Анатомия человека

Строение мышц как органа, описание и формирование мышечной ткани, сосудов, нервов, сухожилий, артерий, миофибрил. Классификация мышц и их вспомогательные аппараты (фасции). Развитие и работа мышц, становление иннервационного и рецепторного аппарата.

Рубрика Медицина
Вид контрольная работа
Язык русский
Дата добавления 12.03.2014
Размер файла 32,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство здравоохранения Российской Федерации

Государственное бюджетное образовательное учреждение высшего профессионального образования

«Уральский государственный медицинский университет»

Кафедра анатомии

Контрольная работа

по теме: Анатомия человека

Исполнитель:

Арзамасцева Екатерина

Группа: ЗСД-113

Екатеринбург 2014

Содержание

1. Строение мышц как органа

2. Классификация мышц

3. Вспомогательные аппараты мышц

4. Развитие и работа мышц

5. Понятие о рычагах

Использованная литература

1. Строение мышц как органа

Скелетная мышца - это активный орган, имеющий специфическую форму, определенную конструкцию (состоит из нескольких тканей при одной ведущей - мышечной) и выполняет присущую только ему функцию. В состав мышцы входят поперечно-полосатая мышечная ткань, рыхлая соединительная ткань, плотная соединительная ткань, сосуды и нервы. Мышечная ткань формирует основную часть мышцы - ее брюшко (тело), рыхлая соединительная ткань образует мягкий скелет мышцы, а плотная - сухожильные концы мышцы. Поперечно-полосатая скелетная мышца имеет сложное пучковое строение. Группы мышечных волокон объединяются в пучки сначала 1-го, а затем 2-го, 3-го и следующих порядков. Вокруг отдельных мышечных волокон находится тонкая оболочка из тонких волокон рыхлой волокнистой соединительной ткани - эндомизий. Его ретикулярные и коллагеновые волокна переплетаются с волокнами сарколеммы, что способствует объединению усилий при сокращении. В эндомизии располагаются многочисленные капилляры и нервные окончания, иннервирующие мышечные волокна. Пучки 2-го и следующих порядков объединяются уже более плотными прослойками рыхлой волокнистой соединительной ткани - перемизием, в котором находятся кровеносные и лимфатические сосуды и нервы.

Соединительная ткань, окружающая мышцу в целом, называется эпимизием, который продолжается на сухожилие под названием перитендий. На обоих концах мышечные соединительнотканные элементы (эндомизий) продолжаются за пределы мышечных волокон и смешиваются с плотной волокнистой соединительной тканью, формирующей сухожилия. Связь мышечных волокон с сухожилием осуществляется посредством коллагеновых волокон. Окружая концы поперечнополосатых мышечных волокон, они образуют ряд спиральных или циркулярных слоев и плотно соединены с сарколеммой. На концах мышечных волокон сарколемма образует глубокие пальцеобразные выросты, между которыми и залегают коллагеновые волокна сухожилий. Все сухожилия отличаются большой сопротивляемостью растяжению. При помощи проксимального сухожилия мышца начинается от кости. Дистальным сухожилием, которое обозначают также термином «хвост», мышца прикрепляется к другой кости. Таким образом, можно различать сухожилия начала и сухожилия прикрепления мышц. мышечный сухожилие фасция

Сухожилия у различных мышц неодинаковы. Узкие длинные сухожилия у мышц конечностей. Некоторые мышцы, особенно участвующие в формировании стенок брюшной полости, имеют широкое плоское сухожилие, известное как сухожильное растяжение, или апоневроз. Есть мышцы, у которых ход мышечных пучков прерывается несколькими короткими промежуточными сухожилиями, образующими сухожильные перемычки, происходящие из соединительнотканных прослоек между миотомами соседних сомитов. Сосуды и нервы входят в мышцу с внутренней ее стороны. Артерии, вступающие в мышцу, ветвятся до капилляров, которые идут вдоль мышечных волокон, анастомозируя друг с другом. Венулы и вены лежат в перимизии рядом с артериолами и артериями. Здесь же проходят и лимфатические сосуды. Нервы, вступающие в мышцу, содержат как эфферентные (двигательные), так и афферентные (чувствительные) нервные волокна. Каждое мышечное волокно иннервируется либо отдельным двигательным аксоном, либо ветвью такого аксона. В определенных мышцах (например, мышцы глазного яблока), ответственных за тонкие движения, каждое мышечное волокно индивидуально иннервируется аксоном одного мотонейрона. Однако в большинстве мышц каждый двигательный аксон разветвляется и иннервирует много мышечных волокон. Один мотонейрон (и его аксон) вместе с иннервируемыми им мышечными волокнами образует так называемую двигательную единицу. Место, где аксон оканчивается на мышечном волокне, имеет обобщенное название - нервно-мышечное соединение. В месте контакта аксон на поверхности мышечного волокна образует двигательную или моторную бляшку. Афферентные нервные волокна образуют нервные окончания в виде специализированных структур нервно-мышечных веретен и сухожильных органов. Нервно-мышечное веретено представляет собой спиралевидные намотки вокруг одного или нескольких мышечных волокон. У более сложно устроенных нервно-мышечных веретен имеется соединительнотканная капсула. Сухожильные органы находятся в местах соединения мышц с их сухожилиями и в апоневрозах.

Основную часть мышечного волокна составляют обычно специальные органеллы - миофибриллы. Каждая миофибрилла состоит из правильно чередующихся участков - темных анизотропных дисков (А) и светлых изотропных дисков (J). В середине каждого диска А проходит срединная полоска М, или мезофрагма. Через середину диска J проходит линия Z - телофрагма. Чередование темных и светлых дисков в соседних миофибриллах, располагающихся на одном уровне, на гистологическом препарате скелетной мышцы создает впечатление поперечной исчерченности. Каждый темный диск образован толстыми миофибриллами (10 им), основу которых составляет высокомолекулярный белок миозин. Каждый светлый диск состоит из тонких нитей (5 им), состоящих из низкомолекулярного белка актина, а также низкомолекулярных белков тропомиозина и тропонина. Участок миофибриллы между двумя Z-линиями называют саркомером, который является функциональной единицей миофибриллы.

Саркомер включает в себя темный диск и примыкающие к нему с двух сторон по половине светлые диски. Оба конца толстых миофибрилл свободны, а у тонких свободен только один конец. Таким образом, тонкие миофибриллы идут от Z-пластинок и входят в промежутки между толстыми миофибриллами. При сокращении мышцы актиновые и миозиновые фибриллы скользят навстречу друг другу, при расслаблении мышцы двигаются в противоположные стороны. По количеству миофибрилл и саркоплазмы мышечные волокна подразделяются на медленные («красные»), содержащие мало миофибрилл и много саркоплазмы, и быстрые («белые»), в которых много миофибрилл и мало саркоплазмы. «Красные» мышечные волокна медленно сокращаются, но могут быть долго в рабочем состоянии. «Белые» мышечные волокна быстро сокращаются и быстро устают. Сочетание в мышцах медленных и быстрых поперечно-полосатых мышечных волокон обеспечивает быстроту их реакции (сокращения) и длительную работоспособность.

2. Классификация мышц

Мышцы человека классифицируют по форме, положению на теле, направлению волокон, выполныемой функции, по отношению к суставам и др.

В зависимости от расположения мышц, их формы, направления мышечных волокон, отношения к суставам выделяют поверхностные и глубокие, медиальные и латеральные, наружные и внутренние мышцы. Мышцы в теле человека имеют различную форму. Большинство мышц конечностей имеет веретенообразную форму. В веретенообразных мышцах пучки волокон ориентированы параллельно длинной оси мышцы. Мышцы лентовидной формы в виде пластин участвуют в образовании стенок туловища (например, косые и поперечная мышцы живота). Мышцы, пучки которых прикрепляются к продольному сухожилию с двух сторон, называются двуперистыми, а если мышечные пучки лежат с одной стороны от сухожилия - одноперистыми. Пучки многоперистых мышц (например, дельтовидная) переплетаются между собой и с нескольких сторон подходят к сухожилию.

Некоторые мышцы имеют по несколько головок. Каждая головка начинается от разных точек одной кости или от нескольких костей, головки сливаются, образуя общее брюшко и сухожилие. В зависимости от количества головок мышца называется дву-, трех-, четырехглавой. В ряде случаев мышца имеет одно брюшко, от которого отходят несколько сухожилий (хвостов), которые прикрепляются к различным костям (сгибатели и разгибатели пальцев кисти и стопы). Пучки мышц-сжимателей окружают, например, ротовое и заднепроходное отверстия.

Существуют мышцы, отражающее название по их месту положения, например: лобная, наружная и внутренняя межреберная, подколенная.

Так же имеются мышцы, которые называются по месту их прикрепления, например: гребешковая мышца; по месту начала прикрепления мышцы к костям - плечелучевая мышца; по месту начала прикрепления к трем костям - грудинно-ключично-сосцевидная мышца.

Названия мышц отражают их форму (ромбовидная, трапециевидная, квадратная), размеры (большая, малая, длинная, короткая), направление мышечных пучков (поперечная, косая), количество брюшек (двубрюшная), названия костей, от которых они берут начало и к которым прикрепляются (плечелучевая, грудино-ключично-сосцевидная). В названиях многих мышц отражена выполняемая ими функция: сгибатель, разгибатель, вращатель (кнутри, кнаружи), подниматель, отводящая от средней линии, приводящая к средней линии.

Имеются мышцы, проходящие около одного, двух или нескольких суставов. Односуставная мышца прикрепляется к смежным костям и действует на один сустав. Двух- и многосуставные мышцы чаще всего располагаются более поверхностно, имеют более длинные сухожилия, которые перекидываются через два и большее число суставов. Некоторые мышцы не перекидываются через суставы и не действуют на них. Они только одним своим концом прикрепляются к костям (мимические, мышцы языка, промежности), другим вплетаются в кожу или другие ткани.

3. Вспомогательные аппараты мышц

Фасция - соединительно-тканная оболочка в виде футляра вокруг мышцы, создающая опору для мышечного брюшка и отграничивающая мускул, чем устраняется трение между мышцами. Футляроподобное строение мышечных фасций учитывается в практике, так как останавливает распространение гноя, гематом, используется для проведения местного обезболивания.

Фасции подразделяются на:

Ш поверхностные, которые служат мягкой опорой для подкожной клетчатки и отделяют ее от глубже расположенных фасций и мышц;

Ш собственные, которые окружают отдельные мышцы и мышечные группы и часто называются по области, где располагаются: плечевая, поясничная, грудная и т.д.;

Ш собственные фасции делятся на поверхностные и глубокие пластинки, межмышечные перегородки, благодаря которым изолируются отдельные мышцы и функциональные мышечные группы;

Ш фасциальные узлы, возникающие в местах соединения нескольких фасций - они укрепляют мягкий скелет мышц, сосудов и нервов и фиксируют его к костям;

Ш утолщения фасций в виде апоневрозов, сухожильных дуг, удерживателей мышечных сухожилий служат для прикрепления мышц, прикрытия сосудисто-нервных пучков, перегруппировки длинных мускулов. Под фиброзными мостиками удерживателей образуются костно-фиброзные каналы для мышечных сухожилий.

Фасции развиваются вместе с мышцами, поэтому на их формирование сильно влияет мышечная работа. Там, где находятся большие, мощные мышцы, развивающие большое давление на фасции, они становятся плотными, подкрепляются сухожильными волокнами, например, широкая фасция бедра. Вокруг мышц, выполняющих малую нагрузку, формируются тонкие, рыхлые фасции.

Некоторые тонкие, длинные сухожилия мышц, располагающиеся над суставами: лучезапястным, пястно-фаланговыми, межфаланговыми, голеностопным имеют синовиальные влагалища - общие для нескольких сухожилий или отдельные для каждого сухожилия. Они находятся в костно-фиброзных каналах, которые направляют сухожилия, препятствуют их смещению, а сами влагалища обеспечивают легкое скольжение сухожилий при сокращении мышц.

В каждом влагалище выделяется наружный фиброзный и внутренний синовиальный слои.

Последний в виде двойной оболочки окружает сухожилие, в нем различают:

Ш париетальную часть - эпитенон, прилежащую к фиброзному слою и переходящую в висцеральную часть - эндотенон, окружающую сухожилие и срастающуюся с ним;

Ш между эпи- и эндотеноном - полость, заполненную синовиальной жидкостью;

Ш мезотенон - часть, прилежащую к костям, через нее проходят сосуды и нервы к сухожилию и его оболочкам.

В местах соприкосновения мышц с костными выступами находятся синовиальные сумки в виде фиброзно-синовиального мешочка, заполненного синовиальной жидкостью. Наружный - фиброзный слой сумки срастается с надкостницей выступа и оболочкой мышцы. Внутренний синовиальный слой ограничивает полость сумки и заполняет ее синовиальной жидкостью. В результате мышца при работе свободно скользит над костным выступом. Некоторые синовиальные сумки сообщаются с полостью прилежащего сустава.

Сесамовидные кости развиваются в толще мышечных сухожилий и служат опорой, которая направляет, изменяет угол прикрепления сухожилия к основной кости. В результате изменяется плечо биомеханического рычага и мышца с меньшей затратой силы выполняет то или иное действие. К наиболее крупным сесамовидным костям относятся надколенник в сухожилии четырехглавой мышцы бедра и гороховидная кость в толще сухожилия локтевого сгибателя запястья. Таким образом, сесамовидные кости выполняют роль своеобразных блоков для мышечных сухожилий, хотя у человека и наблюдается эволюционное уменьшение количества и массы этих костей.

Петр Францевич Лесгафт (1837-1909) - знаменитый отечественный анатом из Санкт-Петербурга -- установил общие закономерности перестройки костей под влиянием работы скелетных мышц, которые изложил в книге «Основы теоретической анатомии»:

Ш кости развиваются по всем параметрам тем лучше, чем сильнее действуют на них окружающие мышцы; при наименьших мышечных усилиях кости становятся тоньше, длиннее и слабее;

Ш формообразование кости изменяется от мышечных сокращений: там, где в местах прикрепления они сильнее, кость растет медленнее, разрастаясь в сторону меньшего сопротивления;

Ш мышечные фасции оказывают боковое давление на надкостницу, способствуя вместе с мышцами росту кости в ширину;

Ш скелетные мышцы развивают большие усилия при наличии большого физиологического поперечника и малой поверхности опоры или приложения силы, либо при относительной малом поперечнике, но большой поверхности опоры или приложения силы;

Ш фасции, апоневрозы и сухожилия оказывают сокращающимся мышцам подмогу, увеличивая их действие на опору;

Ш кости устроены таким образом, что при наибольшей легкости имеют наибольшую прочность и выполняют роль рычагов, приспособленных к ловким и быстрым движениям;

Ш соединения костей при наименьшей площади сочленений обеспечивают наибольшее разнообразие и объем движений, при этом капсулы и связки, хотя и находятся под влиянием мышц, не ограничивают размаха движений.

Мышцы, действующие на сустав в противоположных направлениях, называются антагонистами. Они располагаются с противоположных сторон костного рычага и выше суставной щели, через которую работают. Например, мышцы-сгибатели в локтевом суставе лежат выше его и спереди от плечевой кости, разгибатели - выше и сзади. Мышцы, действующие в содружественном направлении, называются синергистами.

Мышцы антагонисты и синергисты группируются вокруг суставов в зависимости от осей движения: вокруг фронтальной - сгибатели и разгибатели, вокруг сагиттальной - пронаторы и супинаторы. В сложных движениях: круговое вращение, повороты, мышечный синергизм выражен ярче, в нем проявляют себя даже мышцы-антагонисты. Благодаря совместному направлению действия они рождают новое, более сложное движение.

4. Развитие и работа мышц

Развитие мышц. Источником развития мышц тела является средний зародышевый листок - мезодерма. После сегментации мезодермы на сомиты, которых насчитывается 42-43 пары, из их дорсомедиальных отделов (миотомов) формируются закладки мышц туловища, имеющие на данном этапе развития метамерное строение.

Мышцы, развивающиеся в пределах одного миотома, называются мономерными. К ним относятся межреберные мышцы. Мышцы, развивающиеся из слияния нескольких миотомов, называются полимерными, например, прямая мышца живота. Среди соматических мышц различают аутохтонные, трункофугальные и трункопетальные мышцы. К аутохтонным относятся те мышцы, которые остаются на том же участке тела, откуда происходило их развитие. Мышцы, перемещающиеся с туловища на конечности, называются трункофугальными. Мышцы, перемещающиеся в обратном направлении, т.е. с конечностей на туловище, называются трункопетальными. В головном отделе зародыша мышцы развиваются из материала жаберных дуг - это висцеральная мускулатура головы и шеи. Скелетные мышцы развиваются из среднего зародышевого листка - мезодермы, из той его части, которая расположена на задней стороне зародыша по бокам от спинной струны и мозговой трубки. На 32й неделе эмбрионального развития средний зародышевый листок начинает делиться на участки. В каждом дифференцируется три отдела: из одного образуется кожа (дерматом), из другого - скелет (склеротом), из третьего - мышцы (миотом). Из переднего отдела миотома развиваются мышцы конечностей, груди и живота, из заднего - мышцы спины, причем вначале образуются мышцы дистальных отделов конечностей - кисти, стопы, затем мышцы предплечья и голени и, наконец, мышцы плеча и бедра. После рождения скорость роста мышц в проксимальных отделах конечностей больше, чем в дистальных.

Возрастные преобразования мышц касаются всех ее элементов: мышечных волокон, ядер, сосудов, нервов и вспомогательного аппарата.

На 6-7-й неделе на саркоплазмы у эмбриона появляются мышечные фибриллы, последующее развитие которых происходит путем расщепления. Со 2-го месяца появляются мышечные волокна, группирующиеся затем в мышечные пучки. Формирование мышечных волокон в различных мышцах скелета происходит не одновременно. Прежде всего они дифференцируются в важнейших системах жизнеобеспечения (сосания и дыхания): в мышцах языка, губ, диафрагмы и межреберных мышцах.

Тотчас при закладке мышцы в нее врастает нерв. По мере развития и перемещения мышцы растет и нерв. Например, диафрагма закладывается в шейной области, а затем спускается в грудную полость, при этом в ней сохраняется нерв из шейного сплетения, где она образовалась.

К моменту рождения все скелетные мышцы анатомически сформированы; мышечная ткань, составляющая их основу, имеет хорошо выраженную поперечную исчерченность; мышечные волокна в пучках расположены довольно рыхло; соединительнотканные прослойки тонки, эластичны.

В каждом мышечном волокне между миофибриллами много саркоплазмы.

Количество миофибрилл с возрастом увеличивается: к 1 Ѕ года оно удваивается, к 3-4 годам становится больше в 5-6 раз, а к 7 годам - в 15-20 раз. Изменяется также их толщина, что отражается и на макроскопическом строении мышц: величине, поперечнике, объеме. Увеличение мышечных пучков в толщину неодинаково у отдельных групп мышц в связи с их различной функцией. В мышцах руки толщина волокон в проксимально лежащих мышцах больше, чем в дистально расположенных. С возрастом изменяются и форма, и размеры ядер. Количество их в мышечных волокнах с возрастом уменьшается. Наибольшая концентрация ядер находится в месте перехода мышечных волокон в сухожилие в области так называемых «зон роста». Увеличение мышц в длину происходит из этих зон, продолжаясь до 23-25 лет.

Сохранение ядер в «зонах роста» указывает на возможность изменений мышц в течение всей жизни, хотя интенсивность этих процессов постепенно уменьшается. К 14-15 годам дифференцировка элементов мышц на отдельные пучки, развитие внутримышечных перегородок - мягкого скелета мышц, являющегося дополнительной опорой мышечных пучков, начинается еще до рождения и продолжается до 13-15 лет, приводя к заметной перестройке мышц. Фасции с возрастом уплотняются, становятся очень крепкими, а их эластичность снижается.

Внутримышечные сосуды всех калибров в период с 3 до 7 лет характеризуются в основном развитием их эластических элементов; с 7 до 12 лет развивается преимущественно мышечная оболочка и продолжают увеличиваться эластические структуры; с 12 до 16 лет заметно увеличивается толщина стенки.

К 16 годам строение внутримышечных сосудов идентично таковому у взрослого человека. С возрастом количество сосудов уменьшается, стенка их уплотняется, в пожилом возрасте в ней откладываются соли извести. Эти процессы наступают не одновременно как в отдельных мышцах, так и у разных людей. Двигательная активность способствует более позднему развитию процессов старения сосудов.

Становление иннервационного аппарата протекает очень сложно и весьма специфично. Образование чувствительной иннервации начинается с 3-4-го месяца внутриутробного развития.

Если рецепторный аппарат (особенно мышц с динамической функцией) к моменту рождения сформирован и в дальнейшем изменяется мало, то двигательные окончания - эффекторы (моторные бляшки) - совершенствуются в основном после рождения, причем их рост не соответствует изменениям мышц. В возрасте 7-9 лет это несоответствие особенно резкое: при усиленном росте мышечного волокна моторная бляшка почти закончила рост.

В возрасте 11-13 лет двигательные окончания в мышцах сходны с таковыми у взрослых людей. Если у взрослых к каждой мышце подходят нервы из нескольких источников, то у детей до одного года - из одного, что, естественно, обусловливает затруднения в сложных координированных движениях.

Изменение внутренней структуры мышц сопровождается изменением их внешнего строения и проявлением силовых показателей. До 7 лет мышцы растут преимущество в длину, а не в толщину, поперечник мышц увеличивается мало.

У новорожденных сухожилия развиты слабо. После 7 лет они растут более быстро, и к 12-14 годам мышечно-сухожильные соотношения становятся такими, какие характерны для взрослых.

В период полового созревания, когда происходит усиленный рост тела, длина мышц увеличивается больше, чем их толщина, что проявляется в уменьшении прироста силы мышц.

Имеются наблюдения, которые говорят о том, что рост различных мышц идет не одновременно и не с одинаковой скоростью. Более функционально нагруженные мышцы растут быстрее, чем менее нагруженные; мышцы, сокращающиеся с большим размахом, энергичнее растут в длину, а в тех отделах, где превалирует силовая нагрузка, увеличивается преимущественно поперечный размер их. Значит, на развитие мышц можно влиять их функцией.

Изменяются с возрастом и соотношения между сгибателями и разгибателями. У детей первых лет жизни примерно одинаково развиты и те и другие мышцы, за исключением мышц стопы. Постепенно на нижней конечности начинают преобладать разгибатели над сгибателями, а на верхней - наоборот.

Изменяются и весовые соотношения мышц. Мышцы у новорожденного составляют 23,3% веса тела, а у 8-летних - 27,2; в 15 лет - 32,6 и в 18 лет - 44,2%. У новорожденных мышцы головы и туловища составляют 40% веса всех мышц, мышцы верхних конечностей - 27,15, нижних конечностей - 37,9%.

Мышцы у детей прикрепляются к костям дальше от оси вращения суставов, чем у взрослых, поэтому их сокращения происходят с меньшей потерей в силе. Эластичность мышц у детей примерно в 2 раза больше, чем у взрослых, в связи с чем разрывы мышц у них - редкое явление. При сокращении мышцы способны больше укорачиваться, а при растяжении - больше удлиняться.

Что касается показателей силы мышц, то у детей 4 и 7 лет, по показателям кистевой динамометрии, она почти одинакова. Максимум нарастания силы кисти отмечен у мальчиков в возрасте 15-16 лет, а у девочек в 12 лет; наибольший прирост становой силы (силы разгибателей позвоночного столба) у мальчиков наблюдается в период 16-18 лет, а у девочек в 14-16 лет; сила дыхательных мышц увеличивается у мальчиков до 17 лет, а у девочек до 12-13 лет, максимум прироста ее у детей отмечен в возрасте 8-11 лет.

Работа мышц. Физические нагрузки при трудовых процессах, естественных движениях человека, занятиях спортом оказывают влияние на все системы организма, в том числе и на мышцы, изменяя их строение и функцию. Однако в различных видах спорта нагрузка на мышцы различна как по интенсивности, так и по объему, в ней могут преобладать статические или динамические элементы. Она может быть связана с медленными или быстрыми движениями. В связи с этим и изменения, происходящие в мышцах, будут неодинаковы.

Как известно, спортивная тренировка увеличивает силу мышц, эластичность, характер проявления силы и другие их функциональные качества. Вместе с тем иногда, несмотря на регулярные тренировочные занятия, сила мышц начинает снижаться и спортсмен не может даже повторить свой прежний результат. Поэтому очень важно знать, какие изменения происходят в мышцах под влиянием физической нагрузки, какой двигательный режим спортсмену рекомендовать; должен ли спортсмен иметь полный покой (адинамию), перерыв в тренировочном процессе, или минимальный объем движений (гиподинамию), или, наконец, проводить тренировки с постепенным уменьшением нагрузки.

Изменения в строении мышц у спортсменов можно определить методом биопсии (взятия особым способом кусочков мышц) в процессе тренировки. В нашей стране этот метод применяют мало, влияние нагрузки на мышцы изучают косвенным путем на животных, создавая экспериментальную модель. Хотя закономерности, установленные на животных, полностью на человека переносить нельзя, этим путем все же можно получить определенное представление о тех процессах, которые совершаются в мышцах под влиянием физических нагрузок.

Эксперименты на животных показали, что нагрузки преимущественно статического характера ведут к значительному увеличению объема и веса мышц. Увеличивается поверхность их прикрепления на костях, укорачивается мышечная часть и удлиняется сухожильная. Происходит перестройка в расположении мышечных волокон в сторону более перистого строения. Количество плотной соединительной ткани в мышцах между мышечными пучками увеличивается, что создает дополнительную опору. Кроме того, соединительная ткань по своим физическим качествам значительно противостоит растягиванию, уменьшая мышечное напряжение.

Усиливается трофический аппарат мышечного волокна: ядра, саркоплазма, митохондрии. Миофибриллы (сократительный аппарат) в мышечном волокне располагаются рыхло, длительное сокращение мышечных пучков затрудняет внутриорганное кровообращение, усиленно развивается капиллярная сеть, она становится узкопетлистой, с неодинаковым просветом.

При нагрузках преимущественно динамического характера вес и объем мышц также увеличиваются, но в меньшей степени. Происходит удлинение мышечной части и укорочение сухожильной. Мышечные волокна располагаются более параллельно, по типу веретенообразных. Количество миофибрилл увеличивается, а саркоплазмы становится меньше.

Чередование сокращений и расслаблений мышцы не нарушает кровообращение в ней, количество капилляров увеличивается, ход их остается более прямолинейным.

Количество нервных волокон в мышцах, выполняющих преимущественно динамическую функцию, в 4-5 раз больше, чем в мышцах, выполняющих преимущественно статическую функцию. Двигательные бляшки вытягиваются вдоль волокна, контакт их с мышцей увеличивается, что обеспечивает лучшее поступление нервных импульсов в мышцу.

При пониженной нагрузке мышцы становятся дряблыми, уменьшаются в объеме, капилляры их суживаются (некоторые даже испытывают обратное развитие), в результате чего мышечные волокна истончаются, двигательные бляшки становятся меньших размеров. Длительная гиподинамия приводит к значительному снижению силы мышц.

При умеренных нагрузках мышцы увеличиваются в объеме, в них улучшается кровоснабжение, открываются резервные капилляры. По наблюдениям П.З.Гудзя, под влиянием систематической тренировки происходит рабочая гипертрофия мышц, которая является результатом утолщения мышечных волокон (гипертрофии), а также увеличения их количества (гиперплазии). Утолщение мышечных волокон сопровождается увеличением в них ядер, миофибрилл. Увеличение количества мышечных волокон происходит тремя путями: посредством расщепления гипертрофированных волокон на два-три и более тонких вырастания новых мышечных волокон из мышечных почек, а также формирования мышечных волокон из клеток сателлитов, которые превращаются в миобласты, а затем в мышечные трубочки.

Расщеплению мышечных волокон предшествует перестройка их моторной иннервации, в результате чего на гипертрофированных волокнах формируются одно-два дополнительных моторных нервных окончания. Благодаря этому после расщепления каждое новое мышечное волокно имеет собственную моторную иннервацию. Кровоснабжение новых волокон осуществляется новообразующимися капиллярами, которые проникают в щели продольного деления. При явлениях хронического переутомления одновременно с возникновением новых мышечных волокон происходит распад и гибель уже имеющихся.

Важное практическое значение при перетренированности имеет двигательный режим. П.З. Гудзь установил, что гиподинамия действует отрицательно на мышцы. При постепенном же уменьшении нагрузок нежелательных явлений в мышцах не возникает. Широкое применение метода динамометрии позволило установить силу отдельных групп мышц у спортсменов и составить как бы топографическую карту.

Так, в показателях силы мышц верхних конечностей (мышц-сгибателей и разгибателей предплечья, разгибателей плеча) явное преимущество имеют спортсмены, специализирующиеся в хоккее и ручном мяче, по сравнению с лыжниками-гонщиками и велосипедистами. В силе мышц-сгибателей плеча заметно превосходство лыжников над гандболистами, хоккеистами и велосипедистами. Больших различий в силе мышц верхних конечностей между хоккеистами и гандболистами не наблюдается. Довольно четкие различия отмечаются в силе мышц-разгибателей плеча, причем лучший показатель у хоккеистов (73 кг), несколько хуже у гандболистов (69 кг), лыжников (60 кг) и велосипедистов (57 кг). У не занимающихся спортом этот показатель составляет всего 48 кг.

Показатели силы мышц нижних конечностей также различны у занимающихся разными видами спорта. Величина силы разгибателей голени больше у гандболистов (77 кг) и хоккеистов (71 кг), меньше у лыжников-гонщиков (64 кг), еще меньше у велосипедистов (177 кг), тогда как у гандболистов, лыжни ков и велосипедистов существенных различий в силе этой группы мышц нет (139-142 кг).

Особенно интересны различия в силе мышц-сгибателей стопы и разгибателей туловища, способствующих в первом случае отталкиванию, а во втором - удержанию позы. У хоккеистов показатели силы мышц-сгибателей стопы составляют 187 кг, у велосипедистов - 176 кг, у гандболистов - 146кг. Сила мышц-разгибателей туловища у гандболистов равна 184 кг, у хоккеистов - 177 кг, а у велосипедистов - 149 кг.

В момент нанесения удара в боксе особая нагрузка падает на мышцы-сгибатели кисти и пальцев, активное напряжение которых обеспечивает жесткость звена. Во время боя большую нагрузку в области туловища несут мышцы-разгибатели позвоночного столба, при активном участии которых осуществляется нанесение различных ударов. В области нижних конечностей наиболее сильного развития голени у боксеров достигают сгибатели и разгибатели бедра, разгибатели голени и сгибатели стопы. В значительно меньшей степени развиты мышцы-разгибатели предплечья и сгибатели плеча, сгибатели голени и разгибатели стопы. При этом при переходе от первой весовой группы к шестой увеличение силы наиболее сильных групп мышц происходит в большей степени, чем увеличение относительно «слабых», менее участвующих в движениях боксера, мышц.

Все эти особенности связаны с неодинаковыми биомеханическими условиями в работе двигательного аппарата и требованиями, предъявляемыми к нему в различных видах спорта. При тренировке начинающих спортсменов необходимо обращать особое внимание на развитие силы «ведущих» групп мышц.

5. Понятие о рычагах

Работу опорно-двигательного аппарата рассматривают как систему рычагов. Рычагом называется всякое твердое тело, способное выполнять вращательные движения вокруг оси, на плечо которого действуют две противоположные силы: двигательная сила (мышечного сокращения) и сила сопротивления. В зависимости от величины двигательной силы и силы сопротивления возможно равновесие или движение рычага. В зависимости от размещения мышечного сокращения и силы сопротивления относительно оси вращения различают рычаги первого, второго и третьего рода. Рычаг первого рода, или рычаг равновесия является двуплечевым. В нем две силы расположены на концах рычага и направлены в одну сторону. Примером рычага равновесия является атланто-затылочное соединение и тазобедренный сустав. Рычаг второго рода, или рычаг силы является одноплечевым. В нем приложенная сила имеет противоположные направления. Двигательная сила приложена на длинное плечо рычага, а сила сопротивления - на короткое плечо. Примером рычага силы является голеностопный сустав, где одна сила действует вверх, а другая - вниз. Давление, которое возникает в оси вращения рычага, соответствует разнице действующих сил. Рычаг третьего рода, или рычаг скорости является одноплечевым. Рычаг скорости отличается от рычага силы тем, что сила мышечной тяги, приложенная близко возле точки сопротивления, образует меньшее плечо по сравнению со вторым плечом, на конце которого действует сила тяжести. Примером рычага скорости может служить локтевой сустав. При выполнении сгибания в локтевом суставе длинное плечо силы - предплечья осуществляет больший объем движений, чем короткое плечо силы, которое идет от лучевой бугристости до локтевого сустава. Таким образом, при действии на короткое плечо мышца выигрывает в скорости и расстояния, но проигрывает в силе. Пара сил. Для осуществления вращательных движений вокруг сустава необходима пара сил, то есть совокупность двух равных параллельных сил, направленных в противоположные стороны. Кратчайшее расстояние между линиями действия сил называется плечом пары. Таким кратчайшим расстоянием является перпендикуляр, опущенный из точки приложения одной силы на направление другого. Примером пары сил может служить сгибание предплечья в локтевом суставе двуглавой мышцей. Одной силой является сила мышцы, второй силой является сопротивление сустава со стороны плечевой кости, направленной в противоположную сторону.

Параллелограмм сил. Располагаясь под углом друг к другу, мышцы тянут кость в двух разных направлениях, равнодействующая этих сил выражается диагональю параллелограмма, построенного на этих силах. Например, направление тяги каждого из таких мышц (которые наиболее крупные), приводящих плечо (большая грудная мышца и широчайшая мышца спины), не совпадают с направлением движения при приведении плеча. Кроме того, не существует направления силы тяги, которое полностью совпадало бы с направлением движения при приведении плеча, когда это движение осуществляется во фронтальной плоскости. Таким образом, две мышцы, образуя между собой параллелограмм сил, заменяют отсутствующую мышцу, которая необходима для выполнения этого движения. Правило параллелограммы сил относится не только к двум мышцам, но и в нескольких других, которые тянут кость в разных направлениях.

Использованная литература

1. Анатомия человека и динамическая морфология. Учебное пособие /под редакцией Я.Я. Мейнгота. Красноярск, 2008

2. Егоров И.В. Клиническая анатомия человека. Ростов-на-Дону. Феникс, 1997

3. Иваницкий М.Ф. Анатомия человека. Москва. Физкультура и спорт, 1967

4. Обреимова Н.И., Петрухин А.С. Основы анатомии, физиологии и гигиены детей и подростков. Москва. Академия

5. Сапин М.Р., Брыксина З.Г. Анатомия и физиология детей и подростков. Москва. Академия, 2002

6. Сапин М.Р., Брыксина З.Г. Анатомия человека. Москва. Просвещение, 1995

7. Сапин М.Р., Сивоглазов В.И. Анатомия и физиология человека. Учебное пособие. Москва, Академия, 1999

Размещено на Allbest.ru

...

Подобные документы

  • Особенности строения, расположение мышц туловища, головы и шеи. Структура мышц и фасции нижних и верхних конечностей, их функции, иннервация и кровоснабжение. Крепление мышц и связок на костях, сухожилия. Развитие и возрастные особенности мышц.

    учебное пособие [29,8 M], добавлен 09.01.2012

  • Функциональная анатомия мышц верхних конечностей: группы мышц плечевого пояса, предплечья, кисти человека. Функциональная анатомия мышц нижних конечностей: внутренняя и нижняя, передняя и медиальная группа мышц таза мужчины и женщины, голени, стопы.

    контрольная работа [4,7 M], добавлен 25.02.2012

  • Причины, клинические признаки, лечение и профилактик разрыва мышц. Травматический, гнойный и ревматический миозиты. Миопатоз - заболевание мышц невоспалительного характера. Причины и патогенез атрофии мышц. Тендовагинит - воспаление сухожильных влагалищ.

    реферат [33,8 K], добавлен 21.12.2011

  • Характеристика скелетной мышцы животного, которая представляет собой сложное образование, способное выполнять роль активного органа аппарата движения. Химический состав мышц. Условия, улучшающие работу мышц и вспомогательные приспособления для их работы.

    реферат [755,5 K], добавлен 22.06.2011

  • Масса скелетной мускулатуры у взрослого человека. Активная часть опорно-двигательного аппарата. Поперечно-полосатые мышечные волокна. Строение скелетных мышц, основные группы и гладкие мышцы и их работа. Возрастные особенности мышечной системы.

    контрольная работа [392,1 K], добавлен 19.02.2009

  • Вида мышц человека. Физические и физиологические свойства скелетных мышц. Амплитуда тетанического сокращения. Уровень кровяного давления и кровоснабжения органов. Вегетативная нервная система и ее медиаторы. Возбуждение гладкомышечных клеток тела.

    реферат [20,3 K], добавлен 10.03.2013

  • Классификация мышц по степени поперечной исчерченности, их типы и функциональные особенности. Формы мышечных волокон. Общие и наиболее важные функции мышечной системы. Структура миофибриллы. Последовательность процессов при сокращении, их суммация.

    презентация [3,4 M], добавлен 05.01.2014

  • Специфическое строение мимических мышц лица, их многочисленные комбинации сокращения как условие богатейшего разнообразия мимики лица человека. Описание и функции мышц, схема их расположения. Особенности строения и работы глубоколежащих мимических мыщц.

    реферат [1008,8 K], добавлен 13.11.2009

  • Общая характеристика строения позвоночного столба, позвонков и их соединений. Особенности движений позвоночного столба. Сущность и значение мышц и их производящих. Специфика мышц спины, живота, брюшного пресса и мышц, приводящих в движение голову.

    реферат [1,3 M], добавлен 14.02.2011

  • Классификация и типы поперечнополосатых мышц, их роль и значение в человеческом организме, особенности строения и химического состава, содержание органических веществ в волокнах. Анаболические стероиды и их воздействие на белки данной группы мышц.

    презентация [847,3 K], добавлен 04.11.2016

  • Изучение значения эпизиотомии как метода профилактики послеродовой тазовой дисплазии мышц промежности и дисфункции мышц тазового дна. Профилактические мероприятия в родах и послеродовой восстановительной реабилитации функции мышц тазового дна у женщин.

    статья [137,5 K], добавлен 05.03.2013

  • Опорно-двигательная система цитоплазмы. Строение и химический состав мышечной ткани. Функциональная биохимия мышц. Биоэнергетические процессы при мышечной деятельности. Биохимия физических упражнений. Биохимические изменения в мышцах при патологии.

    учебное пособие [34,2 K], добавлен 19.07.2009

  • Строение глаза и мышечного аппарата. Способность глаза к аккомодации. Упражнения для коррекции и релаксация механизма зрения. Тренировочные упражнения для внутриглазных и окологлазных мышц. Тренажеры для тренировок глазных мышц в оздоровительных целях.

    реферат [293,9 K], добавлен 05.05.2009

  • Клинико-физиологическое обоснование лечебного применения и механизмы действия физических упражнений. Стимуляция центральной регуляции сосудистого тонуса при мышечной нагрузке. Профилактика гипотрофии мышц брюшного пресса и тазового дна, тренировка мышц.

    контрольная работа [557,8 K], добавлен 20.10.2010

  • Описание мышц спины, имеющих отношение к верхним конечностям. Краткая характеристика действия трапециевидной, широчайшей и большой ромбовидной мышцы. Причины поражения иннервации мышц. Особенности тестирования и релаксации мышцы, поднимающей лопатку.

    реферат [2,9 M], добавлен 10.04.2014

  • Биоуправляемая стимуляция мышц - использования электрических сигналов для управления движением. Выбор вида и параметров стимуляции базируется на физиологических, функциональных и технических показателях. Анализ параметров для выявления лучшего варианта.

    реферат [1,1 M], добавлен 07.01.2009

  • История болезни с диагнозом - насильственный гиперкинез мышц лица и шеи. Обследование черепных нервов больного. Сухожильные и надкостничные рефлексы, координация движения. План дополнительных методов обследования больного, топический диагноз и лечение.

    история болезни [18,2 K], добавлен 12.03.2009

  • Системные заболевания соединительной ткани. Этиология и патогенез ревматоидного артрита, его клинические проявления, диагностические критерии. Характерные поражения внутренних органов. Признаки поражения сухожилий и изменения мышц, коленных суставов.

    презентация [75,0 K], добавлен 26.05.2015

  • Состояние проблемы развития силы мышц у детей 5–6 лет с церебральным параличом и пути ее исследования. Организация и особенности методики развития занятий с детьми дошкольного возраста с церебральным параличом при развитии и коррекции силы мышц.

    дипломная работа [152,1 K], добавлен 27.09.2011

  • Непрерывные соединения костей, их характеристика. Суставные поверхности костей. Биомеханика суставов. Анатомо-физиологическая классификация суставов. Типы мышечной ткани. Строение, формы и вспомогательный аппарат мышц, их функциональная характеристика.

    презентация [822,2 K], добавлен 27.08.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.