История открытия липосом и применение липосом в медицине
Использование липосом как транспортных частиц, противотуберкулезная терапия. Гидрогель липосомные гибриды. Комбинация липосом и ингибиторов мембранных транспортеров. Использование липосомальных векторов в генной терапии. Лекарства на основе липосом.
Рубрика | Медицина |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 05.05.2013 |
Размер файла | 4,7 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Большое значение имеет соотношение антител к липидам в иммунолипосоме. Так, при весовом соотношении 1:50 к одной липосоме присоединялось 24 молекулы моноклональных антител, а при соотношении 1:1 - 935 молекул антител. Специфическое накопление иммунолипосом, конструированных при соотношении 1:50, было 3% от введенной дозы, а созданных при соотношении компонентов 1:1 - 60% от введенной дозы иммунолипосом. Захват иммунолипосом клетками печени снижался с 50% от введенной дозы для липосом с низким содержанием антител до 12% для липосом с высоким содержанием антител. При этом захват иммунолипосом, содержащих низкое количество антител, не отличался от захвата обычных липосом. Иммунолипосомы, которые не связались с клетками-мишенями при первых нескольких пассажах через опухолевые капилляры, накапливались в печени и селезенке [3].
Специфическая доставка противоопухолевых препаратов с помощью иммунолипосом способствовала лучшей терапевтической эффективности и снижению токсичности по сравнению с обычными липосомами [1]. Это было убедительно продемонстрировано на моделях солидных опухолей у мышей [10] на ксенотрансплантатах человеческой B-клеточной лимфомы у голых мышей [8].
К настоящему времени описано несколько препаратов иммунолипосом, потенциально перспективных для применения в онкологической практике. Они направлены против клеток, экспрессирующих антигены CD71 (рецептор трансферрина), Her2/neu (рецептор эпидермального фактора роста) [11], HLA-DR (антигены гистосовместимости II класса) [12, 13], CD19 (обще-В-клеточный маркер) [8], LL2 (антиген В-клеточной лимфомы) [14] и др.
Глава 3 Технология получения липосом
3.1 Структура липосомы
Мембрану липосом обычно формируют из тех же фосфолипидов, которые входят в состав биологических мембран: фосфатидилхолина, фосфатидилэтаноламина, фосфатидилсерина. Это позволяет достичь полной биосовместимости липосом. Липосомы готовят различными способами, например, подвергая смесь фосфолипидов и воды воздействию ультразвуком, замораживанию и оттаиванию, экструзии через фильтры с наноразмерными порами. В последнее время для получения липосом используют технологию суперкритических растворов. С помощью этих методов можно получить многослойные липосомы, а также крупные и мелкие однослойные липосомы. Размеры липосом, в зависимости от метода их изготовления, могут быть от нескольких микрон до десятков нанометров (наносомы). Если при изготовлении липосом используется водный раствор лекарственного вещества, то часть этого раствора оказывается замкнутой внутри липосомального контейнера и в виде такой лекарственной формы вводится в организм человека. Это важно в тех случаях, когда вводится токсическое соединение, например, противораковый агент, или если лекарственное вещество необходимо защитить от разрушения до момента его доставки к цели. Неполярные органические лекарственные соединения встраиваются в мембрану липосомы и также могут доставляться к цели. Для направленной доставки содержимого липосом к их поверхности ковалентно пришивают адресные моле кулы, например, антитела к поверхностным белкам клеток-мишеней, витамины. Пришивка молекул полиэтиленгликоля защищает сами липосомы от захвата клетками иммунной системы и, таким образом, увеличивает время нахождения липосом в кровотоке. Липосомы доставляют лекарственное вещество в клетки либо путем слияния с их мембраной, либо за счет эндоцитоза. Липосомы как наноконтейнеры для лекарственных веществ применяются в медицине при лечения рака, а также в составе косметических кремов.
Липосомы, или липидные пузырьки, известны давно, да и знакомы, наверно, каждому: очень похожи на них те капельки жира, которые попадают в воду, но это, разумеется, сходство чисто внешнее. Конечно, те, о которых пойдет речь, очень малы - много меньше клетки, и жир в них не пищевой, а клеточный - липиды, входящие в состав всех клеток организма. Липосомы представляют собой замкнутые пузырьки воды, окруженные одним или несколькими слоями липидов.
3.2 Механизм действия липосом
Рис. 6 Липосома в процессе слияния с клеточной мембраной (компьютерная модель)
Важную роль играет также характер взаимодействия липосом с клетками. Оно может принимать разные формы: самая простая - липосомы адсорбируются (прикрепляются) на клеточной поверхности. Дело может на этом закончиться, а может пойти дальше: липосому поглотит клетка (этот процесс «заглатывания» называется эндоцитоз), и вместе с ней внутрь клетки попадут те вещества, которые она доставила. Наконец, липосомы могут слиться с мембранами клеток и стать их частью. При этом могут изменяться свойства клеточных мембран: например, их вязкость и проницаемость, величина электрического заряда. Может также увеличиться или уменьшиться количество каналов, проходящих через мембраны. Таким образом, благодаря липосомам появляется новый способ направленного воздействия на клетку, который можно назвать «мембранной инженерией».
Формы взаимодействия липосом с мембраной клетки: липосома может увеличить проницаемость мембраны - вызвать образование дополнительных каналов (I); может прикрепиться к мембране - адсорбироваться (II); важная форма взаимодействия - поглощение липосомы клеткой, в этом случае вещество, принесенное липосомой, попадает непосредственно в клетку (III); иногда клеточная мембрана и липосома обмениваются липидами (IV), а в других случаях мембраны липосомы и клетки сливаются (V).
Как носители лекарств липосомы наиболее широкое применение получили в экспериментальной онкологии. Суть в том, что существует ряд препаратов, весьма эффективно разрушающих злокачественные клетки или тормозящих их рост. Однако применить их в терапевтических целях не всегда возможно из-за их большой токсичности или плохой растворимости в воде. С помощью липосом эти трудности можно преодолеть. Так, в одной лаборатории с помощью липосом вводили мышам, больным лейкемией, нерастворяющиеся препараты и наблюдали замедление роста числа злокачественных клеток. Другие исследователи нагружали липосомы антрациклинами: эти вещества активны против широкого круга злокачественных опухолей, но весьма ядовиты для остальных тканей, особенно для сердечной мышцы, - и вредное воздействие этих соединений значительно снижалось, что, как следствие, позволяло существенно увеличивать их дозы.
Липосомы можно использовать и для борьбы с инфекционными заболеваниями. Весьма показательными в этом плане могут служить экспериментальные данные по лечению лейшманиоза - заболевания, широко распространенного в южных странах, где различными его формами страдает около 100 миллионов человек. Болезнь поражает печень, селезенку, костный мозг.
Рис 7. Способы проникновения содержимого липосом в клетку
3.3 Технологии получения липосом
Для получения липосом известны различные способы. Так, например, они могут быть получены способом дегидратации/регидратации, в соответствии с которым липид растворяют в органическом растворителе, таком как хлороформ, дихлорметан или спирт, такой как метанол или этанол. Затем раствор высушивают с использованием, например, роторного испарителя, после чего на стенке испарительной колбы образуется пленка липида. Добавление к сухой пленке воды или водного раствора, такого как буфер, приводит к образованию многослойных липосом. Образованием именно этого продукта завершается первая стадия образования везикул с использованием различных методик. Последующая обработка может приводить к дегидратации/регидратации везикул, или ДРВ (DRV) (Kirby and Gregoriadis, Biotechnology (1984) 2, 979-984). Альтернативно, при последующей обработке ультразвуком липидной суспензии получают однослойные липосомы (A.D.Bangham et al., J. Mol. Biol. 13, 238 (1965)).
Другие известные в технике способы включают детергентную обработку (Y. Kagawa et al. , J. Biol. Chem. (1971) 246, 5477), выпаривание с обращением фаз (F. Szoka and D.Рараhadjopoulos, Proc. Natl. Acad. Sci, USA (1978) 75, 4194) и введение эфира (D.Deamer et al., Biochim. Biophys. Acta, (1976) 433, 629), а также лиофилизацию (см., например, работу Ohsawa et al., Chem. Pharm. Bull, (1984) 32, 2442-5 and Kirby and Gregoriadis (1984) supra.) и методы замораживания - оттаивания (D.D.Lasic "Liposomes: From Physics to Application, Elsevier, 1993, p. 98).
В зависимости от применяемого для образования липосом способа получают липосомы разного размера и с различающимися характеристиками. Липосомы могут использоваться для инкапсулирования материалов, таких как биологически активные продукты, в частности фармацевтические средства, включая вакцины, а также нефармацевтические средства, такие как продукты, воздействующие на кожу, в частности препараты для искусственного загара и другие средства макияжа. Методики инкапсулирования варьируют в зависимости от природы инкапсулируемого реагента и размера и свойств образованных липосом.
Размер липосом важен с точки зрения их применения. В некоторых случаях нужны крупные липосомы, в тех случаях, например, когда инкапсулируются частицы, включающие микроорганизмы, такие как бактерии, для получения, например, вакцин, как описано в документе WO 95/09619.
Однако во многих случаях предпочтительны мелкие липосомы. Это связано с тем, что мелкие липосомы не так быстро удаляются ретикуло-эндотелильной системой (РЭС), и в меньшей степени, чем крупные липосомы (с размерами свыше 200 нм). Захват везикул в РЭС возрастает с увеличением их размера. Кроме того, крупные липосомы при их внутримышечной инъекции не способны эффективно достичь регионарных лимфатических узлов и доставить в них вакцины и другие средства (Gregoriadis G. , Liposomes as Drug Carriers: Recent Trends and Progress, Wiley Chichester, 1988).
Липосомные препараты, содержащие различные лекарственные средства, могут быть оптимизированы с точки зрения содержания лекарственного ингредиента, стабильности, картины биологического распределения и уровня поступления в клетку путем изменения физико-химических параметров липосом, таких как температура фазового перехода, размер липосом, характер распределения препарата по размеру, величина поверхностного заряда, гидратация поверхности соединениями, несущими гидрофильные группы, и характер распределения по размеру частиц.
Размер липосом представляет собой параметр, который определяет фракцию, захватываемую РЭС (Senior et al., Biochem., Biophys., Acta (1985) 839. 1-8: Nagayasu et al. , Biol. Pharm. Bull. (1995) 18 (7), 1020-1023). Мелкие липосомы могут быть получены при использовании гомогенизаторов под высоким давлением (Talsma et al., Drug Development and Industrial Pharmacy (1989) 15 (2) 197-207, Vemuri S. et al., Drug Development and Industrial Pharmacy (1990) 16 (15), 2243-2256), но при этом используют большие количества липидов, для того чтобы добиться приемлемой величины коэффициента отношения включенного лекарственного средства к липидной массе. При использовании другого подхода (Gresoriadis et al. , Int. J. Pharm. 65 (1990) 235-242) в псевдоожиженном слое многослойных дегидратированных-регидратированных везикул (ДРВ) в присутствии неинкапсулированного лекарственного средства получают везикулы с размером менее 200 нм, сохраняющие количество первоначально включенных растворенных веществ.
Показан стабилизирующий эффект на везикулы, возникающий при добавлении сахара после получения липосом (Crowe L.M. et al., Arch. Biochem. Biophys. 242 (1985) 240-247, Hauser et al., Biochem. Biophys. Acta (1987) 897, 331-334), в том случае, например, когда липосомы, содержащие лекарственное средство, лиофильно высушивают для хранения и затем подвергают повторной гидратации.
Предлагается способ получения липосомного препарата, содержащего реагент, который включает следующие стадии:
(1) образование пустых липосом;
(2) смешивание липосом, полученных на стадии (1), с раствором сахара и указанного реагента и
(3) высушивание смеси, полученной на стадии (2).
При повторной гидратации высушенного материала, полученного на стадии (3), образуются липосомы, содержащие включенный в них реагент. При получении таким способом липосом увеличение их размера относительно липосом, образуемых на стадии (1), происходит в значительно меньшей степени, чем в случае липосомных препаратов, которые не содержат сахара. И в этом случае указанные выше процессы экструзии, обработки в псевдоожиженном слое или гомогенизации могут быть исключены.
Установлено, что в ходе сушки с использованием соответствующих концентраций сахаров, до определенной степени снижается уровень слияния и агрегации липосом при образовании аморфной стеклоподобной массы (Crowe et al., Arch. Biochem. Biophys. , 242 (1985) 240-247), а также взаимодействие сахаров с основной группой фосфолипидов (Crowe et al., Cryobiology, 31 (1994) 355-366). В ранних исследованиях дегидратированные/регидратированные везикулы (ДРВ) получали без использования cахаров в качестве стабилизаторов, при этом процедура основывалась на индукции слияния/агрегации образующихся мелких однослойных везикул при контролируемой регидратации (Kirby, Gregoriadis, 1984). В этой связи, можно было предположить, что общая стабилизация мелких однослойных везикул за счет добавления соответствующих количеств cахаров будет сопровождаться при восстановлении исходных MOB (SUV) очень низкой величиной включения.
Однако оказалось, что это не так. Хотя, как и в случае всех липосом, степень включения реагента зависит в некоторой мере от характеризующего систему коэффициента отношения липид:реагент, тем не менее ожидается, что уровень инкапсулирования реагента в липосомы, достигаемый при использовании способа по настоящему изобретению, будет вполне приемлемым.
Кроме того, применение липосом в качестве системы доставки лекарств налагает определенные требования к их физической и химической стабильности. Липосомы в виде водной дисперсии подвергаются гидролизу и физическим изменениям в процессе хранения, включая подтекание инкапсулированных лекарственных средств, а также изменение размеров в результате агрегации или слияния. Однако ожидается, что физическая и химическая стабильность липосом, получаемых по способу настоящего изобретения, будет хорошей.
Таким образом, настоящий способ дает возможность получать мелкие липосомы с высокой загрузкой, которые, как отмечалось выше, будут особенно полезны при создании фармацевтических композиций. Кроме того, заявленный способ может использоваться для приготовления инкапсулированных материалов разных типов.
Однако способ согласно настоящему изобретению будет особенно полезен при изготовлении липосом для применения в фармацевтической области. В этом случае используемые в рамках данного способа реагенты будут включать биологически активный материал, такой как фармацевтический ингредиент или лекарственное средство. Для этой цели получаемые на стадии (i) липосомы должны представлять собой мелкие однослойные везикулы со средним размером, например, в диапазоне от 25 нм до 90 нм, предпочтительно в диапазоне от 50 нм до 90 нм и наиболее предпочтительно от 70 нм до 90 нм. В конечном итоге, получаемые в рамках этого способа липосомы будут иметь все еще небольшой размер, в среднем менее 500 нм и обычно от 100 до 200 нм.
Имеющиеся на стадии (1) липосомы представляют собой пустые липосомы, получаемые посредством любого традиционного способа, например с помощью описанного выше классического способа. При этом любые образованные липосомы, в случае если их средний размер слишком велик для целевого использования, могут быть уменьшены с помощью известных в технике способов, например ультразвука, гомогенизации, экструзии или техники псевдоожиженного слоя.
Для получения липосом используют известные в технике липиды. Они включают, например, лецитины, такие как, например, фосфатидилхолин (ФХ), дипальмитоилфосфатидилхолин (ДПФХ), дистеароилфосфатидилхолин (ДСФХ), или заряженные липиды, в частности анионные липиды, такие как фосфатидиновая кислота, или катионные липиды, такие как стеариламин, необязательно в присутствии холестерина. Предпочтительным липидом является ДСФХ. Выбор липида зависит, в определенной мере, от природы активного средства и от цели использования липосом.
Приемлемые для использования на стадии (2) растворы сахаров включают водные растворы моносахаридов, таких как глюкоза и фруктоза, дисахаридов, таких как лактоза или сахароза, а также полисахаридов. Особенно предпочтительным для использования в способе настоящего изобретения сахаром является дисахарид, такой как сахароза или лактоза, или моносахарид, такой как глюкоза. В особенности, в качестве сахара предпочтительна сахароза.
В предпочтительном варианте на стадии (2) используют такое количество сахара, чтобы отношение массы сахара к массе липида составляло от 1:1 до 6:1 (вес/вес) и более предпочтительно - в диапазоне от 1:1 до 5:1 (вес/вес). Было обнаружено, что чем большее количество сахара используют, тем меньше увеличение размера липосом, получаемых после регидратации, в сравнении с имевшимися на стадии (1). Однако при этом уровень включения реагента может быть ниже. Таким образом, правильный выбор используемых в данном способе коэффициентов указанных соотношений будет зависеть от их целевого использования, при этом необходимо определять нужный баланс между степенью включения реагента при данном содержании липтида и размером липосомы. Разница между этими параметрами находит отражение в определенной вариабельности воздействия конкретного реагента на образование липосом, что будет пояснено ниже. В приемлемом варианте количество имеющегося сахара менее 10% (вес/объем) от всей композиции.
Кроме того, было показано, что увеличение объема используемого в рамках данного способа сахарного раствора при снижении его концентрации может способствовать повышению уровня включения. Приемлемые концентрации растворов сахаров находятся в диапазоне от 20 до 200 мМ, предпочтительно от 30 до 150 мМ.
Далее, было также обнаружено, что если последующую регидратацию проводить при повышенных температурах, например от 30 до 80oС, в частности от 40 до 65oС, и в особенности примерно при 60oС, то уровень включения может быть повышен. Показана эффективность такой процедуры в случае липосом, включающих ФХ и холестерин (ХОЛ), которые обычно образуются при комнатной температуре. Однако при использовании в рамках такого способа повышенных температур может наблюдаться некоторое увеличение размера липосом в сравнении с их исходными значениями, что нужно принимать во внимание при выборе условий, практикуемых для получения липосом в каждом конкретном случае.
К числу других факторов, которые, как было показано, также влияют на уровень включения, относятся индивидуальная природа реагента, такого как инкапсулируемое лекарственное средство, и, в частности, растворимость и количество такого реагента. При этом в некоторых случаях растворимость реагента может лимитировать то его количество, которое может быть растворено на стадии (2) и далее включено в липосому. К числу других факторов, влияющих на количество включаемых реагентов, относятся взаимодействия реагента с липидами липосомы, а также проницаемость липосомы для реагента.
В случае наличия в растворе, используемом на стадии (2) реакции, высоких концентраций реагента процент его включения может быть снижен. В этой связи, по экономическим причинам может быть выгодно снижать количество применяемого реагента.
Условия, выбираемые для целей получения липосом желательных размеров и нагрузки, включают коэффициент отношения массы сахара к массе липида, природу липида, концентрацию используемого раствора сахара, количество включенного в раствор реагента и температуру регидратации, которые могут быть определены для каждого конкретного реагента с помощью обычных процедур.
Указанная выше стадия (3) может проводиться с использованием традиционных способов, например с помощью лиофильной сушки, распылительной сушки, флэш-кристаллизации, высушивания в воздушном потоке (например, в псевдоожиженном слое), вакуумной сушки, сушки в печи или посредством любого другого известного в технике способа. И хотя механические свойства продуктов, получаемых описанными способами, могут различаться, при том что продукт распылительной сушки будет представлять собой дискретный и зачастую текучий порошок, тогда как лиофильная сушка дает твердую лепешку, свойства липосом при регидратации с точки зрения их стабильности и способности к нагрузке реагентом будут в целом сходными.
Распылительная сушка может оказаться предпочтительной для ряда приложений, включая приготовление фармацевтических композиций, поскольку она позволяет получать продукт с приемлемыми для дальнейшей обработки механическими свойствами.
Продукт, получаемый при лиофильной сушке, включает блочную пористую массу, обладающую относительно слабыми механическими характеристиками. С помощью размалывания этой массы ей могут быть приданы лучшие механические свойства, однако имеется риск возникновения повреждений на такой дополнительной стадии.
Распылительная сушка может дать продукт с хорошими механическими характеристиками, который может быть доставлен ингаляцией или введен парентерально после разбавления водой.
Последующая стадия регидратации может быть осуществлена в ходе процесса производства или альтернативно композиция может поставляться в сухом виде и дальше подвергаться регидратации уже в сайте предполагаемого введения, например, в больнице или в фармацевтическом отделении, когда инкапсулированное лекарственное средство должно быть доставлено пациентам.
Образуемые липосомы отличаются хорошей стабильностью, что определяет длительный срок годности продукта. Это свойство важно, например, для косметических продуктов, гигиенических принадлежностей и фармацевтических средств.
Как отмечалось выше, указанный способ особенно хорошо подходит для получения относительно мелких липосом с высокой степенью нагрузки реагентом. Это особенно желательно для применения в фармацевтической области, в частности для доставки материалов, таких как полимерные или белковые лекарственные средства, ДНК-содержащие вакцины, векторы для генной терапии или химические лекарственные средства. Приемлемые химические средства включают антибиотики, такие как окситетрациклины, b-лактамные антибиотики, такие как пенициллины, в частности пенициллин G, ампициллин или амоксициллин, или цефалоспорины, а также противораковые средства, гормоны, иммунотерапевтические препараты, противовирусные средства, противовоспалительные соединения и др.
На основе получаемых с помощью вышеописанного способа липосомных продуктов могут быть приготовлены фармацевтические композиции, например, при объединении их с фармацевтически приемлемыми носителями или наполнителями. Такие композиции могут быть пригодны для целей перорального, парентерального, и, в частности, внутривенного, или местного введения, например, на поверхность кожи или слизистой. Особенно полезной в рамках настоящего изобретения является композиция, пригодная для введения с помощью аэрозольного распылителя или ингалятора. Было обнаружено, что для этой цели приемлемы нейтральные липосомы липидной природы с высоким фазовым переходом, такие как липосомы, образуемые из смесей ДСФХ и холестерина. При осуществлении процесса в соответствии со способом настоящего изобретения, проведение экструзии перед сушкой может стать необязательной процедурой.
Ниже изобретение пояснено с помощью прилагаемых чертежей, при этом:
Рис 8. представляет собой график, демонстрирующий изменение размера дипальмитоилфосфатидилхолиновых (ДПФХ) и холестериновых (ХОЛ) липосом при их обработке ультразвуком и при лиофильной сушке с 0,0357 М сахарозы и затем регидратации;
Рис. 9 представляет собой график, иллюстрирующий влияние молярности раствора сахарозы на распределение размеров ФХ:ХОЛ липосом, включающих FITC-альбумин (% распределения:интенсивность), получаемых после лиофильной сушки и регидратации
Рис. 10 представляет собой график, демонстрирующий влияние молярности раствора сахарозы на распределение размеров, получаемых после регидратации ФХ:ХОЛ липосом, включающих эпидермальный ростовой фактор (EGF)
Рис . 11 представляет собой график, иллюстрирующий в сравнительном аспекте данные по распределению размеров экструдированных и регидратированных ФХ:ХОЛ липосом, содержащих FITC-альбумин
Рис . 12 представляет собой график, иллюстрирующий распределение размеров экструдированных и лиофильно высушенных липосом, полученных по способу настоящего изобретения, которые содержат в инкапсулированном виде карбоксифлуоресцеин (КФ);
Рис . 13 представляет собой график, иллюстрирующий распределение размеров различных липосомных композиций
В приведенных ниже примерах фосфатидилхолин яйца (ФХ), дипальмитоилфосфатидилхолин (ДПФХ) и дистеарилфосфатидилхолин (ДСФХ) получают от Липоид ГмбХ (Lipoid GmbH, Ludwigshafen, Germany), холестерин, карбоксифлуоресцеин (КФ), альбумин, меченный флуоресцеинизотиоцианатом (FITC-альбумин), рибофлавин, даунорубицин, доксорубицин, Тритон Х-100, сахарозу, глюкозу и додецилсульфат натрия (ДСН, SDS) получают от компании Сигма (Sigma, Лондон). Эпидермальный фактор роста (ЭФР, EGF) был любезно предоставлен Центром Биологических Исследований, Гавана, Куба (Centre of Biological Sciences). Na125I, С14-меченый гидроксипропил-b-циклодекстрин и С14-меченый пенициллин были приобретены у компании Амершам Интернешнл, Великобритания (Amersham International, Amersham, UK). Мечение ЭФР с помощью 125I выполняют по хлораминатному методу. Все другие реагенты имеют аналитическую степень чистоты.
3.4 Гидрогель липосомные гибриды
Для получения своих липосом-гидрогелевых гибридных пузырьков исследователи адаптировали разработанную специалистами NIST и Университета Мэриленда технологию, известную как COMMAND (COntrolled Microfluidic Mixing And Nanoparticle Determination), в которой используется микроскопическое жидкостное (микрофлюидное) устройство. В новой работе ученых молекулы фосфолипидов растворены в изопропиловом спирте и подаются через тончайший входной канал (21 микрометр в диаметре) в канал-«смеситель», а затем «фокусируются» в струю жидкости водным раствором, подаваемым через два боковых канала. Молекулы предшественника гидрогеля смешены с фокусирующей жидкостью.
В то время как компоненты смешиваются на границе раздела потоков жидкости, происходит самосборка молекул фосфолипидов в нанопузырьки контролируемого размера, захватывающие внутрь находящиеся в растворе мономеры. Вновь образованные пузырьки затем облучаются ультрафиолетовым светом, чтобы полимеризовать находящиеся в них молекулы-предшественники гидрогеля в твердый гель из поперечно-связанных цепочек. Эти цепочки придают прочность пузырькам, позволяя им сохранять сферическую форму конвертов-липосом (что, в свою очередь, способствует проходу всей частицы через клеточную мембрану).
Чтобы превратить гибридный гидрогель-липосомный пузырек в средство адресной доставки лекарственных веществ в опухолевую клетку, нужно добавить лекарство или другой груз к фокусирующей жидкости в процессе производства.
Корпорация "Terumo" совместно с Yakult Honsha Co. Ltd. запустили в производство липосомный комплекс, включающий в себя лекарство против рака. Первая стадия клинических испытаний стартовала в мае этого года в США.
Рис 13 Схематическое изображение образования гидрогель-липосомного гибрида
Раствор, содержащий фосфолипиды (предшественники липосом), смешиваются с раствором, содержащим молекулы предшественника гидрогеля (а). Смешиваясь на границе раздела двух жидкостей, фосфолипиды образуют липосомы (b), захватывающие внутрь себя молекулы предшественника гидрогеля. Вещество снаружи пузырьков удаляется (с), а липосомы подвергаются воздействию ультрафиолетовым светом. Это полимеризирует белковые цепочки гидрогеля и приводит к образованию гидрогель-липосомного гибрида
Глава 4. Способы активизации липосом, как транспортных частиц
4.1 Липосомы, способные к триггерному выходу лекарства: Термо и рН- чуствительные липосомы
Стабилизированные липосомы проникают из сосудов в опухолевые ткани, где в конечном итоге происходит выход лекарства и проникновение его в опухолевые клетки. Процессы, действующие как стимуляторы выхода препарата из липосом, могут включать захват липосом рэтикулоэндотелиальной системой, а также дестабилизацию тканевыми липазами, окисляющими агентами или другими тканевыми компонентами [44]. Новые подходы в создании липосомальных препаратов включают конструирование липосом, способных к триггерному выходу препарата: такие липосомы могут подвергаться структурным изменениям в ответ на физико-химические стимулы, таким образом можно контролировать выход препарата из липосом. Примером таких липосом являются: термочувствительные липосомы, из которых при гипертермии наблюдается выход лекарства, и рН-чуствительные липосомы, триггером которых является кислая среда.
Гипертермия может усиливать накопление в опухоли стабильных и длительно циркулирующих липосом, при этом гипертермия используется и как дестабилизатор термочувствительных липосом, таким образом, обеспечивая выход лекарства в гипертермированный регион. Термолипосомы должны состоять из липидов температурная фаза перехода которых выше 37С. Таким образом, гипертермия индуцирует структурные изменения, приводящие к быстрому выходу инкапсулированного в липосомы препарата. Например, термочувствительные липосомы с доксорубицином были тестированы in vitro на клетках сублинии MCF-7 с МЛУ. При действии на них липосомального доксорубицина и гипертермии клеточный рост был ингибирован на таком же уровне, как и на клетках без МЛУ [87]. При этом наблюдался быстрый выход доксорубицина при 39-40С.
4.2 Комбинация липосом и ингибиторов мембранных транспортеров
Многие агенты способны ингибировать мембранные транспортеры, такие как P-gp, хотя до сих пор нет четких доказательств преимущества этих ингибиторов в клинике. Трудностями в развитии ингибиторов P-gp являются фармакологические ограничения, как самих ингибиторов, так и в комбинации с химиотерапией. Например, PSC 833 (валосподар) аналог циклоспорина и мощный ингибитор P-gp. Хотя этот агент сам вызывает токсичность при использовании его в комбинации с химиотерапевтическими препаратами, такими как даунорубицин, доксорубицин и паклетаксел, наблюдается значительное изменение в клиренсе и фармакокинетике химиотерапевтических лекарств, приводящее к усилению токсичности [12]. В предклинических исследованиях комбинация PSC 833 с липосомальным доксорубицином была предпочтительнее, чем со свободным препаратом, поскольку он предотвращал нежелательное взаимодействие между лекарствами, пегилированный липосомальный доксорубицин был не затронут PSC 833. Липосомальная доставка может уменьшать определенные фармакологические сложности, связанные с сопутствующей антирезистентной терапией, путем включения антирезистентных агентов в липосомы. В ранних исследованиях в липосомы упаковывали ингибитор P-gp валиномуцин, который сам обуславливал значительную токсичность. Липосомальный валиномуцин давал меньшую токсичность без уменьшения ингбиторной активности для P-gp в экспериментальных моделях [40].
4.3 Доставка аналогов гидрофобных лекарств
Липосомы могут также использоваться для доставки аналогов гидрофобных лекарств, предназначенных для предотвращения резистентности, опосредованной мембранными транспортерами. Например, антрациклин -аннамицин и липофильное производные платины [105]. Эти соединения предназначены для того, чтобы сделать клеточный захват относительно независимым от P-gp и/или других выбрасывающих лекарства насосов. Хотя липосомальный аннамицин, проявил активность в предклинических исследованиях на моделях с лекарственной резистентностью, во II фазе клинических исследований липосомальный аннамицин никаких ясных доказательств эффективности у пациентов с раком молочной железы, резистентных по доксорубицину не показал [24].
4.4 Использование липосомальных векторов в генной терапии
Существуют различные подходы генной терапии для ингибирования, преодоления или использования механизмов резистентности. Прогресс в этой области и в генной терапии опухолей в настоящее время ограничен недостаточным развитием генно-векторной технологии для доставки нуклеиновых кислот. Для вирусных векторов характерны: канцерогенность, токсичность, иммуногенность, не специфичность, низкая экспрессия вирусных рецепторов на опухолевых клетках, а также сложная процедура создания. Использование липосомальной системы доставки более дешево. Однако эти системы опираются в основном на катионные липиды/липосомы для упаковки нуклеиновых кислот, которые являются более стабильными, чем нейтральные липосомы, созданные для эффективной длительной циркуляции. Конструкции, содержащей ген, необходима стабильность для проведения успешной генной терапии, более того, добавление фрагментов антител или других лигандов к конструкции может позволить сделать генную доставку более специфичной и эффективной.
Генная терапия на основе липосом включает подходы, при которых
возможно прямое воздействие на механизмы лекарственной резистентности
[71, 104]. Например, использование катионных липосом для доставки
антисмысловых олигонуклеотидов или рибозимов против сиквенсов MDR1 гена, а также использование технологии генной терапии для гиперэкспресси генов лекарственной резистентности в нормальных тканях, для защиты тканей от токсического действия химиотерапии [123, 15, 83]. Например, ген MDR1 трансфецированный посредством липосомальных векторов в гематопоэтические предшественники в костном мозге [14].
Олигонуклеотиды сконструированы для того, чтобы смодулировать передачу генетической информации, но механизмы, с помощью которых олигонуклеотиды могут индуцировать биологический эффект, сложны. Для того чтобы антисмысловые олигонуклеотиды снижали экспрессию гена, он должен проникнуть в клетки мишени. Данные о точных механизмах, вовлеченных в этот процесс не ясны. Захват происходит через активный транспорт, который в свою очередь зависит от температуры, структуры и концентрации олигонуклеотидов и линии клеток [78, 128, 135]. Многочисленными работами было продемонстрировано, что олигонуклеотиды плохо интернализуются в клетках вне зависимости от того отрицательно они заряжены или нет, а также обязательным условием для действия антисмысловых олигонуклеотидов является, по-видимому, их ядерная локализация [54, 22]. Для того чтобы улучшить клеточный захват и активность антисмысловых олигонуклеотидов используют транспортеры, такие как липосомы. Использование этих транспортеров позволяет увеличить стабильность олигонуклеотидов от разрушения нуклеазами и позволяет использовать их меньшие концентрации .
Нуклеиновые кислоты могут легко инкапсулироваться в липосомы, которые содержат водное пространство, либо могут быть связанными с липосомальной поверхностью электростатическими взаимодействиями. Эти векторы, из-за их положительного заряда, имеют высокую аффинность к мембранам клеток, которые отрицательно заряжены при физиологических условиях [119].
Вс1-2 - важный антиапоптотический белок, который определяется в различных человеческих опухолевых клетках. Его ингибирование может теоретически вызывать чувствительность клеток к цитотоксической химиотерапии, что было показано в ряде последних исследований на тканевых культурах и экспериментальных моделях, которые привели к началу клинических испытаний [59].
Гиперэкспрессия Вс1-2 наблюдается при многих видах новообразований. Вс1-2 повышен приблизительно в 35% опухолей у больных раком предстательной железы [86, 21]. При гиперэкспрессии белка bcl-2 в опухолевых клетках простаты LNCaP увеличивался их in vivo туморогенный потенциал и появлялась резистентность к апоптозу [108]. Экспрессия Вс1-2 в нормальных эпителиальных клетках предстательной железы является низкой или отсутствует.
Первоначально, антисмысловые фосфодиестер и фосфоротиоат олигонуклеотиды к мРНК bcl-2, использовались для ингибирования роста клеток в культуре 697 человеческой лейкемии [112]. Мишенью олигонуклеотидов является сайт инициации трансляции человеческого мРНК bcl-2. Оба класса олигомеров уменьшают клеточную пролиферацию: фосфоротиоаты более сильные ингибиторы, эксперименты с фосфодиестером в настоящее время потеряли свою значимость. Предполагалось, что фосфоротиоат bcl-2 антисмысловые олигонуклеотиды индуцируют клеточную гибель через взаимодействие со специфическими участками [26, 45].
Препарат G3139, представляющий собой фосфодиестер и фосфоротиоат антисмысловые олигонуклеотиды, направленные против первых шести кодонов Bcl-2 мРНК (G3139, Genta, Inc., Lexington, Mass.), был успешно использован на клетках Неходжскинской лимфомы. Молекулярная масса G3139 - 579,99. Он нестабилен в растворах со значением рН менее 3 или выше 7. Предполагаемое специфическое уменьшение уровня Вс1-2 мРНК через один день после обработки было продемонстрировано Kitada и соав. в клетках SU-DHL-4 [69]. Соизмеримое уменьшение в уровне белка Вс1-2, наблюдалось только после трех дней, по-видимому, из-за длительного периода жизни белка Вс1-2, что было связано с сильным снижением клеточной жизнеспособности. Обработка клеток лимфомы RS11846 препаратом G3139 приводила к уменьшению экспрессии Вс1-2 и увеличени. чувствительности этих клеток к АгаС и метотрексату [70]. При этом использовалась чрезвычайно высокая концентрация олигонуклеотидов.
Обработка опухолевых клеток LNCaP и опухоли Шионоги in vitro G3139 ингибировала экспрессию Вс1-2, что зависело от дозы и специфичности последовательностей [50, 89]. Авторы использовали катионный липид липофектина для доставки и измеряли уровни bcl-2 белка и мРНК. Однако они использовали только одиночный контроль олигонуклеотида, который уменьшает достоверность эксперимента. В других экспериментах, антисмысловые олигонуклеотиды существенно усиливали чувствительность к паклитакселу и доцетакселу, причем усиление действия препаратов зависело от их дозы. Характерные апоптотические изменения были обнаружены только после комбинированного лечения, а не после использования одного Вс1-2 олигомера [37, 51].
В настоящее время фосфоротиоат олигонуклеотиды (G3139) изучаются при введении внутривенно или интроперитонеально у пациентов, которые принимают участие в клинических испытаниях [13, 60]. Эти олигонуклеотиды стабильны в течение 48 часов, к этому времени их уровни все еще могут определяться в тканях. После внутривенного введения G3139 в дозе приблизительно 5 мкг/кг, элиминация в плазме составляет 22ч [34, 35, 111, 133].
Данные клинических исследований дают основания для дальнейшего клинического развития G3139, как монотерапии, так и в комбинации с другими цитотоксическими препаратами [29, 36, 64, 65, 91, 130, 131]. G3139 в настоящее время проходит I/II фазы испытаний у пациентов с андроген-независимым раком предстательной железы, которым назначают G3139 в комбинации с доцетакселом. Клинические испытания других нозологии опухолей планируются [29, 91]. Эффективность этого препарата в клинике в настоящее время обнадеживает, так как его токсичность относительно низкая, состоит, главным образом, в утомлении и тромбоцитопении.
Глава 5. Лекарственные препараты на основе липосом
При парентеральном введении распределение липосом в организме зависит от состава липосомальной мембраны, их размера, заряда, других химических и физических параметров везикул и иммобилизованных в них веществ, а также от способа введения. Так, например, после подкожного введения большинство липосом депонируется в месте введения и элиминируется оттуда преимущественно лимфогенным путем. Таким образом, местное введение липосомальных препаратов является оптимальным способом их доставки в регионарные лимфоузлы.
При внутримышечном введении липосомы способны создавать депо препарата в месте введения, скорость элиминации из депо зависит от размера и свойств липосом и составляет от нескольких часов (мелкие липосомы) до нескольких дней (крупные). Мелкие бислойные липосомы в отличие от крупных при внутрибрюшинном или внутримышечном введении гораздо быстрее проникают в кровеносное русло, что указывает на ограниченную способность последних проходить через капилляры и мембраны сосудов. При внутривенном введении мелкие липосомы выводятся из кровотока медленнее, чем крупные.
Для повышения тропности липосом к определенным органам и тканям их изготавливают из фосфолипидов, изолированных из этих органов, или фиксируют на поверхности специфические антитела против соответствующих тканевых антигенов, или применяют так называемые молекулы-посредники, обладающие двумя типами сродства: к клеткам макроорганизма и к липосоме. При необходимости локального воздействия на клинический процесс для исключения системного влияния на организм целесообразно местное применение лекарственных препаратов.
Липосомальные препараты по сравнению с такими традиционными лекарственными формами для наружного применения, как мази и гели, обладают большей способностью проникать в кожу и волосы, поэтому они более доступны для живых клеток-мишеней. Установлено, что липосомы интенсифицируют процессы взаимодействия активных веществ с кожей при лечебной наружной терапии, что повышает терапевтическую эффективность иммобилизованных в них лекарственных веществ. Скорее всего, такой эффект обусловлен слиянием липосом с липидными ламеллами вне базального слоя и высвобождением их внутреннего содержимого. Подвижные липиды липосом встраиваются в липидные ламеллы, увеличивая таким образом «жидкостность» барьера, что улучшает его проницаемость. Другим важным путем проникновения липосом и их содержимого вглубь кожи являются волосяные фолликулы. Эффективность трансдермального липосомального переноса лекарственных веществ можно усиливать с помощью методов ионо- и фонофореза
5.1 Фосфоглив- оригинальный препарат российских технологий
Фосфоглив - оригинальный гепатопротективный препарат на основе фосфатидилхолина (фосфолипид) растительного происхождения (из семян сои) и тринатриевой соли глицирризиновой кислоты из корня солодки.
Фосфоглив разработан в ИБМХ РАМН, как усовершенствованный аналог выпускаемого фирмой Nattermann Internetional GmBH, Germany препарата Эссенциале, используемого для лечения заболеваний печени.
Фосфолипиды являются основным структурным компонентом всех клеточных мембран. При препоральном введении в организм фосфолипиды воостанавливают целостность мембран клеток, в первую очередь печени - гепатоцитов.
Глицирризиновая кислота обладают широким спектром биологической активности, противовоспалительными свойствами, применяются для лечения заболеваний печени токсического и вирусного происхождения, в том числе и гепатита С. За счет детергентного действия обеспечивает эмульгирование фасфатидилхолина в кишечнике.
Сочетание этих двух компонентов делает фосфоглив особенно эффективным при лечении печени.
На протяжении нескольких последних десятилетий «эссенциальные» фосфолипиды являются ведущими препаратами в лечении алкогольной болезни печени и широко применяются в России. Препараты этой группы известны врачам и пациентам и вошли во все отечественные руководства по клинической фармакологии [12].
Основная роль фосфолипидов сводится к восстановлению структуры и функций поврежденных клеточных мембран. Предотвращая потерю клетками ферментов и других биологически активных веществ, фосфотидилхолин, составляющий основу в структуре фосфолипида, нормализует белковый и жировой обмены, восстанавливает детоксицирующую функцию печени, ингибирует процессы формирования соединительной ткани, тем самым снижая интенсивность развития фиброза и цирроза печени. Кроме того, доказано, что алкоголизм служит благоприятным условием для широкого распространения вирусных гепатитов, которые на его фоне имеют более тяжелое течение и неблагоприятные исходы [13].
Авторами было выявлено, что терапия Фосфогливом пациентов с «акогольной болезнью» сокращает сроки пребывания в реанимационном отделении стационара на 16%, а следовательно, уменьшает и затраты на лечение данной категории больных (рис. 1).
Фосфатидилхолин (действующее вещество фосфолипидов) является основным структурным элементом клеточных и внутриклеточных мембран, способен восстанавливать их структуру и функции при повреждении, оказывая цитопротекторное действие. Нормализует белковый и липидный обмены, предотвращает потерю гепатоцитами ферментов и других активных веществ, восстанавливает детоксицирующую функцию печени, ингибирует формирование соединительной ткани, снижая риск возникновения фиброза и цирроза печени.
Глицират (глицирризиновая кислота и соли) обладает противовоспалительным действием, подавляет репродукцию вирусов в печени и других органах за счет стимуляции продукции интерферонов, повышения фагоцитоза, увеличения активности естественных клеток-киллеров. Оказывает гепатопротекторное действие благодаря антиоксидантной и мембраностабилизирующей активности. Потенцирует действие эндогенных глюкокортикостероидов, оказывая противовоспалительное и противоаллергическое действие при неинфекционных поражениях печени.
5.2 Липосом-форте -препарат для применения в неврологической практике
Активное действующее вещество: фосфолипиды гипоталамуса (общее название активного ингредиента) в ампулах по 2 мл содержит: Гипоталамуса фосфолипиды 28 мг.
Вспомогательные вещества: Маннитол, натрия фосфат двузамещенный додекагидрат, фосфат натрия дигидрофосфат дигидрат, эфир п-гидроксибензойной кислоты, вода для инъекций.
Форма выпуска: Раствор для в.м. / в.в. инъекций (внутримышечных или внутривенных инъекций) - № 5ампул по 2мл.
Показания: Терапия метаболической аномалии в результате церебрального нейроэндокринного расстройства. И как вспомогательное средство при болезни Паркинсона и синдромов паркинсонизма.
5.3 Другие препараты,применяемые в медицине
Торговое название |
Международ-ное название |
Фирма- производитель или разработчик препарата |
Форма выпуска и доза |
Примечания. Состав для комбинированных препаратов |
|
1 |
2 |
3 |
4 |
5 |
|
Фосфолип |
Лецитин |
Universal medicare (Индия) |
Kапсулы 0,35 г |
||
Липин* |
Липин* |
«Биолек», Украина, Харьков |
Лиофилизированный порошок во флаконах для приготовления р-ра для инъекций или ингаляций |
При суспендировании в воде образует липосомы |
|
Мега-Липин |
Фосфатидил холин |
Mega Pharmaceutical (Германия-Ирландия) |
Порошок во флаконах для приготовления р-ра для ингаляций или в/в введения; 0,5 г во фл. 50 мл. |
Обладает антигипоксическим, муколитическим и бронхолитическим действием. |
|
Эссенциале |
Эссенциале* |
Rhone-Poulenc Rorer (США/Франция), Natterman (Германия) |
Р-р для инъекций, капсулы |
Эссенциальные фосфолипиды, комплекс витаминов гр. В, РР, Е, ненасыщенные жирные кислоты |
|
Лиолив |
KНИФТ АМН Украины, УкрФА, «Биолек», Харьков |
Лиофилизированный порошок во флаконах для приготовления р-ра для инъекций или перорального приема |
Kомплексное соединение, содержащее мефенаминат алюминия, заключенный в липосомы липина. |
||
Липофен |
ГНЦЛС, Харьков |
Kапсулы |
Эссенциальные фосфолипиды, витамины В1, В6 и Е, флакумин. |
Доля фосфолипидных препаратов в общей номенклатуре «истинных» гепатопротекторов
Амфотерицин В (АмВ) используется в клинической практике с 1959 года. Долгое время он являлся единственным препаратом для терапии тяжелых инвазивных микозов. Сейчас основной причиной применения АмВ в качестве препарата второго ряда или препарата резерва является его нефротоксичность и высокая частота инфузионных реакций. Липосомальные формы амфотерицина В, в частности липидный комплекс АмВ, липосомальный АмВ и коллоидная дисперсия АмВ, не имеют нежелательных реакций такого рода.
В статье, опубликованной в журнале Clinical Infectious Diseases, Ostrosky-Zeichner L. и соавт. попытались обосновать точку зрения о том, что липосомальные формы амфотерицина В ничем не уступают по своей эффективности и превосходят по своей переносимости обычный амфотерицин В, в связи с чем есть основания рекомендовать данные формы препарата в качестве препаратов выбора для большинства системных грибковых инфекций.
В исследованиях in vitro в отношении криптококка, грибов рода Candida и некоторых мицелиальных грибов были показаны более высокие показатели МПК и минимальной фунгицидной концентрации для всех липосомальных форм амфотерицина В. Однако данный факт можно связать с более трудным высвобождением активного препарата из липидных молекул, что направлено, в первую очередь, на фармакокинетические превращения препарата в организме, в связи с чем данные, полученные in vitro, трудно сопоставить с показателями клинической эффективности. Это обуславливает необходимость поиска новых путей определения активности in vitro липосомальных форм амфотерицина В в отношении различных видов грибов.
В настоящее время проведено достаточное количество многоцентровых сравнительных рандомизированных клинических исследований, позволяющих с уверенностью говорить, по крайней мере, об эквивалентной эффективности липосомальных форм амфотерицина В по сравнению с обычной формой препарата, в первую очередь, в плане выживаемости пациентов. Некоторые исследования продемонстрировали значительно более быстрый ответ на терапию липосомальными формами, в частности, при криптококковом менингите (Leenders и соавт.). Наиболее показательным исследованием можно считать многоцентровое двойное слепое рандомизированное исследование, проведенное Walsh и соавт. В нем сравнивался обычный и липосомальный амфотерицин В при лечении пациентов с нейтропенической лихорадкой. В итоге оба препарата показали одинаково хорошую эффективность, но использование липосомального амфотерицина В сопровождалось меньшим числом нежелательных лекарственных реакций. При сравнительном исследовании обычного амфотерицина В и его коллоидной дисперсии при инвазивном аспергиллезе (Bowden и соавт.) оба препарата продемонстрировали одинаковую клиническую эффективность, однако частота развития нефротоксичного действия при использовании коллоидной дисперсии амфотерицина В была в 3 раза реже (12% vs 38%).
Таким образом, липосомальные формы амфотерицина В в настоящее время вполне могут рассматриваться как препараты выбора для терапии системных грибковых инфекций с возможностью использования широкого диапазона дозировок от 3 мг/кг/сут при инфекциях Candida spp., до 6 мг/кг/сут при криптококкозе или микозах, вызванных мицелиальными грибами. Они должны полностью заменить обычный амфотерицин В в тех случаях, когда его использование опасно в силу высокого риска развития у пациента нефротоксичности или инфузионных реакций. Однако для выбора оптимальной липосомальной формы АмВ и наиболее подходящего режима дозирования при различных формах инвазивных грибковых инфекций потребуется проведение дальнейших клинических исследований.
5.4 Липосомы в дерматологии
...Подобные документы
Структура, свойства, механизм действия и технологии получения липосомальных частиц, их применение в лечении вирусных заболеваний, противотуберкулезной терапии, в химиотерапии при онкозаболеваниях. Способы активизации липосом как транспортных частиц.
дипломная работа [3,7 M], добавлен 17.06.2011Липосомы как наночасти, которые рассматриваются как эффективные средства доставки различных лекарственных средств. Существенное повышение эффективности липосомального транспорта - применение липосом, ассоциированных с молекулами фолиевой кислоты.
статья [52,7 K], добавлен 17.12.2010Использование ингибиторов протонной помпы. Могут ли зарубежные фармакоэкологические результаты быть применимы для отечественной медицинской практики. Частота использования эрадикационной терапии терапевтами. Эффективность схемы тройной терапии.
презентация [7,4 M], добавлен 13.03.2014Использование ядерной физики в диагностике органов человека, применение регистрирующей аппаратуры. История развития ядерной медицины, методы и формы лечения заболеваний с помощью радиоактивного йода. Применение радиоактивного газа ксенона в терапии.
реферат [43,9 K], добавлен 07.10.2013Применение радиоактивного излучения в медицине и промышленности. История открытия радиоактивности французским физиком А. Беккерелем. Использование радиации для диагностики и лечения различных заболеваний. Сущность и особенности радиационной стерилизации.
презентация [883,2 K], добавлен 28.10.2014Антиаритмические препараты, их использование при интенсивной терапии, купировании нарушений ритма, лечении желудочковых нарушений, наджелудочковых тахикардиях. Использование анальгетиков и местных анестетиков для ослабления или устранения чувства боли.
реферат [20,8 K], добавлен 02.10.2009Дарсонвализация и микроволновая терапия как применение с лечебной целью тока высокой частоты и магнитного поля. Физическая характеристика данного процесса, его использование в медицине. Специальная аппаратура для дарсонвализации и особенности применения.
реферат [14,0 K], добавлен 15.11.2009История открытия метода гибридизации соматических клеток, его использование в регенераторной медицине; инструменты клеточной инженерии. Иммунотерапия онкологических заболеваний с помощью стволовых и дендритных клеток. Направления развития наномедицины.
реферат [45,9 K], добавлен 14.12.2012Ультразвук как упругие волны высокой частоты, его свойства и характеристики, степень воздействия на организм человека, история исследований. Применение ультразвука в диагностике и терапии, используемое в данном процессе оборудование и инструменты.
презентация [301,9 K], добавлен 17.03.2011Что такое фрактал. Использование метода фрактального рисунка. Математические формулы, воспроизведенные с помощью компьютера. Фракталы в диагностике психических заболеваний, в гипнотических сеансах, в арт-терапии. Фракталы и применение метода ассоциации.
презентация [15,3 M], добавлен 09.01.2017Морфологическое описание фукуса. Определение лекарственного растения: внешние признаки, микроскопия, испытания, хранение, маркировка. Пути использования и применения фукуса пузырчатого. Использование лекарства для внешнего воздействия на кожный покров.
реферат [2,4 M], добавлен 25.12.2014Понятие переменного тока, его роль и применение в медицине в лечебных целях. Использование метода дарсонвализации при заболеваниях сердца и сосудов, в стоматологии, гинекологии, косметологии. Показания к применению ультратонотерапии и индуктотермии.
реферат [23,5 K], добавлен 15.04.2011Гипносуггестивная терапия и особенности ее гипноанализа. Стадии развития алкоголизма как заболевания. Развитие научных представлений о природе гипноза и методах его применения в медицине. Использование аутогенной тренировки при воздействии на психику.
курсовая работа [34,0 K], добавлен 01.10.2016Применение в медицине микроскопических устройств на основе нанотехнологий. Создание микроустройств для работы внутри организма. Методы молекулярной биологии. Нанотехнологические сенсоры и анализаторы. Контейнеры для доставки лекарств и клеточной терапии.
реферат [431,5 K], добавлен 08.03.2011Понятие и назначение, физические и химические свойства пенициллина, история его открытия и значение в лечении разнообразных заболеваний. Характер воздействия пенициллина на микроорганизмы. Синтетические аналоги данного лекарства, их использование.
презентация [1,9 M], добавлен 07.11.2016Понятие "сурфактантная терапия". Натуральные и синтетические препараты сурфактанта. Обязательные условия для применения лекарства. Стратегия "Insure". Причины неадекватной реакции на лекарство. Методы респираторной терапии. Система с водяным замком.
презентация [797,5 K], добавлен 30.11.2016Общие положения арт-терапии. Создание клиентом визуальных образов. Связь художественного творчества человека с его психическим развитием. Основные виды и формы арт-терапии. Сочетание разных видов экспрессивной терапии. Фактор художественной экспрессии.
контрольная работа [36,4 K], добавлен 28.01.2017Применение ионизирующего излучения в медицине. Технология лечебных процедур. Установки для дистанционной лучевой терапии. Применение изотопов в медицине. Средства защиты от ионизирующего излучения. Процесс получения и использования радионуклидов.
презентация [1016,4 K], добавлен 21.02.2016Лечение больных с деструктивными пневмонитами консервативными и оперативными методами. Правила ухода за больными. Использование иммуномодулирующей терапии при инфекционных деструкциях легких. Интенсивная антитериальная терапия при бактериемическом шоке.
реферат [23,6 K], добавлен 29.08.2009Природа радиоактивности и типы ядерных превращений. Использование радиофармацевтических препаратов для ранней диагностики заболеваний различных органов человека и целей терапии. Создание позитронного эмиссионного томографа. Развитие ксеноновой анестезии.
курсовая работа [1,1 M], добавлен 28.11.2009