Метаболизм аминокислот и его роль в жизнедеятельности организма

Характеристика аминокислот как органических соединений карбоксильных и аминных групп. Описание путей обмена аминокислот и определение значимости метаболического процесса. Клиническая картина нарушений обмена тирозина и других аминокислот, методы лечения.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 14.12.2013
Размер файла 2,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

2

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени Н.Э. БАУМАНА

Факультет Биомедицинская техника

Кафедра Медико-технические информационные технологии

Реферат

Метаболизм аминокислот и его роль в жизнедеятельности организма

(по биохимии)

Студент:

Евдокимова М.П. Группа: БМТ2-32

Руководитель: Ершов Ю.А.

Москва 2012

Содержание

Понятие аминокислоты

Метаболизм аминокислот

Основные пути обмена аминокислот

Дезаминирование

Трансдезаминирование

Декарбоксилирование

Нарушение обмена аминокислот

Заключение

органическое соединение метаболизм аминокислота тирозин

Цель: Описать пути обмена аминокислот и определить значимость метаболического процесса.

Понятие Аминокислоты

Аминокислоты -- важнейшие, а некоторые из них жизненно важные органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

В живых организмах аминокислоты выполняют множество функций. Они являются структурными элементами пептидов и белков, а так же других природных соединений. Для построения всех белков, будь то белки из самых древних линий бактерий или из высших организмов, используется один и тот же набор из 20 различных аминокислот, ковалентно связанных друг с другом в определенной, характерной только для данного белка последовательности. Поистине замечательное свойство клеток - это их способность соединять 20 аминокислот в различных комбинациях и последовательностях, в результате чего образуются пептиды и белки, обладающие совершенно разными свойствами и биологической активностью. Из одних и тех же строительных блоков разные организмы способны вырабатывать такие разнообразные продукты, как ферменты, гормоны, белок хрусталика глаза, перья, паутина, белки молока, антибиотики, ядовитые вещества грибов и многие другие соединения, наделенные специфической активностью. Также некоторые из aминoкиcлoт являются нейромедиаторами или предшественниками нейромедиаторов, медиаторов или гормонов.

Метаболизм аминокислот

Важнейшую и незаменимую роль в жизни организмов играет обмен аминокислот. Непротеиногенные aминoкиcлoты oбpaзyютcя в качестве прoмeжyточныx продуктов при биоcинтeзе и деградации протеиногенных аминокислот или в цикле мочевины. Кроме того, для животных и человека аминокислоты - строительные блоки белковых молекул - являются главными источниками органического азота, который используется, в первую очередь, для синтеза специфических организму белков и пептидов, а из них - азотсодержащих веществ небелковой природы (пуриновые и пиримидиновые основания, порфирины, гормоны и др.).

При необходимости аминокислоты могут служить источником энергии для организма, главным образом, за счет окисления их углеродного скелета.

Основные направления метаболизма аминокислот.

Кажущееся постоянство химического состава живого организма поддерживается за счет равновесия между процессами синтеза и разрушения составляющих его компонентов, т.е. равновесия между катаболизмом и анаболизмом. В растущем организме такое равновесие смещено в сторону синтеза белков, т.е. анаболическая функция преобладает над катаболической. В организме взрослого человека в результате биосинтеза ежесуточно обновляется до 400 г белка. Причем, разные белки обновляются с различной скоростью - от нескольких минут до 10 и более суток, а такой белок, как коллаген, практически не обновляется за все время жизни организма. В целом период полураспада всех белков в организме человека составляет около 80 суток. Из них необратимо распадается примерно четвертая часть протеиногенных аминокислот (около 100 г), которая должна возобновляться за счет белков пищи, остальные аминокислоты частично синтезируются организм. При недостаточном поступлении белков с пищей организм использует белки одних тканей (печени, мышц, плазмы и др.) для направленного синтеза белков других жизненно важных органов и тканей: сердечной мышцы и т.д. Биосинтез белков осуществляется лишь при наличии в качестве исходных мономеров всех 20 природных аминокислот, причем каждой в нужном количестве. Длительное отсутствие и недостаточное поступление даже одной из 20 аминокислот приводит к необратимым изменениям в организме.

Белки и аминокислоты - это самые главные азотсодержащие соединения животных организмов - на их долю приходится более 95% биогенного азота. С обменом белков и аминокислот неразрывно связано понятие азотистого баланса (АБ), под которым понимают разницу между количеством азота, введенного в организм с пищей (Nввед) и количеством азота, выведенного из организма (Nвывед) в виде конечных продуктов азотистого обмена, преимущественно мочевины:

АБ = Nввед - Nвывед, [г·сутки-1]

При положительном азотистом балансе биосинтез белков преобладает над процессами их распада, т.е. из организма выводится меньше азота, чем поступает. Положительный азотистый баланс наблюдается в период роста организма, а также при выздоровлении после истощающих заболеваний. При отрицательном азотистом балансе распад белков преобладает над их синтезом, и азота из организма выводится больше, нежели поступает. Такое состояние возможно при старении организма, голодании и различных истощающих заболеваниях. В норме у практически здорового взрослого человека наблюдается азотистое равновесие, т.е. количество азота, введенного в организм, равно количеству выделенного. Нормы белка в питании при достижении азотистого равновесия составляют в среднем 100-120 г·сутки-1.

Всасывание свободных аминокислот, образовавшихся в результате гидролиза белков, происходит, в основном, в тонком разделе кишечника. Данный процесс представляет собой активный транспорт молекул аминокислот, требующий энергии и зависящий от концентрации ионов Na+. Обнаружено более пяти специфических транспортных систем, каждая из которых переносит наиболее близкие по химическому строению аминокислоты. Разные аминокислоты могут конкурировать друг с другом за участки связывания на встроенных в мембрану транспортных белках (см. главу 15 настоящего Раздела). Таким образом, всосавшиеся аминокислоты в кишечнике попадают через портальную систему в печень, а затем поступают в кровь.

Дальнейший катаболизм аминокислот до конечных продуктов представляет собой совокупность реакций дезаминирования, трансаминирования и декарбоксилирования. При этом каждой индивидуальной аминокислоте соответствует свой специфический метаболический путь.

Дезаминирование аминокислот

Дезаминирование - это отщепление аминогрупп от аминокислот с образованием аммиака. Именно с реакций дезаминирования чаще всего начинается катаболизм аминокислот. В живых организмах возможно четыре типа дезаминирования аминокислот.

Общим продуктом всех четырех типов дезаминирования является аммиак - довольно токсичное для клеток и тканей соединение, поэтому он подвергается обезвреживанию в организме (см. далее). В результате дезаминирования за счет «потерянных» в форме аммиака аминогрупп уменьшается суммарное количество аминокислот. Для большинства живых организмов, в том числе и человека, характерно окислительное дезаминирование аминокислот, в то время как другие типы дезаминирования встречаются только у некоторых микроорганизмов.

Окислительное дезаминирование L-аминокислот осуществляется оксидазами, присутствующими в печени и почках. Распространенным коферментом оксидазы L-аминокислот является ФМН, выполняющий роль переносчика водорода с аминокислоты на кислород. Суммарная реакция окислительного дезаминирования выглядит следующим образом:

R-CH(NH2)-COOH + ФМН + H2O >

> R-CO-COOH + ФМНН2 + NH3 + Н2О2

В ходе реакции образуется промежуточное соединение - иминокислота, которая затем гидратируется с образованием кетокислоты. Кроме кетокислоты и аммиака - как основных продуктов дезаминирования, в данной реакции образуется еще и пероксид водорода, который затем разлагается на воду и кислород при участии каталазы:

Н2О2 > Н2О + ЅО2

Окислительное дезаминирование, как самостоятельный процесс, играет незначительную роль в превращении аминогрупп аминокислот; с большой скоростью дезаминируется только глутаминовая кислота. Данную реакцию катализирует фермент глутаматдегидрогеназа, коферментом которой выступает NAD или NADH. Активность глутаматдегидрогеназы регулируется аллостерическими модификаторами, в роли ингибиторов выступают ГТФ и АТФ, а в роли активаторов - ГДФ и АДФ. Окислительное дезаминирование глутаминовой кислоты можно представить следующей схемой:

НООС-CH2-CH2-CH(NH2)-COOH + NAD >

> НООС-CH2-CН2-СО-СOOH + NH3 + (NADH + Н+)

Данная реакция обратима, но в условиях живой клетки равновесие реакции смещено в сторону образования аммиака. Другие, не окислительные типы дезаминирования характерны для cерина, цистеина, треонина и гистидина. Остальные аминокислоты подвергаются трансдезаминированию.

Трансдезаминирование. Трансдезаминирование представляет собой основной путь катаболического распада аминокислот. По названию процесса нетрудно догадаться, что он протекает в два этапа. Первый - трансаминирование, а второй - собственно окислительное дезаминирование аминокислоты. Трансаминирование катализируется ферментами аминотрансферазами, называемыми также просто трансаминазами. В качестве кофермента аминотрансферазы выступает пиридоксальфосфат (витамин В6). Суть трансаминирования состоит в переносе аминогруппы с б-aминокислоты на б-кетокислоту. Таким образом, реакция трансаминирования является межмолекулярным окислительно-восстановительным процессом, в котором участвуют атомы углерода не только взаимодействующих аминокислот, но и пиридоксальфосфата.

Декарбоксилирование аминокислот

Декарбоксилирование аминокислот представляет собой процесс отщепления карбоксильной группы от аминокислоты в форме СО2. Декарбоксилированию в условиях живого организма могут подвергаться некоторые аминокислоты и их производные. Декарбоксилирование катализируется специальными ферментами - декарбоксилазами, коферментом которых (за исключением гистидиндекарбоксилазы) служит пиридоксальфосфат. Продуктами декарбоксилирования являются амины, обладающие биологической активностью - биогенные амины. К этой группе соединений принадлежат большинство нейромедиаторов и регуляторных факторов местного действия (тканевые медиаторы, регулирующие обмен веществ). Реакцию декарбоксилирования произвольной аминокислоты можно представить в следующем виде:

Декарбоксилаза

Образование биологически активных аминов

Табл. Предшественники, химическое строение, биологическая роль биогенных аминов

Нарушения обмена аминокислот

Обмен веществ в организме - очень важный процесс. Любое отклонение от нормы может привести к ухудшению состояния здоровья человека. Различают наследственные и приобретенные нарушения обмена аминокислот. Наибольшая скорость обмена аминокислот наблюдается в нервной ткани. По этой причине в психоневрологической практике различные наследственные аминоацидопатии считаются одной из причин слабоумия.

Нарушение обмена тирозина.

Тирозин, помимо участи в синтезе белков, является предшественииком гормонов надпочечников адреналина, норадреналина, медиатора дофамина, гормонов щитовидной железы тироксины трийодтиронина, пигментов. Нарушение обмена тирозина многочисленны и называются тирозинемии.

Тирозинемия I типа.

Этиология. Болезнь возникает при недостаточности фумарилацетоацетат-гидролазы. При этом накапливается фумарилацетоацетат и его метаболиты, поражающие печень и почки.

Клиническая картина.

Острая форма составляет большинство случаев заболевания с началом в возрасте 2-7 мес. и смертью 90% больных в возрасте 1-2 года из-за недостаточности печени.

При хронической форме болезнь развивается позднее, медленнее прогрессирует. Продолжительность жизни около 10 лет. Основы лечения. Лечение малоэффективно. Используется диета со снижением количества белка, фенилаланина и тирозина, инъекции глутатиона. Необходима трансплантации печени.

Тирозинемия 2 типа. Гораздо более редкое заболевание.

Этиология. Болезнь возникает при недостаточности тирозин-аминотрансферазы.

Клиническая картина. Задержка умственного и физического развития, микроцефалия, катаракты и кератоз роговицы (псевдогерпетический кератит), гиперкератоз кожи, членовредительство, нарушение тонкой координации движений.

Основы лечения. Эффективна диета с низким содержанием тирозина, при этом поражения кожи и роговицы быстро исчезают.

Тирозинемия новорожденных.

Этиология. Тирозинемия новорожденных (тип 3)- результат недостаточности гидроксифенилпируват-гидроксилазы. Чаще наблюдается у недоношенных детей.

Клиническая картина. Сниженная активность и летаргия. Аномалия считается безвредной. Дефицит аскорбиновой кислоты усиливает клиническую картину.

Основы лечения. Диета со снижением количества белка, фенилаланина, тирозина и высокие дозы аскорбиновой кислоты.

Алкаптонурия.

Этиология. Генетическая аутосомно-рецессивная энзимопатия. В основе заболевания лежит снижение активности печеночного фермента гомогентизат-оксидазы, в результате в организме накапливается гомогентизиновая кислота.

Клиническая картина. Так гомогентизат на воздухе полимеризуется в меланиноподобное соединение, то наиболее частым и постоянным симптомом является темная моча, на пеленке и нажнем белье остаются темно-коричневые пятна. Другим образом в детском возрасте болезнь не проявляется.

С возрастом гомогентизиновая к-та накапливается в соединительно-тканных образованиях, склерах и коже, вызывает шиферно-глубокий оттенок ушного и носового хрящей, окрашивание участков одежды, потеющими участками тела (подмышки).

Одновременно гомогентизиновая к-та ингибирует лизилгидроксилазу, препятствуя синтезу коллагена, что делает хрупкими хрящевые образования. К пожилому возрасту наступает дегенеративный артроз позвоночника и крупных суставов, межпозвонковые пространства сужены.

Основы лечения. Хотя эффективные способы неизвестны, по аналогии с другими аминокислотными нарушениями рекомендуется с раннего возраста ограничить потребление фенилаланина и тирозина, что должно препятствовать развитию охроноза и суставных нарушений. Назначают большие дозы аскорбиновой к-ты для защиты активности лизилоксидазы.

Альбинизм

Этиология. Заболевание обусловлено полным или частичным дефектом синтеза фермента тирозиназы (частота 1:20000), необходимой для синтеза диоксифенилаланина в пигментных клетках.

Клиническая картина. При полном отсутствии фермента-тотальная делигментация кожи, волос, глаз, причем окраска одинакова для всех расовых групп и не меняется с возрастом. Кожа не загорает, совершенно отсутствуют невусы, пигментные пятна, развиваются фотодерматиты. Сильно выражены нистагм, светобоязнь, дневная слепота, красный зрачковый рефлекс. При частичной недостаточности отмечаются светло-желтые волосы, слабопигментированные родинки, очень светлая кожа.

Основы лечения. Рекомендуется использовать различные средства для защиты от ультрафиолетовых лучей.

Паркинсонизм.

Этиология. Причинной паркинсонизма (частота после 60 лет 1:200) является низкая активность тирозин-гидроксилазы или ДОФА-декабоксилазы в нервной ткани, при этом развивается дефицит нейромедиатора дофамина и накопление тирамина.

Клиническая картина. Наиболее распространенными симптомами являются ригидность мышц, скованность движений, тремор и самопроизвольные движения.

Основы лечения. Требуется систематическое введение лекарственных аналогов дофамина и применение ингибиторов моноаминоксидазы.

Фумарат Ацетоацетат

Фенилкетонурия

Этиология. Дефицит фенилаланингидроксилазы.Фенилаланин превращается в фенилпируват.

Клиническая картина.

§ Нарушение миелинирования нервов

§ Маса мозку ниже нормы.

§ Умственное и физическое отставание.

Диагностические критерии:

§ уровень фенилаланина в крови.

§ FeCl3 тест.

§ пробы ДНК (пренатально).

Заключение

Обмен белков и аминокислот играет важнейшую и незаменимую роль в жизни организмов. Это отточенный до мелочей механизм. Изучение обмена белков позволяет детально понять глубокий смысл, заложенный в важнейшем биологическом постулате, гласящем, что «организмы делаются белками». В этом постулате заключена та чрезвычайная биологическая значимость, которая присуща исключительно белковым соединениям.

Основная литература

1.Ершов ЮА, Зайцева НИ. Основы биохимия для иженеров. МГТУ 2010

2.Ершов ЮА..соавт. Общая химия. М. 2011.

3.Ленинджер А. Основы биохимии. М. Мир. 1985. 1055 с.

4.Николаев А. Я., Биологическая химия, М. «Медицинское информационное агентство», 2004 г.

5.Флорентьев В. Л., Биохимия. - М., 2004. - 464 с.

6. Березов Т.Т., Коровкин Б.Ф., Биологическая химия. М, Медицина,1998

7. Ершов Ю.А. и др. Общая химия. 8-е изд. М. ВШ. 2009. 560 с.

8. Ершов Ю.А. и др. Кинетика и термодинамика биохимических и физиологических процессов. М. Медицина. 1990. 208 с.

9. Кольман Я., Рем К.-Г. Наглядная биохимия. М., Мир, 2004. 269 с.

Размещено на Allbest.ru

...

Подобные документы

  • Процесс обмена белков, аминокислот и отдельных аминокислот. Биогенные амины, их роль и значение. Окисление биогенных аминов (моноаминоксидазы). Роль гистамина в развитии воспаления и аллергических реакций. Антигистаминные препараты, их задачи и функции.

    презентация [1,4 M], добавлен 13.04.2015

  • Изучение гормонов - производных аминокислот, особенностей их синтеза и механизма действия клетки. Физиологическая роль катехоламинов и их функции - мобилизации защитных сил организма в условиях стрессового воздействия. Анализ из влияния на секрецию.

    контрольная работа [20,5 K], добавлен 27.02.2010

  • Роль минеральных веществ в обеспечении нормального течения процессов жизнедеятельности организма человека. Препараты, содержащие макро- и микроэлементы. Препараты аминокислот, лекарственные препараты для парентерального питания при невозможности обычного.

    реферат [46,8 K], добавлен 19.08.2013

  • Роль аминокислот для организма человека и наследственные нарушения их обмена. Фенилкетонурия и формы заболевания. Частота гомоцистинурии и комплекс ее признаков. Гистидинемия: клинические проявлений и формы. Биохимическая диагностика лейкодистрофии.

    реферат [3,4 M], добавлен 11.05.2009

  • Особое место белкового обмена в многообразных превращениях веществ во всех живых организмах. Нарушения биосинтеза и распада белков в органах и тканях. Наследственные дефекты биосинтеза белков. Нарушения выделения и конечных этапов метаболизма аминокислот.

    реферат [123,1 K], добавлен 22.01.2010

  • Описание фенилкетонурии - наследственного заболевания обмена одной из важных аминокислот (фенилаланина), в связи с недостатком или полным отсутствием необходимого для обмена фермента. Этиология и патогенез болезни, неврологическая симптоматика, лечение.

    презентация [1005,4 K], добавлен 15.05.2015

  • Роль печени и почек в обмене белков. Нормы белков в питании. Участие аминокислот в процессах биосинтеза и катаболизма. Тканевой обмен нуклеотидов. Синтез и катаболизм ДНК и РНК. Регуляция процессов азотистого обмена. Патология азотистого обмена.

    курсовая работа [58,0 K], добавлен 06.12.2008

  • Ознакомление с понятием, сущностью и процессами метаболизма. Рассмотрение особенностей создания молекул аминокислот, углеводов, липидов и нуклеиновых кислот. Образование всех клеток и тканей, выделение энергии в процессе обмена веществ в организме.

    презентация [507,1 K], добавлен 02.06.2015

  • Классификация и клинические проявления нарушений обмена веществ. Наследственные нарушения обмена веществ. Распространенность наследственных заболеваний обмена веществ с неонатальным дебютом. Клиническая характеристика врожденных дефектов метаболизма.

    презентация [8,4 M], добавлен 03.07.2015

  • Роль клеточных органелл в энергетических процессах, нервной клетки. Обмен углеводов и особенности энергетического обеспечения мозга. Метаболизм липидов, белков и аминокислот. Роль воды в обеспечении функционирования. Церебральный энергетический обмен.

    контрольная работа [48,5 K], добавлен 19.08.2015

  • Структура и функции генов. История расшифровки механизма развития болезней с наследственным предрасположением. Понятие, сущность и причины мутаций. Характеристика хромосомных болезней и болезней нарушения обмена веществ (аминокислот, жиров и углеводов).

    реферат [26,2 K], добавлен 11.03.2010

  • Происхождение нервно-психического недоразвития, особенности наследственных болезней обмена аминокислот. Этиология и клинические формы умственной отсталости, в основе которых лежат генетические и хромосомные патологии; деменция, органические ацидемии.

    реферат [81,6 K], добавлен 08.02.2012

  • Химическая природа полипептидов, аминокислот и их производных и жирорастворимых стероидов. Значение гипоталамуса в обеспечении связи нервной и эндокринной системы. Роль щитовидной железы в жизнедеятельности организма. Состав желез смешанной секреции.

    презентация [6,0 M], добавлен 24.03.2019

  • Классификация белков - высокомолекулярных органических азотсодержащих соединений, состоящих более чем из 20 видов альфа-аминокислот. Физиологическая функция белков плазмы крови: альбумины, глобулины. Методы определения общего белка в сыворотке крови.

    реферат [25,8 K], добавлен 19.01.2011

  • Ознакомление с воздействием полиаминов на ферменты, участвующие в метаболизме нуклеиновых кислот. Противосудорожные свойства путресцина. Диагностирование почечной недостаточности, поражений мышечной ткани путем определения уровня креатинина в крови.

    презентация [579,7 K], добавлен 14.04.2013

  • Физиология водно-солевого обмена. Электролитный состав организма. Факторы, влияющие на перемещение внеклеточной воды в нем. Нарушение электролитного баланса. Клиническая картина внеклеточной дегидратации. Соотношение растворов для инфузионной терапии.

    презентация [2,1 M], добавлен 05.02.2017

  • Критерии здоровья или жизнеспособности организмов. Преемственность потомством родительских уровней метаболизма. Тайна естественного отбора и репродукции жизнеспособных организмов. Уровни азотистого метаболизма. Методы определения аминокислот мочи.

    статья [180,9 K], добавлен 16.04.2009

  • Характеристика витамина В6 (пиридоксина) - водорастворимого витамина, участвующего в синтезе аминокислот и белка. Его синтезирование химическим путем, устойчивость к действию кислорода. Источники витамина, содержание в продуктах, значение для организма.

    презентация [692,0 K], добавлен 02.03.2015

  • Обзор этиологии, диагностики и методов лечения гипотиреоза и тиреотоксикоза. Лекарственные средства, применяемые для их лечения. Синтетические аналоги йодированных производных аминокислот. Фармацевтический анализ субстанции и таблеток пропилтиоурацила.

    курсовая работа [144,1 K], добавлен 05.05.2013

  • Механизм действия аланина и карнозина на организм человека. Биологическая и фармакологическая роль пантотеновой кислоты. Характеристика нейропротективных лекарственных средств на основе аминокислот. Пантогам в лечении когнитивных расстройств у детей.

    дипломная работа [1,9 M], добавлен 22.01.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.