статья Решение однородной краевой задачи Римана с условием на действительной оси и бесконечным индексом логарифмического порядка новым методом
Рассмотрение однородной краевой задачи Римана с краевым условием на действительной оси для функции, аналитической в комплексной плоскости кроме точек действительной оси. Вывод формулы, которая определяет аналитическую в верхней полуплоскости функцию.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 17.08.2020 |
Размер файла | 1,5 M |
Подобные документы
Банаховы функциональные пространства. Постановка краевой задачи и исследование ее однозначной разрешимости и отрицательности функции Грина. Признаки существования решения краевой задачи для нелинейного функционально-дифференциального уравнения.
курсовая работа [440,4 K], добавлен 27.05.2015Ознакомление с теоремами теории аналитических функций. Определение и основные свойства индекса функции. Постановка и методы решения однородной и неоднородной задач Римана для односвязной и многосвязной областей. Принципы нахождения функции сдвига.
курсовая работа [485,6 K], добавлен 20.12.2011Последовательность решения линейной краевой задачи. Особенности метода прогонки. Алгоритм метода конечных разностей: построение сетки в заданной области, замена дифференциального оператора. Решение СЛАУ методом Гаусса, конечно-разностные уравнения.
контрольная работа [366,5 K], добавлен 28.07.2013Сущность методов сведения краевой задачи к задаче Коши и алгоритмы их реализации на ПЭВМ. Применение метода стрельбы (пристрелки) для линейной краевой задачи, определение погрешности вычислений. Решение уравнения сшивания для нелинейной краевой задачи.
методичка [335,0 K], добавлен 02.03.2010Метод разделения переменных в задаче Штурма-Лиувилля. Единственность решения смешанной краевой задачи, реализуемая методом априорных оценок. Постановка и решение смешанной краевой задачи для нелокального волнового уравнения с дробной производной.
курсовая работа [1003,8 K], добавлен 29.11.2014Описание метода сведения краевой задачи к задаче Коши. Решение системы из двух уравнений с четырьмя неизвестными. Метод Рунге-Кутта. Расчет максимальной погрешности и выполнение проверки точности. Метод конечных разностей. Описание полученных результатов.
курсовая работа [245,2 K], добавлен 10.07.2012Свойства дзета-функции Римана для действительного аргумента. Дзета-функцию как функция мнимого аргумента. Дзета-функция Римана широко применяется в математическом анализе, в теории чисел, в изучении распределения простых чисел в натуральном ряду.
курсовая работа [263,2 K], добавлен 29.05.2006Решение линейной краевой задачи методом конечных разностей (методом сеток). Замена области непрерывного изменения аргументов дискретным множеством узлов (сеток). Сведение линейной краевой задачи к системе линейных алгебраических уравнений (сеточных).
лекция [463,7 K], добавлен 28.06.2009Понятие интеграла Римана, анализ его определений. Интеграл как предела интегральных сумм Римана, единственное число, разделяющее верхние и нижние суммы Дарбу. Интеграл от непрерывной функции как приращение первообразной (формула Ньютона-Лейбница).
курсовая работа [2,2 M], добавлен 30.10.2015Математическая модель задачи. Решение транспортной задачи методом потенциалов. Значение целевой функции. Система, состоящая из 7 уравнений с 8-ю неизвестными. Решение задач графическим методом. Выделение полуплоскости, соответствующей неравенству.
контрольная работа [23,5 K], добавлен 12.06.2011Особенности решения обыкновенного линейного неоднородного дифференциального уравнения второго порядка с заданными граничными условиями методом конечной разности. Составление трехдиагональной матрицы. Реализация решения в программе Microsoft Office Excel.
курсовая работа [1,4 M], добавлен 23.12.2013Математическое моделирование и особенности задачи распределения. Обоснование и выбор метода решения. Ручное решение задачи (венгерский метод), а также с использованием компьютера. Формулировка полученного результата в сопоставлении с условием задачи.
курсовая работа [383,9 K], добавлен 26.05.2010Аналитическое решение уравнения для вынужденных поперечных колебаний консольного стержня. Численное решение уравнения с помощью метода "бегущего счёта". Вывод уравнения движения из основных законов физики. Построение дискретной модели и выбор сетки.
курсовая работа [1,0 M], добавлен 25.02.2013Решение краевой задачи. Методы конечно-разностных, центрально-разностных отношений и метод прогонки. Приближенное решение линейного дифференциального уравнения второго порядка с помощью методов Галеркина, Ритца и коллокации, сравнение результов.
курсовая работа [596,2 K], добавлен 27.04.2011Характеристика уравнений с разделяющимися переменными. Сущность метода Бернулли и метода Лагранжа, задачи Коша. Решение линейных уравнений n-го порядка. Фундаментальная система решений - набор линейно независимых решений однородной системы уравнений.
контрольная работа [355,9 K], добавлен 28.02.2011Порядок и принципы составления дифференциального уравнения, методика нахождения неизвестных значений. Замена исходного дифференциального уравнения на систему n-линейных уравнений относительно n-неизвестных. Формирование и решение системы уравнений.
задача [118,8 K], добавлен 20.09.2013Модельная задача уравнения колебаний струны и деформации системы из трех струн. Вариационные методы решения: экстремум функционала, пробные функции, метод Ритца. Подпространства сплайнов и тестирование программы решения системы алгебраических уравнений.
дипломная работа [1,1 M], добавлен 29.06.2012Сведения из истории математики о решении уравнений. Применение на практике методов решения уравнений и неравенств, основанных на использовании свойств функции. Исследование уравнения на промежутках действительной оси. Угадывание корня уравнения.
курсовая работа [1,4 M], добавлен 07.09.2010Предел для функции действительного аргумента и для функции комплексного переменного. Формулировка необходимого условия дифференцируемости функции комплексного переменного (условие Коши-Римана). Понятия и примеры правильных и особых точек функции.
презентация [74,9 K], добавлен 17.09.2013Изучение численно-аналитического метода решения краевых задач математической физики на примере неоднородной задачи Дирихле для уравнения Лапласа. Численная реализация вычислительного метода и вычислительного эксперимента, особенности их оформления.
практическая работа [332,7 K], добавлен 28.01.2014