статья  Алгоритм моделирования движения авиационных управляемых ракет

Разработка алгоритмического обеспечения построения методик испытаний авиационных управляемых ракет, основанного на интегрировании дифференциальных уравнений в форме Коши. Анализ соответствия характеристик движения авиационных ракет заданным требованиям.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

  ####     ####     ####      ##     ######  
 ##  ##   ##  ##   ##  ##     ##     ##      
 ##  ##   ##  ##   ##        ###     #####   
  ####     #####   #####      ##         ##  
 ##  ##       ##   ##  ##     ##         ##  
 ##  ##   ##  ##   ##  ##     ##     ##  ##  
  ####     ####     ####    ######    ####   
                                             

Введите число, изображенное выше:

Рубрика Математика
Вид статья
Язык русский
Дата добавления 07.03.2019
Размер файла 436,4 K

Подобные документы

  • Понятие о голоморфном решении задачи Коши. Теорема Коши о существовании и единственности голоморфного решения задачи Коши. Решение задачи Коши для линейного уравнения второго порядка при помощи степенных рядов. Интегрирование дифференциальных уравнений.

    курсовая работа [810,5 K], добавлен 24.11.2013

  • Анализ методов решения систем дифференциальных уравнений, которыми можно описать поведение материальных точек в силовом поле, законы химической кинетики, уравнения электрических цепей. Этапы решения задачи Коши для системы дифференциальных уравнений.

    курсовая работа [791,0 K], добавлен 12.06.2010

  • Описание колебательных систем дифференциальными уравнениями с малым параметром при производных, асимптотическое поведение их решений. Методика регулярных возмущений и особенности ее применения при решении задачи Коши для дифференциальных уравнений.

    курсовая работа [1,5 M], добавлен 15.06.2009

  • Определение и анализ многошаговых методов, основы их построения, устойчивость и сходимость. Постановка задачи Коши для обыкновенных дифференциальных уравнений. Метод Адамса, значение квадратурных коэффициентов. Применение методов прогноза и коррекции.

    контрольная работа [320,8 K], добавлен 13.03.2013

  • Анализ динамических процессов в системе на основе использования построенной аналитической модели. Моделирование с использованием пакета расширения Symbolic Math Tolbox. Построение модели в виде системы дифференциальных уравнений, записанных в форме Коши.

    курсовая работа [863,4 K], добавлен 21.06.2015

  • Сущность понятия "дифференциальное уравнение". Главные этапы математического моделирования. Задачи, приводящие к решению дифференциальных уравнений. Решение задач поиска. Точность маятниковых часов. Решение задачи на определение закона движения шара.

    курсовая работа [918,7 K], добавлен 06.12.2013

  • Формулировка основного закона динамики. Понятие и основные характеристики прямолинейного движения, формы и особенности его задания. Схема формирования и решения дифференциальных уравнений движения. Примеры решения типовых задач по данной тематике.

    презентация [1,7 M], добавлен 26.09.2013

  • Биографические сведения об Огюстене Луи Коши - французском математике XIX века, который вошел в историю благодаря открытиям в области дифференциальных уравнений, алгебры, геометрии и математического анализа. Достижения, исследования и открытия ученого.

    презентация [320,4 K], добавлен 28.04.2015

  • Появление понятия функций Ляпунова. Развитие теории устойчивости движения. Применение функций Ляпунова к исследованию продолжимости решений дифференциальных уравнений. Методы построения функций Ляпунова, продолжимость решений уравнений третьего порядка.

    дипломная работа [543,4 K], добавлен 29.01.2010

  • Решение дифференциальных уравнений. Численный метод для заданной последовательности аргументов. Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции. Применение шаговых методов решения Коши.

    дипломная работа [1,2 M], добавлен 16.12.2008

  • Решение задачи Коши для дифференциального уравнения. Погрешность приближенных решений. Функция, реализующая явный метод Эйлера. Вычисление погрешности по правилу Рунге. Решение дифференциальных уравнений второго порядка. Условие устойчивости для матрицы.

    контрольная работа [177,1 K], добавлен 13.06.2012

  • Оригиналы и изображения функций по Лапласу. Основные теоремы операционного исчисления. Изображения простейших функций. Отыскание оригинала по изображению. Задача Коши для обыкновенных линейных дифференциальных уравнений с постоянными коэффициентами.

    дипломная работа [162,3 K], добавлен 27.05.2008

  • Решение системы линейных обыкновенных дифференциальных уравнений, описывающей боковое перемещение нестабильного самолета относительно заданного курса полета методом преобразования Лапласа. Стабилизация движения путем введения отрицательной обратной связи.

    курсовая работа [335,8 K], добавлен 31.05.2016

  • Предмет и методы изучения дифференциальной векторно-матричной алгебры, ее структура. Векторное решение однородных и неоднородных дифференциальных уравнений. Численное решение векторно-матричных уравнений. Формулы построения вычислительных процедур.

    реферат [129,3 K], добавлен 15.08.2009

  • Дифференциальные уравнения как математический инструмент моделирования и анализа разнообразных явлений и процессов в науке и технике. Описание математических методов решения систем дифференциальных уравнений. Методы расчета токов на участках цепи.

    курсовая работа [337,3 K], добавлен 19.09.2011

  • Система Ляпунова - случай одной степени свободы. Необходимые и достаточные условия существования периодических решений. Применение алгоритма Ляпунова для построения приближенного периодического решения задачи Коши для системы дифференциальных уравнений.

    курсовая работа [243,8 K], добавлен 11.05.2012

  • Принципы и этапы построения математической модели движения неуправляемого двухколесного велосипеда. Условия устойчивого движения. Вопрос гироскопической стабилизации движения. Модель движения велосипеда с гиростабилизатором в системе Matlab (simulink).

    статья [924,5 K], добавлен 30.10.2015

  • Виды дифференциальных уравнений: обыкновенные, с частными производными, стохастические. Классификация линейных уравнений второго порядка. Нахождение функции Грина, ее применение для решения неоднородных дифференциальных уравнений с граничными условиями.

    курсовая работа [4,8 M], добавлен 29.04.2013

  • Определение, свойства и примеры функциональных уравнений. Основные методы их решения, доказательство некоторых теорем. Понятие группы функций, применение их при решении функциональных уравнений с несколькими переменными. Класс уравнений типа Коши.

    курсовая работа [86,3 K], добавлен 01.10.2011

  • Понятие, закономерности формирования и решения дифференциальных уравнений. Теорема о существовании и единственности решения задачи Коши. Существующие подходы и методы решения данной задачи, оценка погрешности полученных значений. Листинг программы.

    курсовая работа [120,8 K], добавлен 27.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.