K], добавлен 14.01.2015

  • Методика и основные этапы нахождения параметров: площади криволинейной трапеции и сектора, длины дуги кривой, объема тел, площади поверхности тел вращения, работы переменной силы. Порядок и механизм вычисления интегралов с помощью пакета MathCAD.

    контрольная работа [752,3 K], добавлен 21.11.2010

  • Вычисление площади фигуры, ограниченной заданными линиями, с помощью двойного интеграла. Расчет двойного интеграла, перейдя к полярным координатам. Методика определения криволинейного интеграла второго рода вдоль заданной линии и потока векторного поля.

    контрольная работа [392,3 K], добавлен 14.12.2012

  • Вычисление производной функции. Угловой коэффициент прямой. Интервалы монотонности, точки экстремума и перегиба функции. Вычисление интегралов с помощью универсальной тригонометрической подстановки. Нахождение площади фигуры, ограниченной линиями.

    контрольная работа [696,1 K], добавлен 05.01.2013

  • Способы вычисления интегралов. Формулы и проверка неопределенного интеграла. Площадь криволинейной трапеции. Неопределенный, определенный и сложный интеграл. Основные применения интегралов. Геометрический смысл определенного и неопределенного интегралов.

    презентация [1,2 M], добавлен 15.01.2014

  • Производные функций, заданных в явном и неявном виде. Исследование функций методами дифференциального исчисления. Точки перегиба и экстремума, градиент функции. Объем тела, образованного вращением фигуры и ограниченной графиками функций, вокруг оси.

    контрольная работа [77,3 K], добавлен 11.07.2013

  • Решение задачи по нахождению площади криволинейной трапеции. Определение и свойства определённого интеграла. Необходимое условие интегрируемости и критерий Дарбу. Интегрируемость непрерывных и монотонных функций. Доказательство формулы Ньютона-Лейбница.

    контрольная работа [383,6 K], добавлен 25.03.2011

  • Вычисление предела функции, не используя правило Лопиталя. Нахождение производной функции и построение ее графика. Исследование неопределенных интегралов и выполнение проверки дифференцированием. Вычисление площади фигуры, ограниченной графиками функций.

    контрольная работа [317,3 K], добавлен 25.03.2014

  • Криволинейный интеграл первого и второго рода. Площадь области, ограниченной замкнутой кривой. Объем тела, образованного вращением замкнутой кривой. Центр масс и моменты инерции кривой. Магнитное поле вокруг проводника с током. Сущность закона Фарадея.

    реферат [1,4 M], добавлен 09.01.2012

  • Вычисление и исследование предела и производной функции, построение графиков. Вычисление неопределенных интегралов, площади фигуры, ограниченной графиками функций. Нахождение решения дифференциального уравнения и построение графиков частных решений.

    контрольная работа [153,6 K], добавлен 19.01.2010

  • Определение определенного интеграла, его свойства. Длина дуги кривой. Площадь криволинейной трапеции. Площадь поверхности вращения. Площади фигур, ограниченных графиками функций, ограниченных линиями, заданными уравнениями. Вычисление объемов тел.

    контрольная работа [842,6 K], добавлен 10.02.2017

  • Понятие определённого интеграла, расчет площади, объёма тела и длины дуги, статического момента и центра тяжести кривой. Вычисление площади в случае прямоугольной криволинейной области. Применение криволинейного, поверхностного и тройного интегралов.

    курсовая работа [2,1 M], добавлен 19.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.