Кровь как основной компонент внутренней среды организма

Функция крови и характеристика её элементов. Физико-химические свойства крови и плазмы. Анатомия и физиология промежуточного мозга. Структура и функции таламуса, гипоталамуса и эпифиза. Восходящие и нисходящие пути ЦНС. Продолжительность жизни эритроцита.

Рубрика Медицина
Вид контрольная работа
Язык русский
Дата добавления 08.09.2013
Размер файла 42,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

ЧУО "Женский институт ЭНВИЛА"

Кафедра психологии

Контрольная работа

по дисциплине Физиология поведения

Кровь как основной компонент внутренней среды организма

Студентки 1 курса группы Пс 113

Факультета психологии

Заочной формы обучения

Содержание

кровь эритроцит гипоталамус анатомия физиология

1. Кровь как основной компонент внутренней среды организма

1.1 Функция крови и характеристика её форменных элементов

1.2 Физико-химические свойства крови и плазмы

1.3 Иммунитет

2. Проводящие пути ЦНС

2.1 Восходящие пути ЦНС

2.2 Нисходящие пути ЦНС

3. Анатомия и физиология промежуточного мозга

3.1 Состав промежуточного мозга

3.2 Структура и функции таламуса

3.3 Структура и функции гипоталамуса

3.4 Структура и функции эпифиза

Список литературы

1. Кровь как основной компонент внутренней среды организма

1.1 Функция крови и характеристика её форменных элементов

Кровь - непрозрачная, красная жидкость, состоящая из двух частей: бледно-желтой плазмы и взвешенных элементов - эритроцитов (красных кровяных телец, придающих цвет крови), лейкоцитов (белых кровяных телец) и тромбоцитов (кровяных пластинок).

Физиологические функции крови:

транспортная функция заключается в транспорте с кровью различных веществ и тепла в пределах организма. Кровь переносит дыхательные газы - как в физически растворенном, так и химически связанном виде - дыхательная функция. Кислород доставляется от легких к потребляющим его клеткам организма. Кровь также переносит питательные вещества от органов, где они всасываются или депонируются к месту их потребления - питательная функция. При биологическом окислении питательных веществ в клетках образуются конечные продукты их обмена, которые транспортируются кровью к местам их выделения: почкам, легким, потовым железам, кишечнику - выделительная (экскреторная) функция. Кровь осуществляет транспорт гормонов и других биологически активных веществ. Благодаря своей высокой теплоемкости кровь обеспечивает перераспределение тепла в организме - терморегуляторная функция. Кровь участвует в водно-солевом обмене в организме и обеспечивает поддержание постоянства его внутренней среды (гомеостаза) - гомеостатическая функция. Защитная функция крови заключается в обеспечении иммунных реакций, создании кровяных и тканевых барьеров против негативных веществ для организма. Еще является защитной функцией ее участие в поддержании своего жидкого агрегатного состояния, а также остановке кровотечения и восстановлении проходимости сосудов после репарации дефектов.

Эритроциты - самые многочисленные форменные элементы крови. Различают по размерам: нормоциты, микроциты, макроциты. Эритроциты не имеют ядра, митохондрий, белоксинтезирующей системы - характерна гомогенная цитоплазма. Эритроцит содержит до 60% воды и 40% сухого остатка (34% гемоглобин, около 6% различные белки, глюкоза, липиды и минеральные остатки).

Около 85% всех эритроцитов составляют дискоциты, имеющие форму двояковогнутого диска, для улучшения диффузионного свойства оболочки эритроцита и облегчает прохождение их через капилляры.

Продолжительность жизни эритроцита в кровяном русле - около 120 дней.

Эритроциты обладают высокой пластичностью (способность к обратной деформации), что облегчает их прохождение через капилляры диаметром до 2,5-3мкм. По мере старения эритроцитов пластичность снижается, они превращаются в сфероциты (имеют форму шара) и не могут проходить через капилляры диаметром до 3 мкм задерживаются в селезенке (“Кладбище” эритроцитов - селезенка). Пластичность оболочки эритроцитов обеспечивает их осмотическую стойкость. Осмотическое давление в эритроцитах несколько выше, чем в плазме крови, что обеспечивает тургор клеток вследствие поступления воды в эритроцит.

Основными функциями эритроцитов: транспортная функция эритроцитов заключается в том, что они переносят кислород и углекислый газ (дыхательная или газотранспортная функция), питательная (белки, углеводы) и биологически активные вещества. Защитная функция эритроцитов определяется их способностью связывать и обезвреживать некоторые токсины, участвует в процессах свертывания крови. Регуляторная функция эритроцитов заключается в их способности активно участвовать в поддержании кислотно-основного состояния организма с помощью гемоглобина, обладает амфолитными свойствами. Эритроциты могут также участвовать в иммунологических реакциях организма.

Лейкоциты, или белые кровяные тельца, - ядросодержащие клетки диаметром 4-20 мкм. По месту расположения лейкоциты можно разделить на три пула: клетки, находящиеся в органах кроветворения (происходит их образование и созревание, имеется определенный резерв), в сосудистом русле (в крове и лимфе) и в тканях (местах, в которых они выполняют свои функции). В крови лейкоциты находятся в двух пулах: циркулирующем (их определяют при проведении общего анализа крови) и краевом (пристеночном пуле, к которому относят лейкоциты, прикрепленные к стенкам посткапиллярных венул).

Лейкоциты крови представлены гранулоцитами (т.е. лейкоцитами, в цитоплазме при окрашивании выявляется зернистость) и агранулоцитами (цитоплазме не свойственна зернистость).

Свойства лейкоцитов:

1) рецепцией сигналов и их преобразованием;

2) адгезивностью (способностью прикрепляться и задерживаться на определенных объектах);

3) амебовидной подвижностью (способностью к активному передвижению);

4) диапедезом (проникновение через неповрежденную стенку капилляра или венулы);

5) фагоцитозом (поглощением и перевариванием микроорганизмов и чужеродных тел);

6) секрецией (водорода пероксида, цитокинов, иммуноглобулинов и пр.).

Тромбоциты, или кровяные пластинки, являются самыми маленькими безъядерными клетками крови сферической или дискоидной формы - диаметром 1-5 мкм и объемом 6,5-12 фл (мкм3) Они образуются «отшнуровыванием» от гигантских клеток мегакариоцитов в сосудах красного мозга или легких. Длительность циркуляции тромбоцитов составляет 1-2 недели, в среднем 10 суток. Старые, поврежденные клетки разрушаются в основном в селезенке и костном мозге.

У тромбоцитов отсутствуют ядра, но имеют трехслойные клеточные мембраны, в которые встроены рецепторы, энзимы, белки цитоскелета. В мембранах имеется система открытых канальцев для поглощения или выделения веществ.

Функции, которые выполняют тромбоциты, являются: ангиотрофические - заключается в том, что тромбоциты поставляют ростовые факторы для клеток сосудистой стенки, питают эндотелий и инициируют процессы репарации сосудов после их повреждения. Гемостатическая заключается в: 1)запуске немедленного (первичного) гемостаза за счет их адгезии и агрегации, что приводит к формированию тромбоцитарной пробки; 2)локальной секреции сосудосуживающих веществ для уменьшения кровотока в поврежденном участке; 3)ускорении реакций коагуляционного (вторичного) участка гомеостаза с образованием в конечном счете фибринового сгустка. Защитную функцию тромбоциты выполняют за счет склеивания (агглютинации) бактерий, фагоцитоза, а также эндо - и экзоцитоза иммуноглобулинов.

1.2 Физико-химические свойства крови и плазмы

На долю крови у взрослого человека приходится 6-8% массы тела, что соответствует приблизительно 4,5-6,0 л (средняя масса тела 70 кг). У детей и спортсменов объем крови в 1.5-2 раза больше. У новорожденных он составляет 15% массы тела, у детей до 1 года жизни 11%.Часть крови находится в кровяном депо - венулах, и венах печени, селезенке, кожи, скорость кровотока в которых значительно снижена. Быстрая потеря крови (30-50 %) может привести организм к гибели.

Вязкость крови обусловлена наличием в ней белков и клеток, прежде всего эритроцитов. Относительная плотность крови зависит от количества эритроцитов и содержания белков в плазме. Гематокрит- часть объема крови, приходящая на долю форменных элементов, прежде всего эритроцитов.

Плазма - жидкая часть крови, остающаяся после удаления из нее форменных элементов. Плазма крови является достаточно сложной биологической средой, находящейся в тесной связи с тканевой жидкостью организма. В состав плазмы входят: вода (90 %) и сухой остаток из органических (9 %) и неорганических веществ (1 %).

Органические вещества плазмы: белки - среди них альбумины, глобулины, фибриноген. Альбумины образуются в печени и косном мозге (50-60 % от других видов белков). Они играют главную роль в создании онкотического давления крови. Глобулины (35-40% от общего количества белков) включают а1- и а2- ,в - и у - фракции ( липопротеиды и - гликопротеиды); имеются также металлопротеиды (трансферрин-в-глобулин и церулоплазмин -а2 -глобулин). Главная функция - образование иммунных антител. Значение белков: 1)участвуют в процессе свертывания крови; 2)создают коллоидно-осмотическое (онкотическое) давление; 3)регулирует рН крови; 4)участвует в реакциях иммунной системы; 5)влияют на вязкость крови; 6)выполняют транспортную функцию.

Неорганические вещества плазмы включают минеральные соли. Они создают осмотическое давление, участвуют в стабилизации рН крови, в процессе свертывания крови, в создании электрических зарядов клеток, в транспорте воды - вода движется в сторону более высокого осмотического давления.

Кислотно-основное состояние (КОС) организма характеризуется рН крови (7,35-7,45).Этот показатель определяет активность ферментов, образование и диссоциацию оксигемоглобина. Сдвиг рН крови даже на 0,1 за указанные границы ведет к нарушению функций клеток; сдвиг на 0,3 может вызвать коматозное состояние, а на 0,4- несовместим с жизнью. Постоянство рН организма регулируется выделительной системой, сглаживается буферными системами плазмы крови. Основные буферные системы крови- бикарбонатный, фосфатный и белковый. В эритроцитах действует гемоглобиновый буфер.

Осмотическое давление плазмы крови в норме составляет около 7,6 атм - это фактор, участвующий в транспорте веществ в организме, в формировании тургора клеток. Раствор, имеющий осмотическое давление, одинаковое с таковым крови, называется изотоническим(0,85-0,9 % раствор натрия хлорида). Раствор, осмотическое давление которого выше осмотического давления крови, называется гипертоническим, а раствор с более низким давлением гипотоническое.

1.3 Иммунитет

Иммунитет - способность организма защищаться от генетически чужеродных тел и веществ. В организме выделяют три уровня защиты от чужеродных тел и веществ.

1-й уровень защиты - тканевый (анатомический) барьер, создаваемый тканевыми покровами (кожа и слизистые оболочки). Он обеспечивается наличием анатомического барьера, секреторной функцией желез слизистых оболочек (выделением иммуноглобулинов лизоцима и других защитных белков), защитными рефлексами (кашель, чихание, рвота).

2-й уровень защиты - неспецифический иммунитет, создаваемый фагоцитирующими клетками крови и тканей (микро и макрофаги). Он направлен против любого чужеродного вещества или тела и является врожденным (наследственным), имеет гуморальные и клеточные механизмы. Гуморальные механизмы продуцируются макрофагами, моноцитами, нейтрофилами и другими клетками и обладают бактерицидным, противовирусным, противоопухолевым действием. Клеточный неспецифический иммунитет осуществляется гранулоцитами и миноцитами с макрофагами.

3-й уровень защиты - специфический (гуморальный) иммунитет, направленный против определенных чужеродных тел и веществ и подразделяющийся на врожденный и приобретенный. бывает активным и пассивным. Специфический иммунитет реализует в двух формах: гуморальной и клеточной. Гуморальный иммунитет обусловлен. В - лимфоцитами, которые под влиянием антигенной стимуляции с участием Т - лимфоцитов и моноцитов дифференцируются в плазмоциты, продуцирующие антитела против специфических антигенов. Клеточный иммунитет обеспечивается главным образом Т-лимфоцитами, среди которых выделяют Т-киллеры, Т - хелперы, Т - супрессоры, Т - амплифаеры, Т - клетки памяти.

2. Проводящие пути ЦНС

2.1 Восходящие пути ЦНС

Проводящие пути - это совокупность тесно расположенных нервных волокон, приходящих, в определенных зонах белого вещества головного, спинного мозга, соединяющих различные нервные центры и проводящих одинаковые нервные импульсы. Проводящие пути, связывающие спинной с головным мозгом и мозговой ствол с корой большого мозга, принято делить на восходящие и нисходящие.

Проводящий путь болевой и температурной чувствительности (латеральный спинно-таламический путь) состоит из трех нейронов. Рецепторы первого (чувствительного) нейрона, воспринимающие указанные раздражения, располагаются в коже и слизистых оболочках, а его тело лежит в спинномозговом узле. Центральный отросток чувствительного нейрона в составе заднего корешка направляется в задний рог спинного мозга и заканчивается синапсами на клетках второго нейрона. Аксоны вторых нейронов через переднюю спайку переходят на противоположную сторону спинного мозга, входят в боковой канатик, образуя латеральный спинно-таламический путь. Этот путь поднимается в продолговатый мозг, проходит в покрышке моста, покрышке среднего мозга и заканчивается в таламусе. Аксоны клеток таламуса (третий нейрон) направляются к внутренней зернистой пластинке коры постцентральной извилины, где находится корковый конец анализатора общей чувствительности.

Путь для проведения глубокой (мышечно-суставной, вибрационной) и тактильной чувствительности. Рецепторы, воспринимающие раздражение, заложены в тканях опорно-двигательного аппарата (для тактильной чувствительности - в коже). Возбуждение передается по чувствительным волокнам периферических нервов к клеткам спинномозговых узлов. Аксоны этих клеток в составе задних корешков направляются в задний канатик спинного мозга своей стороны, где образуют тонкий и клиновидный пучки. Оканчиваются эти пучки в ядрах продолговатого мозга- тонком и клиновидном, в которых лежат клетки вторых нейронов. Волокна этих клеток переходят на противоположную сторону и поднимаются через продолговатый мозг, мост и ножки мозга в виде медиальной петли к таламусу, где находятся клетки третьего нейрона. К медиальной петле (тройнично-таламический путь), которая образуется вторым чувствительным нейронов, проводящим чувствительность от липа. Аксоны третьих нейронов образуют таламо-кортикальный путь, который служит для проведения всех видов чувствительности из таламуса в кору большого мозга, в постцентральную извилину.

Передний спинно-мозжечковый путь (Говерса) берет начало от клеток задних рогов спинного мозга и по боковым канатикам своей и противоположной стороны через верхние мозжечковые ножки попадает в мозжечок, где оканчивается в области его червя.

Задний спинно-мозжечковый путь (Флексига) также начинается в области задних рогов спинного мозга и направляется в составе боковых канатиков своей стороны через нижние мозжечковые ножки в червь мозжечка.

2.2 Нисходящие пути ЦНС

Пирамидные пути - нисходящие нервные волокна, включающие корково-спинно-мозговые (передний и латеральный) пути и корково-ядерные волокна.

Корково-спинно-мозговой путь начинается от больших пирамидных (двигательных) клеток коры большого мозга в области предцентральной извилины; лицо представлено в ее нижней трети, рука - в средней, нога - в верхней. Аксоны этих клеток образуют лучистый венец и, веерообразно сходясь, проходят через внутреннюю капсулу, занимая передние 2/3 ее задней ножки. Далее они проходят через ножки мозга, мост, продолговатый мозг, где в области пирамид значительная часть волокон образует перекрест и переходит в состав боковых канатиков спинного мозга - латеральный корково-спинно-мозговой (латеральный пирамидный путь). Неперекрещенные волокна проходят в передних канатиках спинного мозга - передний корково-спинно-мозговой (передний пирамидный) путь. Волокна латерального и переднего пирамидного пути оканчиваются в передних рогах спинного мозга посегментно, при этом волокна переднего пирамидного пути частично перекрещиваются. Пирамидные пути проводят из коры большого мозга импульсы произвольных движений. Волокна латерального пирамидного пути иннервируют мышцы конечностей, а переднего - мышцы шеи, туловища, промежности. В связи с особенностями хода пирамидных путей мышцы конечности получают иннервацию из противоположного полушария, а мышцы шеи, туловища, промежности - из обоих полушарий.

Пирамидный путь представляет собой первый (центральный) нейрон корково-мышечного пути, обеспечивающего иннервацию произвольных движений. Периферический нейрон этого пути образуется двигательными клетками передних рогов спинного мозга и их аксонами, которые в составе передних корешков спинно-мозговых нервов, сплетений и периферических нервов направляются к иннервируемым мышцам.

Корково-ядерные волокна также служат для проведения импульсов произвольных движений. Они начинаются в нижней трети предцентральной извилины, участвуют в образовании лучистого венца, проходят через колено внутренней капсулы и мозговой ствол, где оканчиваются в ядрах черепных нервов, совершая надъядерный перекрест. Полностью перекрещиваются только волокна, идущие к нижней части ядра лицевого нерва и к ядру подъязычного нерва. Остальные корково-ядерные волокна совершают неполный перекрест, поэтому мышцы верхней части лица, жевательные, мышцы неба, глотки, гортани получают двустороннюю корковую иннервацию. Корково-ядерные волокна являются первым звеном пути, обеспечивающего произвольную иннервацию мышц лица, языка, глотки, гортани. В проведении двигательных импульсов к этим мышцам участвует и второе звено, представленное двигательными клетками, заложенными в ядрах черепных нервов, и их отростками, образующими черепные нервы.

Корково-мозжечковый путь обеспечивает координацию движений (согласованность). Его первые нейроны расположены в коре лобной, теменной, затылочной и височной долей большого мозга. Аксоны их проходят через внутреннюю капсулу и достигают ядер моста своей стороны, где расположены клетки вторых нейронов. Аксоны этих нейронов совершают перекрест в области моста и в составе средних мозжечковых ножек достигают коры мозжечка.

К числу нисходящих проводящих путей относится также задний продольный пучок, соединяющий мозговой ствол со спинным мозгом. Перечисленные нисходящие пути оканчиваются в клетках передних рогов спинного мозга или двигательных ядер черепных нервов. Здесь располагаются периферические двигательные нейроны, проводящие импульсы к мышцам и являющиеся одновременно эфферентной частью рефлекторных дуг.

3. Анатомия и физиология промежуточного мозга

3.1 Состав промежуточного мозга

В состав промежуточного мозга, который является передним концом ствола мозга, входят зрительные бугры - таламус и подбугровая область - гипоталамус. Таламус представляет собой важнейшую «станцию» на пути афферентных импульсов в кору больших полушарий. Ядра таламуса подразделяют на специфические и неспецифические.

К специфическим относят переключательные (релейные) ядра и ассоциативные. Через переключательные ядра таламуса передаются афферентные влияния от всех рецепторов тела. Это так называемые специфические восходящие пути. Они характеризуются соматотопической организацией. Особенно большое представительство в таламусе имеют эфферентные влияния, поступающие от рецепторов лица и пальцев рук. От таламических нейронов начинается путь к соответствующим воспринимающим областям коры - слуховым, зрительных и др. Ассоциативные ядра непосредственно не связаны с периферией. Они получают импульсы от переключающих ядер и обеспечивают их взаимодействие на уровне таламуса, т. е. осуществляют подкорковую интеграцию специфических влияний. Импульсы от ассоциативных ядер таламуса поступают в ассоциативные области коры больших полушарий, где участвуют в процессах высшего афферентного синтеза.

Помимо этих ядер, в таламусе имеются неспецифические ядра, которые могут оказывать как активирующее, так и тормозящее влияние на кору.

Благодаря обширным связям таламус играет важнейшую роль в жизнедеятельности организма. Импульсы, идущие от таламуса в кору, изменяют состояние корковых нейронов и регулируют ритм корковой активности. Между корой и таламусом существуют кольцевые кортикоталамические взаимосвязи, лежащие в основе образования условных рефлексов. С непосредственным участием таламуса происходит формирование эмоций человека. Таламусу принадлежит большая роль в возникновении ощущений, в частности ощущения боли.

Подбугровая область расположена под зрительными буграми и имеет тесные нервные и сосудистые связи с прилежащей железой внутренней секреции--гипофизом. Здесь расположены важные вегетативные нервные центры, регулирующие обмен веществ в организме, обеспечивающие поддержание постоянства температуры тела (у теплокровных) и другие вегетативные функции.

Участвуя в выработке условных рефлексов и регулируя вегетативные реакции организма, промежуточный мозг играет очень важную роль в двигательной деятельности, особенно при формировании новых двигательных актов и выработке двигательных навыков.

3.2 Структура и функции таламуса

Таламус - участок переднего мозга. В таламусе оканчиваются аксоны большинства сенсорных нейронов, несущих импульсы в кору головного мозга. Здесь анализируется характер и происхождение этих импульсов, и они передаются в соответствующие сенсорные зоны коры по волокнам, берущим начало в таламусе. Таким образом, таламус играет роль перерабатывающего, интегрирующего и переключающего центра для всей сенсорной информации. Кроме того, в таламусе модифицируется информация, поступающая из определенных зон коры, и полагают, что он участвует в ощущении боли и ощущении удовольствия. В таламусе начинается та область ретикулярной формации, которая имеет отношение к регуляции двигательной активности. Дорсальный участок, лежащий непосредственно перед таламусом - переднее сосудистое сплетение - ответственен за транспорт веществ между спинномозговой жидкостью, находящейся в третьем желудочке, и жидкостью, заполняющей подпаутинное пространство.

Таламус можно считать воротами для поступления афферентации от всех систем к церебральным структурам.

Впервые на более высоких ступенях деятельности восприятия и представления содержание и аффект выступают в более самостоятельном и изменчивом отношении друг к другу, что позволяет рассматривать их действительно раздельными в переживании. Представление «дом», например, или вид дома не сопровождаются заметными аффектами, и если все же они есть, то могут быть весьма различны. Подобно тому, как у ощущений боли, температурных, обонятельных и вкусовых ощущений наблюдается ясный чувственный тон, в переживании происходит нечто идентичное. Ощущение тепла и холода само по себе всегда приятно или неприятно, исключая узкую индифферентную зону, где оно исчезает как ощущение.

Под «общим чувством», разумеем «целостное чувство», в котором выражается общее состояние нашего чувственного благосостояния или неблагосостояния. Общее чувство включает в себя компоненты всех родственных аффекту ощущений, диффузных поверхностных ощущений, ощущений давления и положения, сердечных ощущений, внутренностных, обонятельных и вкусовых ощущений, а также диффузных настроений, создаваемых под влиянием света, цвета и тона. Это имеет особое значение для понимания относительно сложных общих чувств, так называемых жизненных чувств, таких, как голод, жажда, сексуальное возбуждение, феноменологическое единство которых в равной мере можно назвать и комплексом ощущений, и аффектом, и, благодаря одновременно содержащемуся в них моторному импульсу, влечением.

Особо остро поставила вопрос о родстве между ощущениями и чувствами теория Джемса--Ланге, поднявши его прямо до идентичности. Для названных групп «жизненных чувств» этот основной взгляд можно хорошо защищать с феноменологической и, также с физиологической точек зрения. Кроме ощущений температуры, боли, обонятельных и вкусовых ощущений, диффузных общих чувств, голода, жажды и сексуальных чувств мы должны причислить сюда большую часть элементарных аффектов ужаса и страха, которые являются одинаково душевными движениями и интенсивными телесными ощущениями с соответствующими моторными установками. Трудно сказать, много или мало феноменологически останется в переживании от специфического аффекта, если отнять комплексы характерных телесных ощущений. Напротив, у дифференцированных душевных содержаний, как мы уже видели, отношения много свободнее, и названная теория уже не может быть здесь проведена в качестве всеобщего принципа.

Таламус анатомически образует большой распределительный центр для всех путей ощущения; отсюда начинаются пути отдельных ощущений к своим особым проекционным полям коры большого мозга, к зрительному в задней главной доле, к слуховому центру в височной доле, сфере телесных чувств в задней центральной извилине и т. д. Таламус расположен по соседству с моторными ганглиями ствола и занимает в сенсибильно-сенсорной системе отчасти такое же положение, как более древняя часть мозга и еще более прямо распределяющий промежуточный центр между периферией и корой мозга, как те в моторной системе. Изучение физиологических проявлений таламуса находится на начальной стадии и тесно связано с проблемами, которые должны получить разъяснение при исследованиях мозгового ствола, вегетативной нервной системы и основного отношения между мозговым стволом и корой мозга.

Уже имеются действительно значительные, подкрепленные большим исследовательским материалом теории о функции таламуса, теории Хида и Л.Р. Мюллера. Представление Л.Р. Мюллера о функции таламуса, подкрепленные большим исследовательским материалом, таково: в зрительный бугор входят все сенсибильные и сенсорные пути; благодаря этому он может стать именно тем местом мозга, где различные ощущения получают свою своеобразную эмоциональную окраску и тон; в таламусе возникают телесные ощущения боли и удовольствия, в то время как мозговая кора важна только для локализации и познания ощущения. Таламус является передаточным местом, в котором возбуждение сенсибильных нейронов переходит на такие же нейроны вегетативной системы. Он образует вместе с анатомически к нему близко расположенными центрами вегетативной нервной системы в промежуточном мозге (и также с низшими психомоторными центрами мозгового ствола) род рефлекторной дуги для висцерально-аффективных и основанных на влечении реакций или -- в более широком смысле -- большой распределительный центр для сводки инстинктивно связанных, однообразных сенсомоторных процессов жизни влечений.

Глубокое изучение чувствительности Хидом привело его к родственным воззрениям: он нашел при очаговых нарушениях в таламусе кроме нарушений самой чувствительности тенденцию чрезмерно реагировать на неприятные раздражения без того, чтобы при этом понижался порог болевых раздражений; одинаковая боль на больной стороне оказывается сильнее. Речь идет об особых половинно-сторонних изменениях эмоционального тона в соответствии с аффективной установкой на сенсибильные и сенсорные раздражения.

По Хиду, часть тела с больным таламусом сильнее реагирует на аффективный элемент как внешних раздражений, так и внутренне-душевных состояний; существует повышенная восприимчивость этой части тела к состояниям удовольствия и неудовольствия.. Он отвечает на все раздражения, которые могут вызвать удовольствие или неудовольствие или сознание изменения в общем состоянии. Эмоциональный тон соматических или висцеральных ощущений есть продукт активности таламуса».

3.3 Структура и функции гипоталамуса

Гипоталамус - внешний подкорковый центр вегетативной нервной системы. Эта подбугорная область промежуточного мозга долгое время является важным объектом различных научных исследований.

У позвоночных гипоталамус представляет собой главный нервный центр, отвечающий за регуляцию внутренней среды организма.

Филогенетически - это довольно старый отдел головного мозга, и поэтому у наземных млекопитающих строение его относительно одинаково, в отличие от организации таких молодых структур, как новая кора и лимбическая система. Гипоталамус управляет всеми основными гомеостатическими процессами. В то время как децеребрированному животному можно достаточно легко сохранить жизнь, для поддержания жизнедеятельности животного с удаленным гипоталамусом требуются особые интенсивные меры, так как у такого животного уничтожены основные гомеостатические механизмы.

Принцип гомеостаза заключается в том, что при самых разнообразных состояниях организма, связанных с его приспособлением к резко изменяющимся условиям окружающей среды (например, при тепловых или холодных воздействиях, при интенсивной физической нагрузке и так далее), внутренняя среда остается постоянной и параметры ее колеблются лишь в очень узких пределах. Наличие и высокая эффективность механизмов гомеостаза у млекопитающих, и в частности у человека, обеспечивают возможность их жизнедеятельности при значительных изменениях окружающей среды.

Расположение гипоталамуса. Гипоталамус представляет собой небольшой отдел головного мозга весом около 5 грамм. Гипоталамус не обладает четкими границами, и поэтому его можно рассматривать как часть сети нейронов, протягивающейся от среднего мозга через гипоталамус к глубинным отделам переднего мозга, тесно связанным с филогенетически старой обонятельной системой. Гипоталамус является вентральным отделом промежуточного мозга, он лежит ниже (вентральнее) таламуса, образуя нижнюю половинку стенки третьего желудочка. Нижней границей гипоталамуса служит средний мозг, а верхней - конечная пластинка, передняя спайка и зрительный перекрест. Латеральнее гипоталамуса расположен зрительный тракт, внутренняя капсула и субталамические структуры.

В поперечном направлении гипоталамус можно разделить на три зоны:

1) Перивентрикулярную;

2) Медиальную;

3) Латеральную.

Перивентрикулярная зона представляет собой тонкую полоску, прилежащую к третьему желудочку. В медиальной зоне различают несколько ядерных областей, расположенных в переднезаднем направлении. Преоптическая область филогенетически принадлежит к переднему мозгу, однако ее относят обычно к гипоталамусу. От вентромедиальной области гипоталамуса начинается ножка гипофиза, соединяющаяся с адено- и нейрогипофизом. Передняя часть этой ножки носит название срединного возвышения. Там оканчиваются отростки многих нейронов преоптической и передней областей гипоталамуса, а также вентромедиального и инфундибулярного ядер; здесь из этих отростков высвобождаются гормоны, поступающие через систему портальных сосудов к передней доле гипофиза. Совокупность ядерных зон, в которых содержатся подобные гормон-продуцирующие нейроны, носят название гипофизотропной области.

Связать конкретные функции гипоталамуса с его отдельными ядрами, за исключением супраоптического и паравентрикулярного ядер, невозможно.

В латеральном гипоталамусе не существует отдельных ядерных областей. Нейроны этой зоны диффузно располагаются вокруг медиального пучка переднего мозга, идущего в растрально-каудальном направлении от латеральных образований основания лимбической системы к передним центрам промежуточного мозга. Этот пучок состоит из длинных и коротких восходящих и нисходящих волокон.

Афферентные и эфферентные связи гипоталамуса. Организация афферентных и эфферентных связей гипоталамуса свидетельствует о том, что он служит важным интегративным центром для соматических, вегетативных и эндокринных функций. Латеральный гипоталамус образует двухсторонние связи с верхними отделами ствола мозга, центральным серым веществом среднего мозга и с лимбической системой. Чувствительные сигналы от поверхности тела и внутренних органов поступают в гипоталамус по восходящим спинобульборетикулярным путям, которые ведут в гипоталамус, либо через таламус, либо через лимбическую область среднего мозга. Остальные афферентные сигналы поступают в гипоталамус по полисинаптическим путям, которые пока еще не все идентифицированы.

Эфферентные связи гипоталамуса с вегетативными и соматическими ядрами ствола мозга и спинного мозга образованы полиснаптическими путями, идущими в составе ретикулярной формации.

Медиальный гипоталамус обладает двусторонними связями с латеральным, и, кроме того, он непосредственно получает сигналы от некоторых остальных отделов головного мозга. В медиальной области гипоталамуса существуют особые нейроны, воспринимающие важнейшие параметры крови и спинномозговой жидкости: то есть эти нейроны следят за состоянием внутренней среды организма. Они могут воспринимать, например, температуру крови, водноэлектролитный состав плазмы или содержание гормонов в крови. Через нервные механизмы медиальная область гипоталамуса управляет деятельностью нейрогипофиза, а через гормональные - аденогипофиза. Таким образом, эта область служит промежуточным звеном между нервной и эндокринной системой.

При электрическом раздражении почти любого отдела гипоталамуса могут возникнуть реакции со стороны сердечнососудистой системы. Эти реакции, опосредованные в первую очередь симпатической системой, а также ветвями блуждающего нерва, идущими к сердцу, свидетельствуют о важном значении гипоталамуса для регуляции гемодинамики со стороны внешних нервных центров.

Раздражение какого-либо отдела гипоталамуса может сопровождаться противоположными изменениями кровотока в разных органах (например, увеличением кровотока в скелетных мышцах и одновременным снижением в сосудах кожи). Биологическое значение подобных гемодинамических сдвигов можно понять лишь в том случае, если рассматривать их в связи с другими физиологическими реакциями, сопровождающими раздражение этих же поталомических зон. Иными словами, гемодинамические эффекты раздражения гипоталамуса входят в состав общих поведенческих или гомеостатических реакций, за которые отвечает этот центр.

За механизмы регуляции гемодинамики в целом (то есть артериального давления в большом кругу кровообращения, сердечного выброса и распределения крови), действующие по принципу следящих систем, отвечают нижние отделы ствола мозга. Эти отделы получают информацию от артериальных баро- и химорецепторов и механорецепторов предсердий и желудочков сердца и посылают сигналы к различным структурам сердечно-сосудистой системы по симпатическим и парасимпатическим эфферентным волокнам. Такая бульбарная саморегуляция гемодинамики в свою очередь управляется высшими отделами ствола мозга, и в особенности гипоталамуса. Эта регуляция осуществляется благодаря нервным связям между гипоталамусом и преганглионарными вегетативными нейронами. Высшая нервная регуляция сердечнососудистой системы со стороны гипоталамуса участвует во всех сложных вегетативных реакциях, для управления которыми простой саморегуляции недостаточно, к таким регуляциям можно отнести: терморегуляцию, регуляцию приема пищи, защитное поведение, физическую деятельность и так далее.

Приспособительные реакции сердечнососудистой системы во время работы. Механизмы приспособления гемодинамики при физической работе представляют теоретический и практический интерес. При физической нагрузке повышается сердечный выброс и одновременно возрастает кровоток в скелетных мышцах. В то же время кровоток через кожу и органы брюшной полости снижается. Эти приспособительные циркуляторные реакции возникают практически одновременно с началом работы. Они осуществляются центральной нервной системой через гипоталамус. У собаки при электрическом раздражении латеральной области гипоталамуса на уровне мамиллярных тел возникают точно такие же вегетативные реакции, как и при беге на тредбане. У животных в состоянии наркоза электрическое раздражение гипоталамуса может сопровождаться локомоторными актами и учащением дыхания. Путем небольших изменений положения раздражающего электрода можно добиться независящих друг от друга вегетативных и соматических реакций. Все эти эффекты устраняются при двусторонних поражениях соответствующих зон; у собак с такими поражениями исчезают приспособительные реакции сердечнососудистой системы к работе, и при беге на тредбане, такие животные быстро устают. Эти данные свидетельствуют о том, что в латеральной области гипоталамуса расположены группы нейронов, отвечающие за адаптацию гемодинамики к мышечной работе. В свою очередь эти отделы гипоталамуса контролируются корой головного мозга.

Гипоталамус и поведение. Электрическое раздражение маленьких участков гипоталамуса сопровождается возникновением у животных типичных поведенческих реакций, которые столь же разнообразны, как и естественные видоспецифические типы поведения конкретного животного. Важнейшими из таких реакций являются оборонительное поведение и бегство, пищевое поведение, половое поведение и терморегуляторные реакции. Все эти поведенческие комплексы обеспечивают выживание особи и вида, и поэтому их можно назвать гомеостатическими процессами в широком смысле этого слова. В состав каждого из этих комплексов входят соматорный, вегетативный и гормональный компоненты.

При локальном электрическом раздражении каудального кольца у бодрствующей кошки возникает оборонительное поведение, которое проявляется в таких типичных соматорных реакциях, как выгибание спины, шипение, расхождение пальцев, выпускание когтей, а также вегетативными реакциями - учащенным дыханием, расширением зрачков и пилоэрекцией в области спины и хвоста. Артериальное давление и кровоток в скелетных мышцах при этом возрастают, а кровоток в кишечнике снижается. Такие вегетативные реакции связаны главным образом с возбуждением адренергических симпатических нейронов. В защитном поведении участвуют не только соматорная и вегетативная реакции, но и гормональные факторы.

При раздражении каудального отдела гипоталамуса болевые раздражения вызывают лишь фрагменты оборонительного поведения. Это свидетельствует о том, что нервные механизмы оборонительного поведения находятся в задней части гипоталамуса.

Пищевое поведение, также связанное со структурами гипоталамуса, по своим реакциям почти противоположно оборонительному поведению. Пищевое поведение возникает при местном электрическом раздражении зоны, расположенной 2-3 мм дорсальнее зоны оборонительного поведения. В этом случае наблюдаются все реакции, характерные для животного в поисках пищи. Подойдя к миске, животное с искусственно вызванным пищевым поведением начинает есть, даже если оно не голодно, и при этом пережевывает несъедобные предметы. При исследовании вегетативных реакций можно обнаружить, что такое поведение сопровождается увеличенным слюноотделением, повышением моторики и кровоснабжения кишечника и снижением мышечного кровотока. Все эти типичные изменения вегетативных функций при пищевом поведении служат как бы подготовительным этапом к приему пищи. Во время пищевого поведения повышается активность парасимпатических нервов желудочно-кишечного тракта.

Принципы организации гипоталамуса. Данные систематических исследований гипоталамуса при помощи локального электрического раздражения свидетельствуют о том, что в этом центре существуют нервные структуры, управляющие самыми разнообразными поведенческими реакциями. В опытах с использованием других методов - например, разрушения или химического раздражения - это положение было подтверждено и расширено. Нейронная организация гипоталамуса, благодаря которой это небольшое образование способно управлять множеством жизненно важных поведенческих реакций и нейрогуморальных регуляторных процессов, остается загадкой. Возможно, группы нейронов гипоталамуса, отвечающие за выполнение какой-либо функции, отличаются друг от друга афферентными и эфферентными связями, медиаторами, расположением дендритов и тому подобное. Можно предположить, что в малоизученных нами нервных цепях гипоталамуса заложены многочисленные программы. Активизация этих программ под влиянием нервных сигналов от вышележащих отделов мозга (например, лимбической системы) и сигналов от рецепторов и внутренней среды организма может приводить к различным поведенческим и нейрогуморальным регуляторным реакциям.

Функциональные расстройства у людей с повреждениями гипоталамуса. У человека нарушения деятельности гипоталамуса бывают связаны главным образом с неопластическими (опухолевыми), травматическими или воспалительными поражениями. Подобные поражения могут быть весьма ограниченными, захватывая, передний, промежуточный или задний отдел гипоталамуса. У таких больных наблюдаются сложные функциональные расстройства. Характер этих расстройств определяется, кроме всего прочего, остротой (например, при травмах) или длительностью (например, при медленно растущих опухолях) процесса. При ограниченных острых поражениях могут возникать значительные функциональные нарушения, в то время как при медленно растущих опухолях эти нарушения начинают проявляться лишь при далеко зашедшем процессе. В таблице перечислены сложные функции гипоталамуса и нарушения этих функций. Расстройства восприятия, памяти и цикла сон/бодрствование частично связаны с повреждением восходящих и нисходящих путей, соединяющих гипоталамус с лимбической системой.

Передний отдел гипоталамуса и преоптическая область

Промежуточный отдел гипоталамуса

Задний отдел гипоталамуса

Функции

Регуляция цикла сон/бодрствование, терморегуляция, регуляция эндокринных функций.

Восприятие сигналов, энергетический и водный баланс, регуляция эндокринных функций.

Восприятие сигналов, поддержание сознания, терморегуляция, интеграция эндокринных функций.

Поражения:

а) Острые

Бессонница, гипертермия, несахарный диабет.

Гипертермия, несахарный диабет, эндокринные нарушения.

Сонливость, эмоциональные и вегетативные нарушения, пойкилотермия.

б) Хронические

Бессонница, сложные эндокринные расстройства (например, раннее половое созревание), эндокринные расстройства, связанные с поражением срединного возвышения, гипотермия, отсутствие чувства жажды.

Медиальный: нарушения памяти, эмоциональные расстройства, гиперфагия, ожирение, эндокринные нарушения. Латеральный: эмоциональные нарушения, потеря аппетита, истощение, отсутствие чувства жажды.

Амнезия, эмоциональные нарушения, вегетативные расстройства, сложные эндокринные нарушения (раннее половое созревание).

3.4 Структура и функции эпифиза

Эпифиз (шишковидная, или пинеальная, железа), небольшое образование, расположенное у позвоночных под кожей головы или в глубине мозга; функционирует либо в качестве воспринимающего свет органа либо как железа внутренней секреции, активность которой зависит от освещенности. У некоторых видов позвоночных обе функции совмещены. У человека это образование по форме напоминает сосновую шишку, откуда и получило свое название.

Шишковидное тело (эпифиз, пинеальная железа, верхний мозговой придаток) - это небольшое овальное железистое образование, которое относится к промежуточному мозгу и располагается в неглубокой борозде между верхними холмиками среднего мозга и над таламусом. Длина ее редко превышает 10 мм, а ширина и высота - 7 и 4.5 мм соответственно. Здесь располагаются клетки, подобные пигментным клеткам сетчатой оболочки глаза и меланоцитам кожи. Уже в наше время выяснили, что эти клетки - пинеалоциты - в светлое время суток выделяют серотонин, а в темное - эти же клетки начинают синтезировать другое производное триптофана. Снаружи шишковидное тело покрыто мягкой соединительнотканной оболочкой мозга, которая содержит множество анастомозируюших (соединяющихся между собой) кровеносных сосудов. Клеточными элементами паренхимы являются специализированные железистые клетки - пинеоциты и глиальные клетки - глиоциты. Эпифиз вырабатывает в первую очередь серотонин и мелатонин, а также норадреналин, гистамин. В эпифизе обнаружены пептидные гормоны и биогенные амины. Основной функцией эпифиза является регуляция циркадных (суточных) биологических ритмов, эндокринных функций, метаболизма (обмена веществ) и приспособление организма к меняющимся условиям освещенности.

Эпифиз развивается в эмбриогенезе из свода (эпиталамуса) задней части (диэнцефалона) переднего мозга. У низших позвоночных, например у миног, могут развиваться две аналогичных структуры. Одна, располагающаяся с правой стороны мозга, носит название пинеальной, а вторая, слева, парапинеальной железы. Пинеальная железа присутствует у всех позвоночных, за исключением крокодилов и некоторых млекопитающих, например муравьедов и броненосцев. Парапинеальная железа в виде зрелой структуры имеется лишь у отдельных групп позвоночных, таких, как миноги, ящерицы и лягушки. У птиц и млекопитающих эпифиз играет роль нейроэндокринного преобразователя, отвечающего на нервные импульсы выработкой гормонов.

Избыток света тормозит превращение серотонина в мелатонин. В темноте, напротив, усиливается синтез мелатонина. Этот процесс идет под влиянием ферментов, активность которых также зависит от освещенности. Этим объясняют повышение половой активности животных и птиц весной и летом, когда в результате увеличения продолжительности дня, секреция эпифиза подавляется. Учитывая, что эпифиз регулирует целый ряд важных реакций организма, а в связи со сменой освещенности эта регуляция циклична, можно считать его регулятором "биологических часов" в организме.

Гормоны эпифиза угнетают биоэлектрическую активность мозга и нервно-психическую деятельность, оказывая снотворный и успокаивающий эффект. У человека с деятельностью эпифиза связывают такие явления, как нарушение суточного ритма организма в связи с перелетом через несколько часовых поясов, расстройства сна и, вероятно, «зимние депрессии».

Максимальное количество мелатонина вырабатывается ночью, пик активности приходится примерно на 2 часа ночи, а уже к 9 часам утра его содержание в крови падает до минимальных значений. Экспериментально установлено, что мелатонин при приеме внутрь оказывает снотворное действие, не нарушая фазы сна, отмечен гипотензивный эффект, нормализация иммунных реакций организма и нейтрализация воздействия стресс-гормонов на ткани. Мелатонин оказался мощным естественным антиоксидантом и может использоваться для профилактики онкологических заболеваний.

Один из исследователей, Вальтер Пьерпаоли, называет эпифиз "дирижером" эндокринной системы, так как на основании своих исследований пришел к выводу о том, что активность гипофиза и гипоталамуса управляется шишковидной железой. Оказалось также, что при сахарном диабете, при депрессиях и онкологических заболеваниях снижен синтез мелатонина, либо нарушен нормальный ритм его секреции. Прием гормона при этих заболеваниях приводил к положительным результатам.

А между тем, гистохимики пытались выяснить природу и значение "мозгового песка". Песчинки по размеру бывают от 5 мкм до 2 мм, часто по форме напоминают тутовую ягоду, то есть имеют фестончатые края. Состоят из органической основы - коллоида, который считается секретом пинеалоцитов, пропитанного солями кальция и магния, преимущественно фосфатами. Методом рентгено-кристаллографического анализа было показано, что соли кальция на дифрактограммах эпифиза аналогичны кристаллам гидроксиапатита. Мозговые песчинки в поляризованном свете обнаруживают двойное лучепреломление с образованием "мальтийского" креста. Оптическая анизотропность указывает, что кристаллы солевых отложений эпифиза не являются кристаллами кубической сингонии. Благодаря наличию фосфорнокислого кальция, песчинки первично флуоресцируют в ультрафиолетовых лучах, как и капельки коллоида, голубовато-белым свечением. Подобную же, голубую флуоресценцию дают миелиновые оболочки нервных стволов. Обычно отложения солей имеют характер колец - слоев, чередующихся со слоями органического вещества. Большего о "мозговом песке" ученым выяснить пока не удалось.

Список литературы

1. Морфофункциональные основы жизнедеятельности человека. Учебное пособие/Сост. Е.В. Бессолицына. - Киров.

2. Сапин М.Р., Брыскина З.Г. Анатомия человека. - М.: Просвещение, 1995.

3. Физиология человека/Под ред. Р. Шмидта и Г. Тевса. Т. 2. - М.: Мир, 1996.

Размещено на Allbest.ru

...

Подобные документы

  • Строение промежуточного мозга. Роль печени и поджелудочной железы в пищеварении. Торможение центральной нервной системы. Анатомия и физиология вегетативной нервной системы, ее возрастные особенности. Состав крови и физико-химические свойства плазмы.

    контрольная работа [2,7 M], добавлен 13.12.2013

  • Общие функции крови: транспортная, гомеостатическая и регуляторная. Общее количество крови по отношению к массе тела у новорожденных и взрослых людей. Понятие гематокрита; физико-химические свойства крови. Белковые фракции плазмы крови и их значение.

    презентация [3,6 M], добавлен 08.01.2014

  • Функции крови: транспортная, защитная, регуляторная и модуляторная. Основные константы крови человека. Определение скорости оседания и осмотической резистентности эритроцитов. Роль составляющих плазмы. Функциональная система поддержания рН крови.

    презентация [320,3 K], добавлен 15.02.2014

  • Место крови в системе внутренней среды организма. Количество и функции крови. Гемокоагуляция: определение, факторы свёртывания, стадии. Группы крови и резус–фактор. Форменные элементы крови: эритроциты, лейкоциты, тромбоциты, их количество в норме.

    презентация [1,9 M], добавлен 13.09.2015

  • Внутренняя среда организма. Основные функции крови - жидкой ткани, состоящей из плазмы и взвешенных в ней кровяных телец. Значение белков плазмы. Форменные элементы крови. Взаимодействие веществ, приводящее к свертыванию крови. Группы крови, их описание.

    презентация [2,5 M], добавлен 19.04.2016

  • Объём крови живого организма. Плазма и взвешенные в ней форменные элементы. Основные белки плазмы. Эритроциты, тромбоциты и лейкоциты. Основной фильтр крови. Дыхательная, питательная, экскреторная, терморегулирующая, гомеостатическая функции крови.

    презентация [1019,8 K], добавлен 25.06.2015

  • Кровь. Функции крови. Компоненты крови. Свертывание крови. Группы крови. Переливание крови. Болезни крови. Анемии. Полицитемия. Аномалии тромбоцитов. Лейкопения. Лейкоз. Аномалии плазмы.

    реферат [469,2 K], добавлен 20.04.2006

  • Физико-химические свойства крови, ее форменные элементы: эритроциты, ретикулоциты, гемоглобин. Лейкоциты или белые кровяные тельца. Тромбоцитарные и плазменные факторы свертывания. Противосвертывающая система крови. Группы крови человека по системе АВ0.

    презентация [279,7 K], добавлен 05.03.2015

  • Пять отделов головного мозга в соответствии с источником эмбриогенеза: конечный, промежуточный, средний, задний и продолговатый. Изучение Хидом и Мюллером физиологических проявлений таламуса. Основные функции гипоталамуса, эпиталамуса и метаталамуса.

    контрольная работа [22,2 K], добавлен 14.02.2014

  • Функции крови: основные физико-химические константы, форменные элементы; группы, правила переливания; свертывание крови, регуляция гемостаза. Физиология дыхания: транспорт кислорода и углекислого газа кровью, влияние содержания газов на внешнее дыхание.

    методичка [3,0 M], добавлен 07.02.2013

  • Изучение клеточного состава крови: эритроцитов, лейкоцитов, тромбоцитов. Строение, физико-химические свойства, функции крови. Физиологически активные вещества, принимающие участие в свертывании крови и находящиеся в плазме. Скорость оседания эритроцитов.

    курсовая работа [146,8 K], добавлен 26.12.2013

  • Гормоны. Периферические эндокринные железы. Управляющие эндокринные железы. Анатомия и физиология эпифиза. Влияние эпифиза на различные функции организма. Биологические ритмы организма. Связь эпифиза и психики человека. Влияние эпифиза на старение.

    научная работа [286,5 K], добавлен 08.02.2007

  • Анализ внутренней структуры крови, а также ее главные элементы: плазма и клеточные элементы (эритроциты, лейкоциты, тромбоциты). Функциональные особенности каждого типа клеточных элементов крови, продолжительность их жизни и значение в организме.

    презентация [139,3 K], добавлен 20.11.2014

  • Система крови, ее состав, функции и физикохимические свойства. Функции эритроцитов, обмен железа в организме. Гемостаз – свертывание крови. Группы крови и их наследование. Правила переливания крови. Физиологические требования к кровезамещающим растворам.

    лекция [421,3 K], добавлен 23.11.2009

  • Состав плазмы крови, сравнение с составом цитоплазмы. Физиологические регуляторы эритропоэза, виды гемолиза. Функции эритроцитов и эндокринные влияния на эритропоэз. Белки в плазме крови человека. Определение электролитного состава плазмы крови.

    реферат [1,4 M], добавлен 05.06.2010

  • Исторический экскурс в теорию кровопускания, открытие групп крови. Серологический состав основных групп крови, принцип определения и таблица совместимости. Причины возникновения тяжелых осложнений при переливании несовместимой крови и резус-конфликте.

    курсовая работа [45,0 K], добавлен 24.06.2011

  • Значение онкотического давления плазмы крови для водно-солевого обмена между кровью и тканями. Общая характеристика факторов (акцелератов) свертывания крови. Первая фаза свертывания крови. Сердечно-сосудистый центр, особенности функционирования.

    контрольная работа [19,2 K], добавлен 17.01.2010

  • Кровь как система. Транспортная функция крови. Иммунная и самосохраняющая функция крови. Компенсаторные реакции при кровопотери. Система кровообращения. Геморрагический шок и принципы интенсивной терапии. Физиологические механизмы геморрагического шока.

    реферат [443,7 K], добавлен 28.06.2009

  • Анализ форменных элементов крови: эритроцитов, лейкоцитов, тромбоцитов. Гемоглобин и его функции в работе организма. Гранулоциты, моноциты и лимфоциты как составлющие лейкоцитов. Паталогии в составе крови, их влияние на функции организма человека.

    реферат [31,4 K], добавлен 06.10.2008

  • Периферическая кровь и ее элементы. Средняя продолжительность жизни тромбоцита в крови. Моноциты и макрофаги. Ключевая роль Т-лимфоцитов в клеточном иммунитете. Механизм поддержания постоянства состава крови. Органы кроветворения и кроверазрушения.

    курсовая работа [305,9 K], добавлен 16.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.