дипломная работа  Сингулярное разложение в линейной задаче метода наименьших квадратов

Ортогональное вращение Гивенса и преобразование Хаусхолдера. Последовательность нахождения сингулярного разложения матриц. Описание числа обусловленности. Нормы в пространстве векторов и матриц. Использование разложения в методе наименьших квадратов.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

 #####    ###     ###     ###     ###   
 #   #   #   #   #   #   #   #   #   #  
     #       #   #   #   #   #   #   #  
    #       #    #   #    ###     ###   
    #      #     #   #   #   #   #   #  
   #      #      #   #   #   #   #   #  
   #     #       #   #   #   #   #   #  
   #     #####    ###     ###     ###   
                                        
                                        

Введите число, изображенное выше:

Рубрика Математика
Вид дипломная работа
Язык русский
Дата добавления 26.02.2020
Размер файла 120,3 K

Подобные документы

  • Вероятностное обоснование метода наименьших квадратов как наилучшей оценки. Прямая и обратная регрессии. Общая линейная модель. Многофакторные модели. Доверительные интервалы для оценок метода наименьших квадратов. Определение минимума невязки.

    реферат [383,7 K], добавлен 19.08.2015

  • Основные задачи регрессионного анализа в математической статистике. Вычисление дисперсии параметров уравнения регрессии и дисперсии прогнозирования эндогенной переменной. Установление зависимости между переменными. Применение метода наименьших квадратов.

    презентация [100,3 K], добавлен 16.12.2014

  • Аппроксимация и теория приближений, применение метода наименьших квадратов для оценки характера приближения. Квадратичное приближение таблично заданной функции по дискретной норме Гаусса. Интегральное приближение функции, которая задана аналитически.

    реферат [82,0 K], добавлен 05.09.2010

  • Оценка неизвестных величин по результатам измерений, содержащим случайные ошибки, при помощи метода наименьших квадратов. Аппроксимация многочленами, обзор существующих методов аппроксимации. Математическая постановка задачи аппроксимации функции.

    курсовая работа [1,9 M], добавлен 12.02.2013

  • Исследование точности прогнозирования случайного процесса с использованием метода наименьших квадратов. Анализ расхождения между трендом и прогнозом, последующая оценка близости распределения расхождений наблюдений и распределения сгенерированного шума.

    курсовая работа [1,0 M], добавлен 29.01.2010

  • Изучение аппроксимации таблично заданной функции методом наименьших квадратов при помощи вычислительной системы Mathcad. Исходные данные и функция, вычисляющая матрицу коэффициентов систему уравнений. Выполнение вычислений для разных порядков полинома.

    лабораторная работа [166,4 K], добавлен 13.04.2016

  • Исследование вопросов построения эмпирических формул методом наименьших квадратов средствами пакета Microsoft Excel и решение данной задачи в MathCAD. Сравнительная характеристика используемых средств, оценка их эффективности и перспективы применения.

    курсовая работа [471,3 K], добавлен 07.03.2015

  • Знакомство с уравнениями линейной регрессии, рассмотрение распространенных способов решения. Общая характеристика метода наименьших квадратов. Особенности оценки статистической значимости парной линейной регрессии. Анализ транспонированной матрицы.

    контрольная работа [380,9 K], добавлен 05.04.2015

  • Постановка задачи аппроксимации методом наименьших квадратов, выбор аппроксимирующей функции. Общая методика решения данной задачи. Рекомендации по выбору формы записи систем линейных алгебраических уравнений. Решение систем методом обратной матрицы.

    курсовая работа [77,1 K], добавлен 02.06.2011

  • Определение коэффициентов элементарных функций: линейной, показательной, степенной, гиперболической, дробно-линейной, дробно-рациональной. Использование метода наименьших квадратов. Приближённые математические модели в виде приближённых функций.

    лабораторная работа [253,6 K], добавлен 05.01.2015

  • Статистическое описание и выборочные характеристики двумерного случайного вектора. Оценка параметров линейной регрессии, полученных по методу наименьших квадратов. Проверка гипотезы о равенстве средних нормальных совокупностей при неизвестных дисперсиях.

    контрольная работа [242,1 K], добавлен 05.11.2011

  • Механизм и основные этапы нахождения необходимых параметров методом наименьших квадратов. Графическое сравнение линейной и квадратичной зависимостей. Проверка гипотезы о значимости выборочного коэффициента корреляции при заданном уровне значимости.

    курсовая работа [782,6 K], добавлен 19.05.2014

  • Основные операции над матрицами и их свойства. Произведение матриц или перемножение матриц. Блочные матрицы. Понятие определителя. Панель инструментов Матрицы. Транспонирование. Умножение. Определитель квадратной матрицы. Модуль вектора.

    реферат [109,2 K], добавлен 06.04.2003

  • Неопределенный интеграл. Объем тела вращения. Эмпирическая формула. Сходимость ряда. Вычисление объема тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями. Исследование на условную сходимость по признаку Лейбница.

    контрольная работа [25,8 K], добавлен 27.05.2004

  • Числовые характеристики выборки. Статистический ряд и функция распределения. Понятие и графическое представление статистической совокупности. Метод наибольшего правдоподобия для нахождения плотности распределения. Применение метода наименьших квадратов.

    контрольная работа [62,6 K], добавлен 20.02.2011

  • Численные методы решения систем линейных алгебраических уравнений, алгоритмы, их реализующие. Нормы матриц и векторов, погрешность приближенного решения системы и обусловленность матриц. Интеграционные методы решения: методы простой итерации, релаксации.

    учебное пособие [340,6 K], добавлен 02.03.2010

  • Методика расчета скалярного произведения заданных векторов. Расчет определителей и рангов матриц, нахождение обратных матриц. Разрешение уравнений по методу Крамера, обратной матрицы, а также встроенной функции lsolve. Анализ полученных результатов.

    лабораторная работа [86,8 K], добавлен 13.10.2014

  • Расчеты с помощью метода наименьшего квадрата для определения мольной теплоёмкости. Составление с помощью метода программирования системы нелинейных уравнений. Получение в среде Mathcad уравнения, максимально приближенного к экспериментальным данным.

    лабораторная работа [469,6 K], добавлен 17.06.2014

  • Определение годовых издержек пополнения и хранения запасов, приращения и дифференциала заданной функции, ее абсолютного и относительного отклонение. Выведение нормальных уравнений методом наименьших квадратов и формул Крамера для линейной функции.

    контрольная работа [277,4 K], добавлен 29.01.2010

  • Форма записи и методы решения системы алгебраических уравнений с n неизвестными. Умножение и нормы векторов и матриц. Свойства определителей матрицы. Собственные значения и собственные векторы. Примеры использования числовых характеристик матриц.

    реферат [203,0 K], добавлен 12.08.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.