Ретикулярная формация
Многообразие форм влияния ретикулярной формации на деятельность нервной системы. Неспецифические нисходящие и восходящие влияния. Микроэлектродные исследования эффектов, возникающих в нейронах спинного мозга при раздражении ретикулярной формации.
Рубрика | Медицина |
Вид | реферат |
Язык | русский |
Дата добавления | 03.01.2013 |
Размер файла | 27,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Ретикулярная формация
Ретикулярная формация(formatio reticularis; лат. reticulum сетка; синоним ретикулярная субстанция) -- комплекс клеточных и ядерных образований, занимающих центральное положение в стволе головного мозга и в верхнем отделе спинного мозга. Большое количество нервных волокон, пронизывающих ретикулярную формацию в различных направлениях, придает ей вид своеобразной сеточки, что послужило основанием для названия этой структуры.
Вся ретикулярная формация может быть подразделена на каудальный, или мезэнцефалический, и ростральный, или таламический, отделы. Каудальный отдел ретикулярной формации определяет диффузную, неспецифическую систему влияний на сравнительно обширные отделы и зоны головного мозга, тогда как ростральный отдел ретикулярной формации -- специфическую систему, оказывающую относительно локальные влияния на определенные зоны коры больших полушарий. Диффузность (или специфичность) ретикулярной формации проявляется и в характере модальности нервно-импульсных влияний. Таким образом ретикулярная формация -- это универсальная система, обусловливающая функциональное состояние всех отделов головного мозга и влияющая на все виды нервной деятельности, т.е. ее можно представить как «мозг в мозге».
Несмотря на многообразие форм влияния ретикулярной формации на деятельность нервной системы, можно выделить два основных направления воздействия ретикулярной формации: ретикулоспинальные влияния и ретикулокортикальные взаимоотношения.
Ретикулоспинальные влияния носят облегчающий или тормозной характер и играют важную роль в координации простых и сложных движений, в реализации влияний психической сферы на осуществление сложной двигательной поведенческой деятельности человека.
Ретикулокортикальные взаимоотношения разноплановы. Из клинической практики известно, что при поражении определенных отделов ствола головного мозга наблюдаются снижение двигательной активности, сонливость, ареактивность, нарушение смены состояний сна и бодрствования, подавление психической деятельности, т.е. снижение активирующих влияний на процессы корковой интеграции. Показано также, что раздражение определенных участков ретикулярной формации вызывает в обширных зонах коры больших полушарий реакцию активации. Эти данные позволили сформулировать концепцию о диффузной, восходящей, активирующей системе ретикулярной формации.
В основе активирующего влияния ретикулярной формации на кору больших полушарий лежит афферентная импульсация от сенсорных систем организма, а также гуморальные влияния (норадреналин, тироксин, регуляторные пептиды и другие специфические физиологически активные вещества, взаимодействующие с нейронами ретикулярной формации).
Долгое время влияние коры на ретикулярную формацию оставалось не изученным, что привело к чрезмерному подчеркиванию влияний ретикулярной формации на кору больших полушарий. Поэтому важным фактором стало установление связей коры больших полушарий с нейронами ретикулярной формации, оказывающими «сдерживающее» модулирующее влияние на функциональное состояние формации.
Нарушения функции ретикулярной формации развиваются главным образом вследствие поражений ее ядер или афферентных и эфферентных связей на различных уровнях, проявляются в виде расстройств движения, нарушений сна, сознания, вегетативной дисфункции.
Влияния РФ можно разделить в целом на нисходящие и восхо-дящие. В свою очередь каждое из этих влияний имеет тормозное и возбуждающее действие.
Неспецифические нисходящие влияния
В 1946 г. американский нейрофизиолог X.Мегоун и его сотрудники обнаружили, что ретикулярная формация мозгового ствола имеет непосредственное отношение к регуляции не только вегетативной, но и соматической рефлекторной деятельности. Раздражая различные точки ретикулярной формации, можно чрезвычайно эффективно изменять течение спинальных двигательных рефлексов. В 1949 г. совместные работы X.Мегоуна и итальянского нейрофизиолога Дж.Моруцци показали, что раздражение ретикулярной формации эффективно влияет и на функции высших структур мозга, в частности коры больших полушарий, определяя переход ее в активное (бодрствующее) или неактивное (сонное) состояние. Эти работы сыграли исключительно важную роль в современной нейрофизиологии, поскольку они продемонстрировали, что ретикулярная формация занимает особое место среди других нервных центров, определяя в значительной мере общий уровень активности последних.
Влияния на двигательную деятельность спинного мозга возникают, в основном, при раздражении ретикулярной формации заднего мозга. Участки, которые создают эти эффекты, в настоящее время довольно хорошо определены, они совпадают с гигантоклеточным ядром ретикулярной формации продолговатого мозга и ретикулярным ядром моста. Эти ядра содержат большие клетки, аксоны которых образуют ретикулоспинальные пути.
Первые работы X.Мегоуна показали, что раздражение гигантоклеточного ядра вызывает ослабление в одинаковой мере всех спинальных двигательных рефлексов и сгибательных, и разгибательных. Поэтому он сделал вывод о том, что нисходящая система, берущая начало в вентрокаудальной части ретикулярной формации имеет неспецифическую тормозящую функцию. Несколько позже было обнаружено, что раздражение более дорсальных и оральных ее участков вызывало, наоборот, диффузное облегчающее действие на спинальную рефлекторную деятельность.
Микроэлектродные исследования эффектов, возникающих в нейронах спинного мозга при раздражении ретикулярной формации, действительно показали, что ретикулоспинальные влияния могут изменять передачу импульсации почти во всех рефлекторных дугах спинного мозга. Эти изменения оказываются очень глубокими и длительными, даже в том случае, когда ретикулярная формация раздражается всего несколькими стимулами, эффект в спинном мозге сохраняется сотни миллисекунд.
Одновременная активация большого количества ретикулоспинальных нейронов, которая имеет место в эксперименте с прямым раздражением ретикулярной формации и приводит к генерализованному изменению рефлекторной деятельности спинного мозга ситуация, конечно, искусственная. В естественных условиях такого глубокого сдвига этой деятельности, вероятно, не происходит; тем не менее, диффузное изменение рефлекторной возбудимости спинного мозга, несомненно, может иметь место при определенных состояниях мозга. Возможность диффузного ослабления рефлекторной возбудимости можно представить себе, например, при сне; оно приведет к снижению деятельности двигательной системы, характерному для сна. Важно учесть, что ретикулярное торможение захватывает также спинальные нейроны, участвующие в передаче афферентной импульсации в восходящем направлении, следовательно, оно должно ослаблять передачу сенсорной информации в высшие мозговые центры.
Синаптические механизмы диффузных влияний ретикулярной формации на нейроны спинного мозга изучены пока недостаточно. Как уже указывалось, эти влияния чрезвычайно длительны; кроме того, ретикулярное торможение устойчиво к действию стрихнина. Стрихнин является специфическим ядом, устраняющим постсинаптическое торможение мотонейронов, вызванное импульсацией из первичных афферентов и связанное, по всей вероятности, с выделением медиатора глицина. Нечувствительность диффузного ретикулярного торможения к стрихнину говорит, по-видимому, о том, что ретикулярные тормозящие эффекты создаются действием на спинальные клетки другого медиатора. Гистохимические исследования показали, что некоторое количество волокон в нисходящих путях, идущих из ретикулярной формации, является по своей природе адренэргическим. Однако пока неизвестно, имеют ли эти волокна отношение к диффузным ретикулоспинальным тормозящим эффектам.
Наряду с диффузными тормозящими влияниями, при раздражении определенных областей ретикулярной формации можно вызвать более специфические изменения деятельности спинальных элементов.
Если сравнить нисходящие влияния ретикулярной формации на нейронные структуры, регулирующие соматические и висцеральные функции, то можно обнаружить в них определенное сходство. Как сосудодвигательная, так и дыхательная функции ретикулярной формации строятся на сочетании деятельности двух реципрокно связанных между собой групп нейронов, оказывающих противоположное действие на спинальные структуры. Ретикулярные влияния на спинальные двигательные центры также состоят из противоположных, тормозящих и облегчающих компонентов. Поэтому создается впечатление, что реципрокный принцип организации нисходящих проекций представляет собой общее свойство ретикулярных структур; конечный эффект, соматический или вегетативный, определяется только тем, куда направлены аксоны соответствующих ретикулярных клеток. Такое сходство можно отметить и в других особенностях функционирования ретикулярных нейронов. Ретикулярные структуры, регулирующие вегетативные функции, отличаются высокой химической чувствительностью; влияния ретикулярной формации на двигательные центры также легко изменяются под влиянием таких химических факторов, как уровень CO2 в крови и содержание в ней физиологически активных веществ (адреналина). Механизм действия адреналина на ретикулярные нейроны довольно долго вызывал споры. Дело в том, что адреналин даже при его введении непосредственно в мозговую артерию может оказывать на ретикулярные нейроны непрямое действие (путем, например, сужения мозговых сосудов с последующей аноксией мозговой ткани). Однако исследование реакций ретикулярных нейронов в ответ на прямое приложение к ним адреналина через внеклеточный микроэлектрод показало, что некоторые из них действительно являются адреноцептивными.
Восходящие влияния
Наряду с функциями, которые осуществляются через нисходящие пути, у ретикулярной формации есть не менее существенные функции, которые осуществляются через ее восходящие пути. Они связаны с регуляцией активности высших отделов мозга, главным образом, коры больших полушарий. Данные о том, что ретикулярная формация играет важную роль в поддержании нормальной деятельности коры больших полушарий, были получены еще в тридцатые годы нашего столетия, однако важность их в свое время не могла быть достаточно оценена. Бельгийский нейрофизиолог Ф.Бремер (1935), проводя перерезку головного мозга на различных уровнях и наблюдая за функциями отделенных от остальной центральной нервной системы участков головного мозга, обратил внимание на то, что имеется чрезвычайно существенное различие между животным, у которого перерезка проведена по межколликулярному уровню (т.е. между передними и задними холмами четверохолмия), и животным, у которого линия разреза прошла между продолговатым и спинным мозгом.
Первый препарат был назван Бремером cerveau isolee, а второй encephale isolee (изолированный передний мозг и изолированный головной мозг). Межколликулярная перерезка оставляет ниже места разреза почти всю ретикулярную формацию; перерезка же ниже продолговатого мозга оставляет в связи с высшими отделами мозга все стволовые структуры. У животного с ceryeau isolee остаются связанными с корой головного мозга такие важнейшие афферентные системы, как обонятельная и зрительная. Однако такое животное не реагирует на световые и обонятельные раздражения; глаза у него закрыты, и оно фактически не вступает в контакт с внешним миром. У животного же с encephale isolee реакции полностью сохраняются; такое животное открывает глаза на свет, реагирует на запахи, т.е. ведет себя как бодрствующее, а не как спящее животное.
Бремер сделал вывод, что для бодрствующего состояния высших отделов мозга необходимо непрерывное поступление к ним афферентной импульсации, в частности от такой обширной рецептивной зоны, как зона тройничного нерва. Предполагалось, что эта импульсация поступает в кору больших полушарий по восходящим афферентным путям и поддерживает высокую возбудимость ее нейронов.
Однако дальнейшие исследования показали, что для поддержания бодрствующего состояния коры больших полушарий важно не просто поступление к ней импульсации по афферентным системам. Если сделать перерезку ствола мозга так, чтобы не повредить основные афферентные системы (например, систему медиальной петли), но перерезать восходящие связи ретикулярной формации, то животное тем не менее впадает в сонное состояние, конечный мозг перестает активно функционировать.
Следовательно, для поддержания бодрствующего состояния конечного мозга важно, чтобы афферентная импульсация первоначально активировала ретикулярные структуры мозгового ствола. Влияния же из ретикулярных структур по восходящим путям каким то образом определяют функциональное состояние конечного мозга. Проверить такой вывод можно путем прямого раздражения ретикулярных структур. Такое раздражение через погружные электроды было проведено Дж.Моруцци и X.Мегоуном и затем воспроизводилось во многих лабораториях в условиях хронического или полухронического опыта. Оно всегда дает однозначные результаты в виде характерной поведенческой реакции животного. Если животное находится в сонном состоянии оно просыпается, у него появляется ориентировочная реакция. После прекращения раздражения животное снова возвращается в сонное состояние. Переход от сонного к бодрствующему состоянию в период раздражения ретикулярных структур отчетливо проявляется не только в поведенческих реакциях, он может быть зарегистрирован по объективным критериям деятельности коры больших полушарий, в первую очередь по изменениям ее электрической активности.
Для коры больших полушарий характерна постоянная электрическая активность (ее запись называется электрокортикограммой). Эта электрическая активность состоит из небольших по амплитуде (30-100 мкВ) колебаний, которые легко отводятся не только от открытой поверхности мозга, но и от кожи головы. У человека в спокойном дремотном состоянии такие колебания имеют частоту 8-10 в секунду и являются довольно регулярными (альфа-ритм). У высших позвоночных этот ритм менее регулярен, а частота колебаний варьирует от 6-8 у кролика до 15--20 у собаки и обезьяны. Во время активности регулярные колебания сменяются сразу же значительно меньшими по амплитуде и более высокочастотными колебаниями (бета-ритм). Появление периодических больших колебаний ясно говорит о том, что электрическая активность каких-то элементов в коре развивается синхронно. Когда правильные колебания большой амплитуды сменяются низковольтными, частыми колебаниями, то это, очевидно, говорит о том, что клеточные элементы коры начинают функционировать менее синхронно, поэтому такой тип активности называется реакцией десинхронизации. Таким образом, переход от спокойного, неактивного состояния коры к активному связан в электрическом отношении с переходом от синхронизированной активности ее клеток к десинхронизированной.
Характерным эффектом восходящих ретикулярных влияний на корковую электрическую активность является именно реакция десинхронизации. Эта реакция закономерно сопровождает описанную выше поведенческую реакцию, характерную для ретикулярных влияний. Реакция десинхронизации не ограничивается каким-нибудь одним участком коры, а регистрируется от больших ее областей. Это говорит о том, что восходящие ретикулярные влияния являются генерализованными.
Описанные изменения в электроэнцефалограмме не являются единственным электрическим проявлением восходящих ретикулярных влияний. В определенных условиях можно выявить более прямые эффекты ретикулярной импульсации, поступающей к коре больших полушарий. Они впервые были описаны в 1940 г. американскими исследователями А.Форбсом и Б.Мориссоном, которые исследовали вызванную электрическую активность коры при различных афферентных влияниях. При раздражении какой-либо афферентной системы в соответствующей проекционной зоне коры обнаруживается электрический ответ, указывающий на приход к этой области афферентной волны, этот ответ получил название первичного ответа. Кроме этого локального ответа, афферентное раздражение вызывает длиннолатентный ответ, возникающий в обширных областях коры мозга. Этот ответ Форбс и Мориссон назвали вторичным ответом.
То обстоятельство, что вторичные ответы возникают со скрытым периодом, значительно превышающим скрытый период первичного ответа, ясно говорит о том, что они связаны с поступлением афферентной волны в кору не по прямым, а по каким-то окольным связям, через дополнительные синаптические переключения. Позже, когда было применено прямое раздражение ретикулярной формации, было показано, что оно может вызвать ответ такого же типа. Это позволяет заключить, что вторичный ответ является электрическим проявлением поступления в кору больших полушарий афферентное волны через ретикулокортикальные связи.
Через ствол мозга проходят прямые афферентные пути, которые после синаптического перерыва в таламусе поступают в кору больших полушарий. Приходящая по ним афферентная волна вызывает первичный электрический ответ с соответствующей проекционной зоне с коротким скрытым периодом. Одновременно афферентная волна по коллатералям ответвляется в ретикулярную формацию и активирует ее нейроны. Затем по восходящим путям от нейронов ретикулярной формации импульсация тоже поступает в кору, но уже в виде задержанной реакции, возникающей с большим скрытым периодом. Эта реакция охватывает не только проекционную зону, но и большие участки коры, вызывая в них какие-то изменения, важные для бодрствующего состояния.
Нисходящие функции ретикулярной формации включают в себя, как правило, облегчающие и тормозящие компоненты, которые осуществляются по реципрокному принципу. Швейцарский физиолог В. Гесс (1929) впервые показал, что в стволе мозга можно найти точки, при раздражении которых у животного наступает сон. Гесс назвал эти точки центрами сна. Позже Дж.Моруцци и сотр. (1941) также обнаружили, что, раздражая некоторые участки ретикулярной формации заднего мозга, можно у животных вызвать в коре вместо десинхронизации синхронизацию электрических колебаний н соответственно перевести животное из бодрствующего состояния в пассивное, сонное. Поэтому можно думать, что в составе восходящих путей ретикулярной формации действительно существуют не только активирующие, но и инактивирующие подразделения, последние каким-то образом снижают возбудимость нейронов конечного мозга.
Нейронная организация восходящей системы ретикулярной формации не вполне ясна. При разрушении ретикулярных структур среднего и заднего мозга в коре больших полушарий не обнаруживается существенного количества дегенерирующих окончаний, которые могли бы быть отнесены к прямым ретикулярным волокнам. Значительная дегенерация окончаний в коре возникает только при разрушении неспецифических ядер таламуса. Поэтому возможно, что восходящие ретикулярные влияния передаются в кору больших полушарий не по прямым путям, а через какие-то промежуточные синаптические соединения, локализованные, вероятно, в промежуточном мозге.
Любопытно отметить, что гистологические и электрофизиологические данные указывают на характерную деталь хода аксонов многих ретикулярных нейронов. Аксоны нейронов гигантоклеточного ядра, т. е. основного ядра ретикулярной формации, очень часто делятся Т-образно, и один из отростков идет вниз, образуя ретикулоспинальный путь, а второй вверх, направляясь в верхние отделы головного мозга. Создается такое впечатление, что и восходящие, и нисходящие функции ретикулярной формации могут быть связаны с деятельностью одних и тех же нейронов. По функциональным свойствам ретикулярные структуры, создающие восходящие влияния, также имеют много общего со структурами, обеспечивающими нисходящие влияния. Восходящие влияния несомненно носят тонический характер, они легко изменяются гуморальными факторами и высокочувствительны к фармакологическим веществам. Снотворное и наркотическое действие барбитуратов основано, по-видимому, именно на блокировании в первую очередь восходящих влияний ретикулярной формации.
Функции ретикулярной формации заднего мозга
В ретикулярной формации заднего мозга сосредоточены центры, играющие важную роль в регуляции висцеральных функций. Это в первую очередь дыхательный центр, локализованный в медиальной части ретикулярной формации продолговатого мозга. Еще в прошлом столетии было установлено, что повреждение каудальной части дна четвертого желудочка приводит к остановке дыхания (укол Флуранса). Позднее Н. А. Миславский (1885) выделил в дыхательном центре две функционально различные части: инспираторную и экспираторную (или вдыхательную и выдыхательную). В последнее время использование методов микростимуляции и микроэлектродной регистрации активности одиночных нейронов позволило уточнить представления о локализации частей дыхательного центра.
Установлено, что инспираторная часть расположена более вентрально, чем экспираторная. Активность одиночных нейронов дыхательного центра может коррелировать с фазами дыхательного цикла. Этот признак позволяет выделить инспираторные нейроны, которые генерируют потенциалы действия в начальную фазу вдоха, и экспираторные нейроны, разряд которых приурочен к фазе выдоха. Наибольшее скопление инспираторных нейронов обнаружено около одиночного (солитарного) тракта. В области двойного ядра локализованы инспираторные и экспираторные нейроны. Определенная мозаичность в расположении дыхательных нейронов свидетельствует о том, что деление дыхательного центра на две части - вдыхательную и выдыхательную - более справедливо в функциональном смысле, чем в анатомическом.
Отличительной чертой нейронов дыхательного центра является способность к автоматизму. Даже при отсутствии афферентных воздействий активность этих нейронов характеризуется периодичностью, которая определяется спецификой ионных механизмов их клеточной мембраны. Периодичность разрядов дыхательных нейронов может быть обусловлена также наличием взаимных тормозных связей между инспираторными и экспираторными нейронами. Тормозные связи создают реципрокность разрядов дыхательных нейронов, когда появление активности инспираторных нейронов сопровождается торможением разрядов экспираторных и наоборот. В результате реципрокного взаимодействия дыхательных нейронов происходит смена фаз дыхательного цикла.
Вместе с тем смена фаз дыхательного цикла мбжет осуществляться рефлекторно за счет афферентных влияний, которые модулируют дыхательную ритмику. При интенсивном вдохе и растяжении легочной ткани импульсы от механорецепторов легких по афферентным волокнам блуждающего нерва приходят в дыхательный центр и вызывают рефлекторное торможение инспираторных нейронов, одновременно возбуждая экспираторные (рефлекс Геринга - Брейера). Импульсы от экспираторных нейронов по ретикулоспинальному пути достигают исполнительных моторных центров спинного мозга и стимулируют начало выдоха.
Периодичность в работе дыхательного центра продолговатого мозга может обеспечиваться также за счет регулирующих влияний со стороныпневмотаксического центра. Этот центр находится в области варолиева моста и состоит из двух типов нейронов - инспираторных и экспираторных, которые не имеют жесткой приуроченности своих разрядов к фазам дыхательного цикла. Пневмотаксический центр как регулятор периодически затормаживает инспираторную часть дыхательного центра и стимулирует экспираторные нейроны, осуществляя таким образом прекращение вдоха и начало выдоха.
В регуляции функций дыхательного центра могут принимать участие и более высокие этажи головного мозга. Так, например, эмоциональные реакции человека связаны с изменением периодичности в работе дыхательного центра, вызванным импульсацией из промежуточного мозга и лимбической коры. Установлено, что электрическое раздражение орбитальной коры может вызвать полную остановку дыхания у человека. Регулирующие воздействия коры головного мозга обеспечивают произвольную регуляцию дыхания, его коррекцию при разнообразных изменениях жизнедеятельности.
Таким образом, регуляция дыхательной функции осуществляется иерархической системой нервных центров, расположенных на разных | этажах нервной системы и связанных единством действия.
Другим жизненно важным центром ретикулярной формации заднего мозга является сосудодвигательный центр, локализация которого впервые была определена Ф. В. Овсянниковым (1871). Сосудодвигательный, или вазомоторный, центр занимает обширную область продолговатого мозга, простираясь в дорсолатеральном направлении от дна четвертого желудочка до пирамид . Перерезка спинного мозга на уровне шейных позвонков вызывает у спинальных животных резкое снижение сосудистого тонуса и нарушение регуляторных реакций, связанных с изменением просвета вен и артерий.
Локальная стимуляция ростральных частей сосудрдвигательного центра вызывает увеличение сосудистого тонуса, повышение кровяного давления и тахикардию. Стимуляция каудального отдела сосудистого центра, напротив, вызывает расширение сосудов, падение кровяного давления и брадикардию.
Микроэлектродная регистрация электрической активности одиночных нейронов сосудистого центра показала наличие нервных клеток, изменяющих свою фоновую активность синхронно с флуктуациями артериального давления. Среди них можно выделить нейроны, частота разрядов которых возрастает при повышении артериального давления, нейроны, частота фоновой активности которых, напротив, снижается при увеличении артериального давления, и, наконец, нейроны, частота импульсации которых меняется в соответствии с рабочим циклом сердца. Свойства нейронов сосудистого центра менее изучены, чем у нейронов дыхательного центра. Пока неясно, можно ли дифференцировать сосудодвигательные нейроны на "сосудосуживающие" и "сосудорасширяющие". Нерешенным остается также вопрос о наличии тормозного взаимодействия между нейронами сосудодвигательного центра.
Функциональная организация сосудодвигательного центра имеет определенную специфику в плане проекций его нисходящих путей. Эфферентные волокна от его нейронов спускаются в грудной отдел спинного мозга, но заканчиваются там не на мотонейронах, как в случае нисходящих систем дыхательного центра, а на преганглио-нарных нейронах симпатической нервной системы.
Таким образом, сосудистый тонус регулируется не антагонистическими нисходящими воздействиями, а только одной симпатической сосудосуживающей системой. Активное состояние этой системы вызывает вазоконстрикцию, а торможение - вазодилатацию. Исключение из этого принципа составляют только некоторые сосуды, имеющие двойную иннервацию - симпатическую и парасимпатическую (сосуды половых органов).
Рефлекторные влияния на нейроны сосудодвигательного центра осуществляются при возбуждении хемо- и механорецепторов, локализованных в сосудистой стенке. Афферентные волокна от этих рецепторов в составе блуждающего и языкоглотсчного нервов достигают продолговатого мозга. Возбуждение механорецепторов дуги аорты, каротидного синуса при повышении артериального давления вызывает торможение активности сосудодвигательного центра и, как следствие, рефлекторное снижение сосудистого тонуса (рефлексы Людвига - Циона, Геринга, Бейнбриджа). Напротив, при повышении давления в системе полых вен наблюдается усиление активности
сосудистого центра и вазоконстрикторный эффект. Тонус сосудистого центра может изменяться и при возбуждении хеморецепторов сосудистой стенки, возникающем при изменениях химического состава крови.
Следует отметить, что деятельность сосудодвигательного центра сочетается с функцией моторного ядра блуждающего нерва, снижающего в норме частоту сердечных сокращений. В связи с этим при вазоконстрикторном эффекте одновременно увеличивается частота сердечных сокращений и, наоборот, при вазодилатации наблюдается замедление сердечной ритмики.
Для ретикулярной формации стволовой части мозга характерны не только вегетативные регулирующие функции, но и участие в нисходящем контроле деятельности двигательных центров спинного мозга.
Более ста лет назад в 1862 г. И. М. Сеченов установил факт угнетения спинальных рефлексов при раздражении стволовой части мозга. Это было открытием центрального торможения и одновременно открытием ретикулоспинальной системы. Однако механизм этого тормозного процесса удалось раскрыть только в 50-е гг. нашего столетия после работ американского нейрофизиолога X. Мегуна, показавшего, что локальное электрическое раздражение гигантоклеточного ядра ретикулярной формации продолговатого мозга вызывает неспецифическое торможение сгибательных и разгибательных спинальных рефлексов. Эти неспецифические супраспинальные влияния по ретикулоспинальному тракту достигают мотонейронов спинного мозга и увеличивают порог и скрытый период их ответов на рефлекторные воздействия. Дальнейшие исследования показали, что нисходящие влияния ретикулярной формации могут реализовываться не только за счет постсинаптического торможения мотонейронов, но и за счет возникновения длительных тормозных постсинаптических потенциалов в промежуточных нейронах, а также за счет воздействия ретикулоспинальных волокон на терминали афферентных волокон, входящих в спинной мозг.
Таким образом, ослабление рефлекторной деятельности достигается как за счет прямого действия на мотонейроны, так и за счет определенного ослабления сенсорного входа в спинной мозг.
В ходе экспериментов с локальной стимуляцией ретикулярной формации выяснилось наличие зон, дающих эффект противоположной полярности, т. е.облегчающее влияние на спинно-мозговые рефлексы. Так, например, электрическое раздражение латеральных зон ретикулярной формации моста снижает порог и укорачивает скрытый период спинальных рефлексов. При стимуляции медиальных ядер ретикулярной формации заднего мозга в мотонейронах мышц-сгибателей кошки регистрируются коротколатентные возбуждающие постсинаптические потенциалы (ВПСП).
Данный факт свидетельствует о наличии (помимо диффузных неспецифических ретикулоспинальных проекций) моносинаптических нисходящих путей специфического действия, которые участвуют в нисходящем контроле деятельности спинного мозга.
Следовательно, ретикулярная формация как один из двигательных центров стволовой части мозга может выступать не только в роли регулятора возбудимости спинальных мотонейронов, но и принимать участие в процессах, связанных с поддержанием позы и организацией целенаправленных движений.
Благодаря работам X. Мегуна и Дж. Моруцци наряду с неспецифическими нисходящими влияниями ретикулярной формации ствола были открыты ее восходящие, активирующие влияния на кору головного мозга. Если через хронически вживленные электроды раздражать центральные части ретикулярной формации ствола, то кошка, находящаяся в сонном состоянии, пробуждается и у нее появляется ориентировочная реакция. Эта поведенческая реакция пробуждения сопровождается характерными изменениями частотного спектра электроэнцефалограммы, переходом от регулярных, высоковольтных колебаний альфа-ритма к низковольтным колебаниям бета-ритма. Данная электроэнцефалографическая реакция получила название реакции десинхронизации. Она имеет генерализованный характер и регистрируется от обширных областей коры головного мозга.
В остром опыте перерезка стволовой части мозга на уровне среднего мозга и, таким образом, разрушение восходящих путей от ретикулярной формации ствола переводят животное в сноподобное коматозное состояние (спящий мозг, по Бремеру) с соответствующими изменениями характера электроэнцефалограммы.
Приведенные выше экспериментальные факты послужили основанием для заключения, что ретикулярная формация является структурой, отвечающей за состояние бодрствования, структурой, формирующей восходящую активирующую ретикулярную систему, которая поддерживает на определенном уровне возбудимость промежуточного мозга и коры больших полушарий. Согласно современным представлениям, переход коры к активному состоянию связан с колебаниями количества восходящих сигналов от ретикулярной формации ствола. Количество этих сигналов зависит от поступления в ретикулярную формацию сенсорных импульсов по коллатералям специфических афферентных восходящих путей. Практически к ретикулярной формации приходит информация от всех органов чувств по коллатералям от спиноретикулярного тракта, проприоспинальных путей, афферентных черепно-мозговых нервов, от таламуса и гипоталамуса, от моторных и сенсорных областей коры.
Микроэлектродная регистрация электрической активности нейронов ретикулярной формации показала, что большинство из них являютсяполисенсорными, т. е. отвечают на раздражение различных модальностей (световых, звуковых, тактильных и т. д.). Ретикулярные нейроны имеют большие рецептивные поля, большой скрытый период и слабую воспроизводимость реакции. Эти свойства противоположны свойствам нейронов специфических ядер и позволяют отнести ретикулярные нейроны к категории неспецифических. Равным образом восходящие пути ретикулярной формации в отличие от классических специфических чувствительных проекций получили название неспецифических проекций.
Восходящие влияния ретикулярной формации высокочувствительны к действию различных фармакологических веществ, особенно анестезирующих препаратов и так называемых успокаивающих средств (аминазин, серпазил, резерпин и др.). ретикулярная формация спинной мозг
Следует отметить, что в составе восходящих путей ретикулярной формации имеются активирующие и дезактивирующие группы. По данным Дж. Моруцци, раздражение некоторых участков ретикулярной формации заднего мозга может вызвать у животного глубокий сон и появление альфа-ритма в электроэнцефалограмме. Вероятно, реципрокный принцип организации восходящих и нисходящих проекций является общим для всей системы ретикулярной формации.
Размещено на www.allbest.
...Подобные документы
Ретикулярная формация ствола головного мозга, ее важнейшие функции и задачи. Нисходящее и восходящее влияние ретикулярной формации. Лимбическая система, область ее расположения, особенности строения и значение для нормальной жизнедеятельности организма.
презентация [2,5 M], добавлен 21.10.2017Особенности строения ствола головного мозга, физиологическая роль ретикулярной формации мозга. Функции мозжечка и его влияние на состояние рецепторного аппарата. Строение вегетативной нервной системы человека. Методы изучения коры головного мозга.
реферат [1,7 M], добавлен 23.06.2010Строение и функции лимбической системы как области мозга человека. Интегративная деятельность лимбической системы. Строение и функции ретикулярной формации. Значение лимбической системы и ретикулярной формации для формирования структуры эмоций человека.
контрольная работа [617,6 K], добавлен 18.02.2012Характеристика и функции, основные компоненты пирамидной системы: двигательные области коры больших полушарий, пирамидные пути. Симптомы центрального и периферического паралича. Базальные ганглии. Ретикулярная формация, ее зоны и ядра, основные функции.
презентация [3,5 M], добавлен 08.01.2014Внутренняя структура и основные отделы головного мозга: ромбовидный, средний и промежуточный, функциональные особенности каждого из них. Признаки поражения ядер моста и продолговатого мозга, методы диагностики и лечения разнообразных заболеваний.
презентация [3,3 M], добавлен 08.01.2015Онтогенез нервной системы. Особенности головного и спинного мозга у новорожденного. Строение и функции продолговатого мозга. Ретикулярная формация. Строение и функции мозжечка, ножек мозга, четверохолмия. Функции больших полушарий головного мозга.
шпаргалка [72,7 K], добавлен 16.03.2010Основные восходящие (чувствительные) пути спинного мозга. Типы волокон мышечной ткани и их значение. Важнейшие двигательные безусловные рефлексы у человека. Общие функции спинного мозга. Морфо-функциональные особенности спинного мозга в онтогенезе.
лекция [1,3 M], добавлен 08.01.2014Трофическая функция нервной системы. Основная структурная единица нервной системы. Процессы, протекающие в нервной клетке. Развитие, анатомическое строение и функции промежуточного мозга. Таламус, гипоталамус и эпифиз. Ретикулярная формация ствола мозга.
курсовая работа [198,5 K], добавлен 05.01.2011Отдел нервной системы, обеспечивающий функции организма. Центры симпатической, парасимпатической частей вегетативной нервной системы. Центры лобных и височных долей большого мозга. Восходящие и нисходящие пути проведения поверхностной чувствительности.
статья [16,6 K], добавлен 20.07.2009Классификация, строение и значение нервной системы. Структура и функции центральной нервной системы. Морфология и принципы формирования корешка спинного мозга. Клеточно-тканевой состав и топография проводящих путей серого и белого веществ спинного мозга.
методичка [1,7 M], добавлен 24.09.2010Изучение анатомии спинного мозга как отдела центральной нервной системы. Описание системы кровоснабжения спинного мозга. Состав клинико-нозологических вариантов сирингомиелитического синдрома. Дифференциальная диагностика различных травм позвоночника.
презентация [607,2 K], добавлен 20.06.2013Переферическая нервная система. Проводниковая функция спинного мозга. Задний мозг: мозговой мост и мозжечок. Рефлекс как основная форма нервной деятельности. Внутреннее строение спинного мозга. Причины спинального шока. Физиология среднего мозга.
презентация [627,5 K], добавлен 07.12.2013Основные отличия вегетативной от центральной нервной системы. Функционирование симпатической нервной системы. Функции ядер спинного мозга и ствола мозга, которые контролируются вегетативными центрами. Дуга вегетативного рефлекса, ее особенности.
презентация [12,9 M], добавлен 15.02.2014Особенности строения и функции спинного мозга. Функции спинномозговых корешков. Рефлекторные центры спинного мозга. Зрительные бугры как центр всех афферентных импульсов. Рефлекторная и проводниковая функции продолговатого мозга. Виды зрительных бугров.
реферат [291,0 K], добавлен 23.06.2010Особенности кровоснабжения спинного мозга. Анатомия сосудов, артерии и вены, снабжающие позвонки. Острый ишемический спинальный инсульт, симптомы кровоизлияния. Инструментальные и лабораторные исследования. Направления лечения инфаркта спинного мозга.
презентация [482,0 K], добавлен 21.10.2014Анатомия и сегментарное строение спинного мозга. Травматическая болезнь спинного мозга. Периоды, клиника и диагностика спинно-мозговой травмы. Показания и противопоказания к хирургическому лечению травм спинного мозга. Операции на шейном отделе.
презентация [5,4 M], добавлен 12.05.2019Значение центральной нервной системы человека в процессе регулирования организма и его связи с внешней средой. Анатомическая структура спинного и головного мозга. Понятие серого и белого вещества, нервных центров, волокон и соединительнотканных оболочек.
реферат [2,4 M], добавлен 19.01.2011Визуализация структуры, функций и биохимических характеристик мозга (нейровизуализация), их классификация. Компьютерная томография головы. Исследования ликворной системы спинного мозга (миелография). Диффузная оптическая и магнитно-резонансная томография.
презентация [351,9 K], добавлен 17.01.2014Строение и функции позвоночника и спинного мозга. Классификация травм позвоночника и спинного мозга, их последствия. Методические приемы рефлекторной терапии. Комплексная реабилитация пациентов с последствиями повреждений позвоночника и спинного мозга.
дипломная работа [2,2 M], добавлен 29.05.2012Спинной мозг – орган центральной нервной системы, расположенный в позвоночном канале. Рассмотрение схематического изображения соотношений сегментов спинного мозга и позвонков на сагиттальном разрезе позвоночника. Функции и оболочки спинного мозга.
презентация [1,2 M], добавлен 02.06.2015