Биофармацевтические факторы, влияющие на качество мазей
Сведения о биофармации и ее значении для технологии лекарств. Классификация мазей как дисперсных систем. Приготовление мазей в аптеках и на фармацевтических предприятиях. Стандартизация мазей, их фасовка и упаковка. Классификация суппозиторных основ.
Рубрика | Медицина |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 29.04.2014 |
Размер файла | 338,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство науки и образования Российской Федерации
Новгородский государственный университет имени Ярослава Мудрого
Институт медицинского образования
Фармацевтический факультет
КУРСОВАЯ РАБОТА
По дисциплине "Фармацевтическая (аптечная) технология"
По специальности 060108 "Фармация"
Биофармацевтические факторы, влияющие на качество мазей
Содержание
- 1. Введение
- 2. Литературный обзор
- 2.1 Общие понятия
- 2.2 Общие сведения о биофармации и ее значении для технологии лекарств
- 2.3 Классификация мазей как дисперсных систем
- 2.4 Мазевые основы
- 2.4.1 Липофильные основы
- 2.4.2 Гидрофильные основы
- 2.4.3 Гидрофильно-липофильные основы
- 2.5 Факторы, влияющие на фармакологическую активность мазей
- 2.5.1 Влияние физико-химического состояния лекарственных веществ
- 2.5.2 Влияние природы носителя лекарственных препаратов в мазях
- 2.5.3 Влияние способа приготовления мази
- 2.6 Приготовление мазей в аптеках
- 2.7 Приготовление мазей на фармацевтических предприятиях
- 2.9 Стандартизация мазей
- 2.9 Фасовка и упаковка мазей
- 4. Хранение мазей
- 4. Классификация суппозиторных основ
- 4.1 Липофильные основы
- 4.2 Гидрофильные основы
- 4.3 Дифильные основы
- 5. Свойства лекарственных веществ и основы
- Заключение
- Приложение
1. Введение
Технология лекарственных форм зародилась на заре человеческой культуры в борьбе человека с окружающей природой, еще задолго до возникновения письменности. И.В. Павлов пишет: "Их (врачей) деятельность - ровесница первого человека. Было бы несправедливо считать историю медицины с письменного ее периода".
Очевидно, что историю данной дисциплины следует мерить такими же мерами времени: с изысканием того или иного лекарственного средства неизбежно возникал вопрос: как, в каком виде, следует его применять? Способы приготовления лекарств в прошлом часто окутывались дымкой тайны, а порою и мистикой.
Одним из основателей научной технологии следует считать И.А. Обергарда - горячего поборника этого важного участка фармации, написавшего первый учебник по технологии лекарственных форм в 1929 г.
Технология лекарственных форм и галеновых препаратов основывается на материалах научных исследований и практическом опыте, имеющихся в области аптечного и заводского производства лекарств, и данных биологических, химических, медицинских, технических и специальных фармацевтических дисциплин.
В задачу технологии лекарственных форм входит изучение и дальнейшая разработка новых научно-обоснованных и технически совершенных методов изготовления лекарственных форм, а также создание новых рациональных лекарственных форм.
Изготовление лекарств определяется физико-химическими свойствами составляющих их веществ и лечебным назначением лекарства. Форма лекарства и способ его изготовления имеют не только техническое значение, но играют существенную роль в лечебном действии лекарства.
Способ изготовления лекарства может существенно влиять на характер действия входящих в его состав лекарственных веществ, вызывая изменение их физико-химических свойств, растворимости, всасывания в организме, скорости выведения из организма и т.д.
В связи с этим одной из основных задач современной технологии лекарственных форм как науки является установление закономерных связей между способом изготовления лекарства и физико-химической природой составляющих его веществ, с одной стороны, и лечебным назначением лекарства - с другой.
Цель работы - изучение биофармацевтических факторов, влияющих на качество мягких лекарственных форм (мазей).
мазь аптека биофармация суппозиторный
2. Литературный обзор
2.1 Общие понятия
Дерматологические мягкие лекарственные формы.
Мази представляют собой лекарственные формы для наружного применения, имеющие мягкую консистенцию. При подогревании или в результате втирания они размягчаются и приобретают текучесть.
Мази - одна из наиболее старых лекарственных форм. Они находят применение в различных областях медицины. Наиболее широко их применяют в глазной, кожной и хирургической практике.
Мази наносят на кожу, раны или слизистые оболочки путем намазывания, втирания или с помощью повязок. Иногда в полости тела вводят марлевые тампоны, пропитанные мазью. [7]
В зависимости от места назначения различают:
собственно мази, или мази дерматологические наносимые на поверхность кожи;
мази для носа;
глазные мази;
вагинальные мази;
уретральные мази;
ректальные мази.
В зависимости от места и целей применения, а также других факторов, мази носят специфические названия, например:
Кремы - мягкие мази, употребляемые для косметических целей и часто содержащие воду;
Помады - косметические мази, применяемые для смазывания волос, губ и т.п.;
Пасты - суспензионные мази, содержащие порошкообразные лекарственные вещества в количестве свыше 25%. Они характеризуются более плотной и густой по сравнению с обычными суспензионными мазями консистенцией, приближающейся к консистенции теста.
При температуре человеческого тела пасты лишь размягчаются, не плавясь, и длительное время находиться на коже. Применяются пасты при лечении различных кожных заболеваний, зубоврачебной практике. В зависимости от назначения пасты подразделяют на дерматологические, зубоврачебные и зубные. Среди дерматологических паст различают также пасты лечебные и защитные. [1]
Пластырь - лекарственная форма в виде пластичной массы, обладающая способностью размягчаться при температуре тела и прилипать к коже, или в виде той же массы на плоском носителе, предназначенная для наружного применения.
Пластыри оказывают действие на кожу, подкожные ткани и в ряде случаев общее воздействие на организм. Пластыри могут быть в виде пластичной массы на подложке и без неё или на липкой ленте прокладки с лекарственными веществами. В состав пластырной массы в зависимости от назначения пластыря могут входить разрешенные к медицинскому применению натуральный или синтетический каучуки, их смеси, а также другие полимеры, жироподобные вещества, природные масла, наполнители, антиоксиданты и лекарственные вещества. [11]
Ректальные мягкие лекарственные формы.
К ректальным ЛФ относятся суппозитории (свечи), мази, капсулы, ректиоли (микроклизмы одноразового применения), растворы. Наиболее распространенной ЛФ являются суппозитории (свечи).
Суппозитории (Suppositoria) представляют собой твердую при комнатной температуре и расплавляющуюся или растворяющуюся при температуре тела дозированную лекарственную форму.
2.2 Общие сведения о биофармации и ее значении для технологии лекарств
Биофармация является теоретической основой технологии лекарств. Сам термин "биофармация" появился впервые в научной формации США в начале 60-годов ХХ столетия и вскоре получил международное признание.
Этим коротким словом удачно и достаточно полно определен комплекс зависимостей, связывающий между собой лекарственное средство и лечебный (профилактический) эффект приготовленного лекарства.
Необходимый лечебный эффект достигается сложным путем, который должен пройти любое лекарственное вещество в организме. Первой стадией является путь введения лекарства - пероральный, ректальный, нанесение на кожу или слизистую оболочку, инъекционный и т.д. На этой стадии лекарственное должно высвободиться из формы, в которую оно облечено (таблетки, суппозитории, мази, инъекции и др.) и продифундировать (пройти путь) до назначенного места абсорбции (всасывания). На второй стадии лекарственное вещество, прошедшее в биологическую жидкость, всасывается, подчиняется законам диффузии. На кинетику диффузии оказывают влияние как фармацевтические, так и физиологические растворы. К числу первых нужно отнести влияние сопровождающих веществ, например поверхностно-активных, повышающих кинетику диффузии, а так же влияние технологических факторов, например механической прочности таблеток на скорость растворения веществ, в них находящихся. Кинетика диффузии одновременно зависит от свойств и состояния клеточных мембран, ферментной активности клетки, ее гидратированности и др.
Важное значение для всасывания имеют несомненно такие физиологические факторы, как возраст, пол и состояние организма. Физиологическим факторам принадлежит основная роль на третьем этапе всасывания, когда лекарственное вещество или его метаболиты распределяются в организме - в кровяном русле или тканях.
На заключительном этапе движения лекарственного вещества в организме доминирующими являются биохимические факторы, обуславливающие биофармацию лекарственных веществ и их метаболитов и элиминацию (выведение) конечных веществ из организма через почки, желудочно-кишечный тракт, легкие, половые железы.
Анализируя схему, нетрудно представить, что количественная сторона процесса абсорбции лекарственных веществ лимитируется прежде всего эффективностью (кинетикой) их высвобождения на начальной стадии абсорбции. Эффективность высвобождения лекарственных веществ находится в прямой зависимости от фармацевтических факторов и их последовательного использования для продвижения действующего вещества по схеме:
1) выбор химического состояния;
2) выбор физического состояния;
3) влияние вспомогательных веществ;
4) влияние одновременно принятых медикаментов;
5) выбор лекарственной формы;
6) выбор пути введения;
7) установление точности дозировки;
8) влияние фармакокинетических факторов;
9) определение роли физиологических факторов, свойственных отдельным лицам.
Изучение влияния указанного комплекса факторов, способствующих транспорту лекарственных веществ в организме и проявлению их лечебной активности, является основным содержанием биофармации. Однако изучение биофармацевтических факторов неразрывно связано с воздействием на продвижение лекарственных веществ в организме физиологических и биохимических факторов, которые изучаются другой близкой областью научных знаний - фармакокинетикой. Таким образом, полное представление о взаимосвязях между лекарственным веществом - лекарством и лечебным эффектом дает биофармация в сочетании с фармакокинетикой. Значение фармакокинетики поможет технологу в оптимальном варианте применить значение биофармации для создания эффективного лекарства.
Исследование последних трех десятилетий, проведенные отечественными и зарубежными учеными с привлечением современных физико-химических, фармакологических и биохимических методов, позволили достаточно глубоко и достоверно разобраться в тех сложных взаимоотношениях, которые сложились между лекарством как особой физико-химической системой, и макроорганизмом как биологической системой тех факторов, которые обусловливают эти взаимоотношения.
Биофармацевтическим вопросам в нашей стране уделяется большое внимание. В каждом научно-исследовательском институте, где изыскиваются новые лекарственные средства, имеются специальные лаборатории технологии лекарственных форм, в задачу которых входит разработка для нового лекарственного препарата рациональной формы его применения. Применение ни одного нового препарата не разрешается, если для него не предложена разумная лекарственная форма, если не решены вопросы по композиции основообразующих и других вспомогательных веществ, если не найдены наиболее совершенные методы производства лекарства.
2.3 Значение физико-химических свойств и физического состояния лекарственных веществ
Первоначальной лечебной или профилактической активности любого лекарственного вещества является его химическое строение. Однако на лечебную активность лекарственного оказывают существенное влияние и его вторичные свойства, вызванные направленным технологическим вмешательством при приготовлении из него лекарства (изменение степени дисперсности, форма частичек растворимость и др.).
Полиморфизм. Первичные свойства самой лекарственной субстанции далеко не всегда одинаковы и постоянны. Это относится прежде всего к органическим веществам, которые могут существовать в двух и более кристаллических модификациях. Такое явление, называемое полиморфизмом лекарственных препаратов, особенно распространено среди салицилатов, барбитуратов, сульфамидов, гормональных препаратов. Например, ацетилсалициловая кислота встречается в шести кристаллических формах, кортизон ацетат - в пяти и т.д. Получение той или иной кристаллической модификации обуславливается комплексом условий, при которых протекает синтез (или выделение из природного сырья), и в большей степени - от условий, в которых протекает кристаллизация субстанции (температурный фактор, природа растворителя, давление и т.д.)
Полиморфные модификации одного и того же препарата обладают различной растворимостью, температурой плавления, стойкостью к окислению и другим деструктивным процессам и т.д., а следовательно, неодинаковыми поверхностными свойствами, от которых зависит как скорость абсорбции лекарственных веществ, так и их стабильность в лекарственных формах.
Менее стабильные кристаллические модификации обычно более растворимы в биологических жидкостях и, следовательно, лучше всасываются. Например одна из модификаций (метастабильная) растворяется в концентрации 1200 мг/л, а другая (стабильная) - только 60 мг/л. Полиморфные превращения лекарственных веществ возможны не только при их получении очистке и сушке, но и при приготовлении лекарственных форм, а так же в процессе хранения последних. В последнем случае полиморфные превращения зависят от условий и сроков хранения, а так же от вида применяемых при изготовлении вспомогательных вещест.
Химическое состояние. Одно и то же вещество может быть использовано в качестве лекарственного средства в разных химических состояниях. В простейших случаях это может касаться солеобразования того или иного активного вещества. Например, алкалоид хинин из основания может быть переведен в разные соли: сульфат, хлорид, бромид. Его растворимость будет равна соответственно 1: 800, 1: 34, 1: 16. При сохранении основной функции хинина эти его соли как обладающие разной растворимостью будут иметь разную кинетику всасывания.
Еще более разителен следующий пример. При замене иона водорода в аскорбиновой кислоте на ион натрия препарат при сохранении основной функции витамина С приобретает новые, не характерные для аскорбиновой кислоты свойства - способность изменять электролитный баланс организма в большей степени, чем аскорбиновая кислота, угнетать функцию инсулярного аппарата у больных сахарным диабетом.
При переходе через липоидный барьер (стенка желудка, кишечника) большую роль играет степень ионизации. Препараты могут иметь кислый или щелочной характер. В зависимости от рН они могут быть в ионизированной или в неионизированной форме. Концентрация водородных ионов влияет так же на растворимость, коэффициент распределения лекарственных веществ, а так же на мембранный потенциал и поверхностную активность.
Дисперсность. Дисперсность частиц лекарственного вещества имеет не только технологическое значение, существенно влияя на сыпучесть порошкообразных материалов, насыпную массу, однородность смещения, точность дозирования и т.д. Особенно важным является то, что от размера частиц в большей степени зависят скорость и полнота высасывания лекарственного вещества при любых способах его назначения, исключая, конечно, внутрисосудистый. Таким образом, столь тривиальная технологическая операция, как измельчение, имеет непосредственное отношение к фармакотерапевтическому эффекту лекарств.
Например, установлено, что при назначении сульфадимезина в виде порошка обычной степени измельчения и сверхтонкого измельчения (микронизированного) в крови людей максимальная концентрация сульфаниламида достигается на 2 ч раньше в случае использования микронизированного препарата. При этом пиковые (максимальные) концентрации препарата оказываются на 40% выше, а общее количество всасывающегося сульфадимезина на 20% больше, чем при назначении порошка препарата обычной степени измельчения.
Солюбилизация. Многие вновь вводимые в лекарственный каталог вещества обладают плохой растворимостью в воде. Повысить их растворимость, а следовательно, ускорить резорбцию можно, использовав эффект солюбилизации. Солюбилизация является важным свойством растворов поверхностно-активных веществ, которое связано с их мицелярной структурой. В присутствии достаточного количества поверхностно-активных веществ плохо растворимые и даже практически не растворимые в воде органические лекарственные вещества приобретают способность коллоидно растворяться, или солюбилизирваться.
2.4 Значение лекарственной формы
Лекарственное лечение неразрывно связано с вопросом выбора рациональной формы, в которой лекарственное вещество или комплекс веществ должны дать лечебный (или профилактический) эффект. Очевидно, что одновременно с расширением и изменением каталога лекарственных веществ и совершенствованием методов лечения расширялась номенклатура лекарственных форм и совершенствовалась их технология.
Очевидно, что чем большими преимуществами обладает та или иная лекарственная форма, тем большую ценность она представляет как структурная единица фармакотерапии и как промышленная единица. Лекарственная форма - это материальная форма проявления диалектического единства действующих и вспомогательных веществ и соответствующих технологических операций. Биофармация, обосновав научную трактовку лекарственной формы, требует тщательного исследования соответствия указанных компонентов (действующие и вспомогательные вещества, методы приготовления) в лекарственной форме для обеспечения оптимального действия препарата, иными словами, получения для нужд клиник наиболее рациональных лекарственных форм. В настоящее время не подлежит сомнению, что оптимальная активность лекарственного вещества достигается только назначением его в рациональной, научно обоснованной лекарственной форме.
Выбор лекарственной формы одновременно определяет и способ (путь) введения лекарства в организм. Совершенно очевидно, что скорость действия лекарственного вещества зависит от того, какой путь для его применения избран. Например, при ректальном способе лекарственное вещество может всосаться примерно через 7 мин, а при перо-ральном только через 30 мин (в среднем). Если же это вещество ввести внутривенно то его действие проявится уже через 1-2 мин. Эффективность лекарственного вещества зависит от того, какой путь совершит лекарство до того, как оно попадает в кровь. При ректальном способе введения часть лекарственных веществ проникает в кровяное русло минуя печень, и не подвергается химическому воздействию ее ферментов, так же желудочного сока, желчи и сока поджелудочной железы. Следовательно, сила воздействия лекарственного вещества в этом случае больше, чем при пероральном применений. При выборе пути введения учитывается также, какой характер действия ожидается от лекарственного вещества (преимущественно местное или общее, на весь организм). Все эти вопросы находят должное освещение при разборе элементов фармакокинетики.
При изучении введения цистамина гидррхлорида в организм в таблетках и суппозиториях оказалось, что препарат из суппозиториев всасывается быстрее и полнее, чем из таблеток. Было установлено что через час после введения цистамина гидрохлорида животным из суппозиториев всасывается 85,3%, а из таблеток только 58% препарата.
2.5 Значение вспомогательных веществ
С биофармацевтической точки зрения изучение фармакологического действия любого лекарственного вещества бессмысленно, если оно не проводится в присутствии тех вспомогательных веществ, которые в дальнейшем будут составлять композицию конкретной лекарствен ной формы данного препарата.
Иначе говоря, вспомогательное вещество должно применяться не вообще, но конкретно с индивидуальным препаратом. Необоснованное применение вспомогательных веществ может привести к снижению, извращению или полной потере лечебного действия лекарственного вещества. Это происходит главным образом вследствие взаимодействия лекарственных и вспомогательных веществ при изготовлении лекарств в самой лекарственной форме или чаще, после ее назначения больному. В основе подобных взаимодействий лежат преимущественно явления комплексообразования и адсорбции, способные резко изменить скорость и полноту всасывания действующих веществ.
Среди работ, посвященных изучению влияния вспомогательных веществ, особенно много внимания уделяется мазевым и суппозиторным основам. За последние десятилетия лечение мазями существенно изменилось с введением в практику новых лекарственных средств, потребовавших новых мазевых основ. Больную часть последних стали составлять эмульсионные основы, применение которых обеспечивает более легкую диффузию лекарственных веществ в кожу и расширяет возможности введения лекарственных веществ как в масляную, так и в водную фазу. Значительное применение находят теперь также гидрофильные мазевые основы, хорошо переносимые больными и полно отдающие лекарственные вещества без нарушения перспирации кожи. Диффузию лекарственных веществ усиливают добавками поверхностно-активных веществ, набор которых все расширяется.
Среди суппозиторных основ все большее распространение получают гидрогенезаты жирных масел, которые в сочетании с добавками поверхностно-активных веществ обеспечили не только необходимые для суппозиториев структурно-механические свойства, но и должную скорость высвобождения лекарственных веществ.
2.6 Значение технологических факторов
Процесс превращения исходных лекарственных веществ (препаратов) в лекарство - это прежде всего технологический процесс. Вряд ли кто будет оспаривать тот факт, что способ получения лекарственных форм во многом определяет стабильность препарата, скорость его высвобождения из лекарственной формы, интенсивность его всасывания и, в конечном итоге, его терапевтическую эффективность. Например, от избранного способа эмульгирования касторового масла зависит степень его дисперсности, а следовательно, и скорость омыления масла в щелочной среде кишечника и последующий послабляющий эффект.
Выбор способа гранулирования при получении таблеток обусловливается сохранностью многих лекарственных веществ в готовой лекарственной форме.
Значение технологических факторов особенно ярко проявилось в пролонгировании и дифференцированном проявлении лечебного эффекта. Это оказалось возможным в результате освоения техники изготовления многослойных таблеток и наложения на таблетки и драже покрытий разного назначения. [7]
2.7 Классификация мазей как дисперсных систем
Учитывая характер распределения лекарственных веществ в основе, физико-химическую природу основы, все мази необходимо в первую очередь разделить на две группы: гомогенные и гетерогенные дисперсные системы:
Гомогенные мази состоят из ингредиентов взаимно растворимых, смешивающихся друг с другом без образования раздела фаз. Принято гомогенные мази в свою очередь разделять на подгруппы: мази-растворы, мази-сплавы и экстракционные мази.
Мази-растворы образуются при растворении лекарственных препаратов в основе (например, камфорная мазь, представляющая собой 10% раствор камфоры в сплаве вазелина с ланолином безводным в соотношении 6: 3; растворы анестезина, ментола, тимола, хлорэтана в вазелина, его сплавах с ланолином, другими ПАВ).
Мази-сплавы получаются путем сплавления углеводородов, жиров смол, восков, высших жирных кислот (ВЖК), пластырей и т.п. К ним относятся, например, спермацетовая, нафталанная, парафиновая, восковая и другие мази.
Экстракционные мази в настоящее почти не находят применения. Их получали путем экстракции маслом, расплавленным углеводородом сырья растительного и животного происхождения.
Гетерогенные мази являются двух - или многофазными системами.
Если твердое лекарственное вещество распределяется в основе по типу суспензии, образуется суспензионная мазь. Примерами таких мазей являются 10% мазь амидохлорида ртути, 10% мазь ксероформа, 10% мазь стрептоцида и др.
Суспензионные мази, содержащие более 25% твердых лекарственных веществ, носят название паст. Примерами таких мазей является паста Лассара, паста цинковая, борно-цинко-нафталанная паста и др.
Мази, содержащие жидкую фазу, распределенную в других ингредиентах по типу эмульсии, называются эмульсионными. Эмульсионные мази образуются тогда, когда раствор лекарственного вещества в воде, глицерине, спирте смешивают с жировыми, углеводородными, абсорбционными, эмульсионными основами. Мази-эмульсии образуются и при растворении лекарственного вещества в одной из фаз эмульсионной мазевой основы. Примерами эмульсионных мазей являются 5% амиказоловая мазь, 10% мазь калия йодида, 10% и 20% ихтиоловые мази на вазелине.
В фармацевтической практике часто встречаются комбинированные мази, содержащие компоненты, растворимые и нерастворимые в основе и воде. Например, мазь серная простая. [8]
2.8 Мазевые основы
Основа в составе мази является активным носителем лекарственного вещества, влияющим на фармакокинетическую активность, консистентные свойства мази и ее стабильность.
Мазевые основы должны удовлетворять ряду требований: они должны быть индифферентными, хорошо смешиваться с входящими в состав мази лекарственными веществами и с водой, обладать мягкой консистенцией и свойством скользкости, проникать в кожу или образовывать на ней лишь покров и легко удаляться с кожи. Основы не должны изменяться при хранении, реагировать с входящими в мазь лекарственными веществами или препятствовать их всасыванию. Однако мазевых основ, полностью удовлетворяющих этим требованиям нет. Поэтому для получения требуемого качества основы часто применяют смеси различных веществ (сложные мазевые основы). [7]
2.8.1 Липофильные основы
К этой группы относятся: жировые, углеводные, силиконовые основы.
Животные и растительные жиры.
Жиры индефферентны, хорошо всасываются, смешиваются со многими веществами и сравнительно легко смываются. Но вместе с тем они недостаточно стойки и разлагаются (прогоркают) с образованием свободных жирных кислот, альдегидов и других веществ, которые могут вступать в химические реакции с входящими в состав мазей лекарственными и действовать раздражающе на кожу. К этим основам относятся:
1. Жир свиной очищенный. Это свежий топленый жир внутренних органов свиньи - является смесью триглицеридов пальмитиновой, стеариновой, олеиновой и линолевой кислот. Свежий жир вследствие содержания в нем непредельных кислот довольно легко окисляется, а поэтому для приготовления мазей с окислителями не должен применяться. Непригоден он и для приготовления мазей с препаратами тяжелых металлов, с которыми образует металлические мыла.
2. Гидрогенизированные жиры. Эти жиры получают в результате гидрогенизации различных жирных масел (подсолнечного, соевого, арахисового, касторового и т.п.). По сравнительно со свиным жиром они более стойки, лучше смешиваются с водой, но всасываются хуже.
3. Жирные масла. Получают из семян и плодов прессованием. В качестве составных частей мазевых основ применяют масла: подсолнечное, персиковое, льняное и др. Их добавляют в небольших количествах к мазевым основам для повышения их всасываемости, а также при, приготовлении суспензионных мазей для диспергирования лекарственных веществ.
Жироподобные вещества (воски). Состоят главным из сложных эфиров, образованных высшими одноатомными спиртами и ВЖК. Они химически стойки и индифферентны. Многие из них хорошо смешиваются с водой. К ним относятся:
1. Ланолин. Очищенное жироподобное, добываемое из промывных вод овечьей шерсти. Ланолин химически близок к кожному жиру человека. Вследствие высокой вязкости, его обычно прописывают в смеси с другими основами. При длительном хранении может частично гидролизоваться.
2. Спермацет. Получается из полостей кашалота, расположенных под черепом и вдоль спинного хребта. Жирная кристаллическая масса белого цвета. Легко сплавляется вазелином, жирами и восками. На воздухе постепенно желтеет и прогоркает, поэтому его заменяют цетиловым спиртом, получаемым омылением спермацета. Применяют в сложных основах как уплотнитель и эмульгатор.
3. Воск желтый и белый. Добывают выплавлением опорожненных сот пчел. Обладает небольшим эмульгирующим свойством. Повышает впитываемость водных жидкостей. Белый воск получают из желтого путем его отбеливания на солнечном свету. По качеству он уступает желтому, т.к. при отбеливании загрязняется и частично прогоркает. Кроме того, он более хрупок. Воск служит для уплотнения мазей и повышения их вязкости.
Углеводородные основы. По внешнему виду и консистенции похожи на жиры. Представляют собой смеси твердых или твердых и жидких предельных углеводородов. Эти основы отличаются высокой химической стойкостью и неизменностью при хранении, не высыхают, почти не всасываются кожей и трудно с нее смываются. К ним относятся:
1. Вазелин. Получают его в результате переработки нефти. Однородная тянущася нитями мазеобразная масса. Выпускается двух видов: желтый и белый, Последний получается из желтого путем его отбеливания. По своим свойствам оба вида одинаковы. Вазелин химически индифферентен. Стоек при хранении. При расплавлении образует прозрачную жидкость со слабым запахом парафина и нефти. Кожей почти не всасывается. Не обладает раздражающим действием. Плохо смешивается с водой, почему нередко в рецептах комбинируется с ланолином. Для глазных мазей применяется специальный сорт вазелина высшей очистки.
2. Парафин твердый. Получают также при переработке нефти. Белая, твердая мелкокристаллическая масса, слегка жирная на ощупь. Не омыляется едкими щелочами. Химически стоек. Плохо смешивается с водой и другими веществами. Применяется как уплотнитель других основ.
3. Вазелиновое масло жидкий парафин. Фракция нефти, получаемая после отгонки керосина. Бесцветная маслянистая жидкость. Добавляется к плотным основам с целью получения основы более мягкой консистенции.
4. Нефть нафталанская рафинированная. Густая сиропообразная жидкость, черного цвета с зеленой флюоресценцией и своеобразным запахом. [1]
2.8.2 Гидрофильные основы
Основы относящиеся к этой группе, не содержат в своем составе жиров и жироподобных веществ. Они смешиваются во всех соотношениях с водой, но химически нестойки и вступают в реакцию с некоторыми веществами. Они хорошо впитываются и легко смываются с кожи.
1. Желатино-глицериновая основа. Смесь желатина (1-3%), глицерина (10-20%) и воды (70-80%). Эта основа растворяет многие лекарственные средства, но быстро портится, т.к. является хорошей средой для микроорганизмов. Применяются преимущественно как основа при приготовлении защитных мазей.
2. Глицериновая мазь. Полупрозрачная масса однообразной консистенции. Для ее приготовления берут 93 ч глицерина, 7 ч пшеничного крахмала и 7 ч воды. Приготовляют ex tempore. При продолжительном хранении разлагается.
3. Полиэтилен-гликолевые основы. Полиэтилен-гликоли, или полиэтиленоксиды, получают путем полимеризации окиси этилена в присутствии воды и едкого кали. Это двухатомные спирты. Растворимы в воде и спирте, могут быть получены разной консистенции, химически и фармакологически индифферентны, не изменяются при хранении, легко передают коже включенные в них лекарственные вещества.
4. Основы из неорганических веществ. Из неорганических веществ для получения мазевых основ предложены в виде водных гелей бентонитовые глины, алюминия гидроокись, силикагель, гекторит и некоторые другие. Из них практическое применение в качестве мазевых основ нашли главным образом бентонитовые глины. Это особые виды глин, обладающие высокой дисперсностью, гидрофильностью, химической индифферентностью и жадно впитывающие воду.
2.8.3 Гидрофильно-липофильные основы
К ним относятся: безводные сплавы липофильных основ с эмульгаторами (адсорбционные основы): эмульсионные основы типа вода-масло и масло-вода.
1. Высшие спирты - продукты омыления спермацета: цетиловый и стеариловый;
2. Высокомолекулярные циклические спирты - гидролан, гидрированный, дезодорированный ланолин;
3. Производные полимеризованного глиценина;
4. Спаны - неполные эфиры сорбитана и высших жирных кислот;
5. Пентол - смесь эфиров, спирта, пентаэритрита и олеиновой кислоты;
6. Жиросахара - неполные сложные эфиры сахарозы с высшими жирными кислотами.
7. Твины - получают при обработке спанов окисью этилена.
8. Мири - сложные эфиры полиоксиэтиленгликолей и высших жирных кислот.
9. Брин - сложные эфиры полиоксиэтиленгликолей и высших спиртов. [4]
Мази, приготовленные на этих основах, хорошо всасываются кожей и легко отдают введенные в них лекарственные вещества. [7]
2.9 Факторы, влияющие на фармакологическую активность мазей
Создание мазей новых лекарственных препаратов, совершенствование качества мазей, уже применяемых в условиях клиник, невозможно без всестороннего исследования роли факторов, которые оказывают влияние на степень высвобождения лекарственных веществ из мазей, скорость и полноту их резорбции, местное или направленное воздействие на ткани, органы, жидкости организма, т.е. без их биофармацевтического исследования.
Наиболее существенными биофармацевтическими факторами, влияющими на фармакокинетическую активность мазей, являются:
- физико-химическое состояние лекарственных веществ (активность оснований и солей, полиморфизм, степень измельчения и т.п.),
- природа носителя (основы) лекарственных препаратов в мазях.
Учитывая, как правило, сложность композиционного состава носителя, должно быть рассмотрено не только влияние его в целом, но и роль каждого из компонентов (соотношение фаз, наличие ПАВ, активаторов всасывания и т.п.).
- технологический процесс приготовления мази.
2.9.1 Влияние физико-химического состояния лекарственных веществ
В литературе накапливается все больше фактов об очевидном влиянии на процессы абсорбции из мазей, а, следовательно, и на терапевтическое действие лекарственных веществ, их "простой химической модификации", полиморфизма, степени измельчения и других факторов.
Многие органические лекарственные вещества способны образовывать полиморфные формы, отличающиеся кристаллографическими параметрами, относительной плотностью, показателями рефракции, ИК-спектрометрическими характеристиками и другими показателями. Разные полиморфные модификации лекарственных веществ способны в разной степени образовывать гидраты или сольваты в зависимости от природы растворителя. Влияние полиморфизма, способности к образованию сольватов на биологическую доступность лекарственных веществ подчас огромно.
По три полиморфных модификации могут образовывать метилпреднизолон, хлорам-феникола пальмитат, стрептоцид, сульфаметомидин. Тетрациклин может существовать в виде 4 полиморфных форм, из которых наиболее активна аморфная. Пять кристаллических форм может образовывать гидрохлорид тиамина. В то же время полиморфизм не обнаружен у ацетилсалициловой кислоты, сульфапроксилина, сульфаметоперазина. [4]
Модификационные превращения лекарственных веществ возможны при их нагревании, растворении, кристаллизации, в результате механической обработки и под влиянием других факторов.
Способность лекарственных веществ образовывать сольваты, гидраты иногда приводит к увеличению или уменьшению терапевтической активности.
Исследованиями многих авторов установлено, что кортикостероиды, сульфаниламиды быстрее и в больших количествах высвобождаются из мазей и всасываются через кожу, будучи диспергированными до размеров отдельных микрометров. [6]
2.9.2 Влияние природы носителя лекарственных препаратов в мазях
В некоторых работах, опубликованных в последние годы, все настойчивее проводится мысль, что основы для мазей по их способности обеспечивать наиболее интенсивное выделение и резорбцию лекарственных препаратов можно расположить в следующий ряд: растворы и гели гидрофильных веществ - эмульсионные основы типа м/в - эмульсионные основы типа в/м - абсорбционные - резко гидрофобные.
Установлено, например, что мази аскорбиновой кислоты более эффективны на основах, являющихся гелями ПЭО, МЦ, чем на жировых, мази резорцина - на основе гидрогелей ПЭО, Na-КМЦ, полиакрила, маисового крахмала, мази сульфаниламида, сульфадиазина, сульфацетамида - на основе ПЭО, мази витамина А - на основе ПЭО. Антибактериальное действие синтомицина, левомицетина и других антибиотиков проявляется в несколько раз сильнее на основах, являющихся аминобентонитовыми гелями, гидрогелями ПЭО.
Сравнительный анализ активности мазей многих других препаратов, приготовленных на различных основах, позволяет обнаружить в каждом конкретном случае значительные отклонения в названном выше ряду основ. Так, эзерин, кардиазол, тестостерон в мазях на эмульсионных основах типа вода - масло проявляли большую резорбтивную активность, чем в мазях на основах растворов, гидрогелей, эмульсий типа масло - вода. Салициловая кислота, никотинаты, флюкортолон лучше всасываются из мазей на эмульсионных основах типа масло - вода, вазелине и хуже из мазей на основе гидрогелей ПЭО.
Сравнивая мази на основах одной и той же классификационной группы, содержащие разные ПАВ, нельзя не отметить существенного влияния последних на терапевтическую эффективность лекарственных препаратов. Это влияние в каждом конкретном случае осуществляется по-разному в зависимости от природы, концентрации ПАВ, характера их взаимодействия как с лекарственными веществами, так и с другими компонентами мазей.
Введение ПАВ в состав мазей позволяет иногда в несколько раз уменьшить дозу лекарственного препарата. Например, мазь 2% борной кислоты на консистентной эмульсионной основе проявляет такую же активность, что и 10% мазь на вазелине.10-15% мази серы, салициловой кислоты на вазелине обладают таким же кератолитическим действием, как и 5% мази этих же препаратов на консистентной эмульсионной основе. Мазь металлической ртути на эмульсионной основе содержит в 5-6 раз меньше ртути по сравнению с мазью на гидрофобной основе при том же лечебном эффекте. Применение 5% мазей дерматола на эмульсионных основах с пентолом и сорбитанолеатом позволило получить такой же эффект, как и от 10% мазей на вазелине. Мазь хлорида тримекаина на основе stearoli compositum оказывает в 24-60 раз более продолжительное местноанестезирующее действие, чем на эмульсионных основах типов масло - вода, вода - масло и гидрогелях. Борная кислота из мазей на основах с моностеаратом глицерина высвобождается в больших количествах (в 50 раз), чем из мазей на основах с холестерином. Резорбция лекарственных препаратов из мазей, как правило, значительно возрастает при введении в их состав этилового спирта, димексида (ДМСО), диметилформамида (ДМФА), диметилаце-тамида (ДМАА), этилцеллосольва (моноэтилового эфира этиленгликоля), этилового эфира ацетона, хлороформа, скипидара и других "активаторов всасывания".
ДМСО значительно повышает резорбцию анаболити-ческих и андрогенных гормонов, глюкокортикоидов, минералокортикоидов, эстрогенов, прогестерона. [9]
2.9.3 Влияние способа приготовления мази
Измельчение лекарственных веществ до заданной степени дисперсности часто происходит после смешивания препарата с основой путем механической, ультразвуковой, высокочастотной гомогенизации мазей. Однако имеются сведения о различной эффективности мазей в зависимости от способа введения препаратов в основу, порядка смешивания компонентов основы и т.д.
Введение растворимых сульфаниламидов в водную фазу эмульсионных основ типа вода - масло приводило к уменьшению антибактериальной активности мазей по сравнению с мазями, полученными путем смешивания препаратов с готовой основой.
Достаточно большое количество примеров указывают на значительную обусловленность терапевтического действия лекарственных веществ, назначаемых в виде мазей, различными факторами. Однако перечень последних этим не ограничивается. При создании мазей необходимо учесть возможность образования комплексов между лекарственным веществом и его носителем, что с пользой может быть использовано для пролонгирования действия лекарственного вещества, назначаемого в виде мази.
До сих пор сравнительно мало изучено влияние одновременного присутствия в мази нескольких препаратов на их фармакокинетическую активность. Установлено, например, что скорость высвобождения гидрохлорида окситетрациклина уменьшается под влиянием эфетонина, окиси цинка, субнитрата висмута и возрастает в присутствии борной кислоты, гидрохлорида адреналина.
При сравнительном исследовании фармакокинетической активности мазей необходимо исключить или иметь в виду возникновение дополнительных факторов, способствующих проникновению лекарственных веществ через кожу: повышенная гиперемия, влияние облучения, наличие окклюзионной повязки и пр. [2]
2.10 Приготовление мазей в аптеках
Приготовление мазей в аптеках. В аптеках мази готовят по экстемпоральным прописям, которые в среднем в нашей стране составляют около 10% от всех лекарств, изготовляемых в аптеках. Приготовление мазей в аптеках складывается из следующих операций:
1. подготовка лекарственных препаратов и основы;
2. введение лекарственных веществ в основу;
3. оценка качества мази;
4. упаковка и оформление мази.
В зависимости от физико-химических свойств лекарственных препаратов их подготовка сводится к отвешиванию, измельчению (веществ, нерастворимых в основе), растворению в воде (водорастворимых веществ) или во вспомогательной жидкости, родственной основе.
Подготовка основы включает в себя операции по взвешиванию ее или отдельных компонентов, их растворению, плавлению и возможной фильтрации для удаления механических примесей. Растворение компонентов основы может производиться непосредственно в ступке или выпарительной чашке. Сплавляют компоненты основы в выпарительных чашках на водяной бане или под лампой инфракрасного излучения. Сплавление начинают с наиболее тугоплавких компонентов, добавляя к расплаву остальные компоненты в порядке понижения их точек плавления. Следует избегать длительного нагревания мазевых основ.
Смешивание производят в ступках, соблюдая определенную очередность смешивания компонентов. Выбор ступки необходимой емкости зависит от массы мази. При выборе ступки для приготовления мази нужно учитывать ее рабочий объем. В нашей стране промышленность изготавливает фарфоровые ступки 7 номеров с диаметром от 50 до 243 мм при рабочем объеме от 20 до 2240 см3.
Если количество твердого вещества не превышает 5%, то его можно измельчить в присутствии вспомогательной жидкости (для жирных основ - растительные масла, для углеводородных - вазелиновое масло, для гидрофильных основ - глицерин, вода), взятой в половинном количестве к массе препарата.
В случаях, когда лекарственные вещества растворяются в воде, глицерине, спирте или их смесях, их растворяют в названном растворителе перед смешиванием с компонентами основы. Если растворы не смешиваются с гидрофобными основами, то полученные мази будут представлять собой эмульсии. Для растворения лекарственных веществ может быть использована вода или другой растворитель, входящие в состав прописи, йодного ланолина, эмульсионной основы и т.п.
Например
D. S. Применять при язвах
D. S. Применять при насморке
При приготовлении мази по первой прописи колларгол растирают в ступке и растворяют в дистиллированной воде, затем смешивают с неостывшим сплавом воска, масла персикового и масла какао. Мазь, по прописи 2 готовят путем смешивания в ступке протаргола с глицерином и 1,5 мл воды (входящей в состав водного ланолина). Полученный раствор эмульгируют безводным ланолином (3,5 г), затем примешивают вазелин.
Эмульсионные мази могут быть эмульсиями типов масло - вода и вода - масло.
Сухие и густые экстракты, опий перед смешиванием с основой предварительно растирают с равными количествами спирто-глицерино-водной смеси (соответственно в соотношении 1: 3: 6), обеспечивающей их растворение.
Эмульсионные мази часто содержат эффективные ПАВ (ланолин, холестерин, цетиловый и стеариновый спирты, мыла, эфиры глицерина и др.), поэтому эмульсии образуются достаточно высокодисперсными и устойчивыми. При наличии небольших количеств водной фазы устойчивость мазей иногда обеспечивается высокой вязкостью основы.
Сложные прописи так называемых комбинированных мазей содержат различные по своей природе лекарственные и вспомогательные вещества. При их изготовлении руководствуются принципами, лежащими в основе технологии более простых систем.
Приводим пропись комбинированной мази:
Rp.: Acidi salicylici 0,6
Sulfuris praecipitati 2,0
Ichthyoli
Picis liquidae aa 1,5
Ung. Zinci 30,0
M. f. ung.
D. S. Для повязок
В ступке тщательно диспергируют салициловую кислоту, серу и окись цинка (по 3 г) с ихтиолом и дегтем. К тонкой суспензии постепенно добавляют 27 г вазелина. Мазь может быть приготовлена с использованием готовой цинковой мази, которую добавляют к взвеси салициловой кислоты и серы в ихтиоле. Кислота салициловая, сера и окись цинка образуют суспензию, а ихтиол распределяется в виде эмульсии в смеси дегтя и вазелина.
Для предохранения мазей от расслаивания или расплавления в условиях жаркого климата или высокой температуры окружающего воздуха допускается прибавление к основе до 10% воска, парафина или озокерита с соблюдением установленного процентного содержания лекарственных веществ в мази и получения однородной системы.
2.11 Приготовление мазей на фармацевтических предприятиях
Приготовление мазей в условиях фармацевтических предприятий складывается из следующих основных операций:
- подготовка лекарственных веществ и основы;
- введение лекарственных веществ в основу;
- гомогенизация мази;
- стандартизация;
- фасовка.
2.12 Подготовка лекарственных препаратов и мазевой основы
Подготовка лекарственных препаратов заключается в их измельчении на одной из машин, просеивании через сито (с заданным размером частиц), перемешивании. Если нужно, препарат растворяют в основе или в воде. Подготовка основы включает в себя процессы растворения или сплавления ее компонентов с последующим фильтрованием для удаления механических примесей. Плавящиеся основы и их компоненты (вазелин, ланолин, воск, эмульгатор Т2, эмульгатор № 1, сорбитанолеат, эмульсионные воски и др.) расплавляют в электрокотлах марок ЭК-40, ЭК-60, ЭК-125 и ЭК-250 или в котлах с паровыми рубашками марок ПК-125 и ПК-250. Они могут быть цилиндрические или сферические, иметь сливные краны и устройства для опрокидывания.
Для расплавления основ и их компонентов используют паровые змеевики, паровые иглы.
При изготовлении мазей на эмульсионной основе иногда вначале готовят основу, а затем мазь. При изготовлении эмульсионной основы ПАВ вводят в ту фазу, в которой оно больше растворимо. Эмульгирование проводят в реакторах с мешалками, в смесителях и т.п. Масляную основу предварительно расплавляют в паровом котле или другим способом.
Введение лекарственных веществ в основу осуществляется в зависимости от их физико-химических свойств. Измельченные твердые препараты или их водные растворы добавляют к основе при постоянном перемешивании.
На рис. 1 изображена схема реактора, смешивающего густые продукты с вязкостью до 200 Н-с/см2. Реактор имеет корпус (1) полусферическим дном. Корпус реактора закрывается выпуклой крышкой (2), в которой смонтированы загрузочная воронка, смотровое окно, клапаны, патрубки и штуцера для введения различных веществ. Крышка корпуса реактора поднимается и опускается с помощью траверсы (9) и гидравлических опор (10). Внутри корпуса реактора помещена мешалка якорного типа (3) с лопатками по профилю корпуса, охватывающими всю полезную поверхность. Мешалка (4) с лопастями вращается в сторону, противоположную вращению якорной мешалки. Мешалки 3 и 4 вращаются соосными валами (6) с помощью гидродвигателей (7). В корпусе реактора смонтирована и турбинная мешалка (5), вращаемая с помощью электродвигателя (8). Наличие трех мешалок обеспечивает хорошее перемешивание и перетирание компонентов мази. Аппарат разгружается через шаровой клапан (11), корпус реактора имеет рубашку (12), к которой подводится горячая вода с температурой до 95°С или холодная вода с температурой до 12°С. Реактор управляется со специального пульта.
Смешивание лекарственных веществ с основой может осуществляться также в котлах с паровыми рубашками или злектрообогревом, со съемными переносными мешалками (типа якорной, пропеллерной, планетарной, рамной), способными перемешивать мазь, снимая ее со стенок и дна емкости.
...Подобные документы
Современные проблемы создания мягких лекарственных форм. Лекарственные свойства мумие. Состав мазей мумие на основе бентонитовых глин и биофармацевтические исследования полученных мазей. Рациональная технологическая схема производства мази "Бенто М".
дипломная работа [611,9 K], добавлен 19.11.2009Изучение основ для мазей, классификации компонентов мазевых основ, их характеристика и примеры использования. Анализ нормативной документации, регламентирующей контроль и оценку качества мазей. Ассортимент мазевых лекарств на фармацевтическом рынке.
курсовая работа [970,3 K], добавлен 12.12.2023Полезные свойства мазей - мягкой лекарственной формы, предназначенной для нанесения на кожу, раны или слизистые оболочки, их отличие от других лекарственных форм. Технологическая схема получения мазей различных типов, новый подход в изготовлении.
курсовая работа [50,2 K], добавлен 07.06.2016Характеристика, области применения, основные требования и классификация мазей, особенности технологии их изготовления и пути совершенствования контроля качества. Систематизация и анализ экстемпоральной рецептуры и внутриаптечной заготовки для мазей.
курсовая работа [156,3 K], добавлен 23.09.2012Определение мази как лекарственной формы: требования, способы прописывания. Классификация, основные стадии изготовления мазей. Особенности введения лекарственных веществ в мазевые основы; средства малой механизации. Оценка качества, упаковка, оформление.
контрольная работа [28,2 K], добавлен 17.02.2011Пленки для фармацевтической промышленности, их преимущества. Современные материалы для первичной упаковки инфузионных растворов. Алюминиевые и инфузионные колпачки. Классификация тароупаковочных и укупорочных материалов для мазей и суппозиториев.
курсовая работа [493,4 K], добавлен 01.11.2014Рассмотрение раневого процесса как сложного комплекса реакций, развивающихся в организме в ответ на повреждение тканей, а также препаратов (мазей, паст) для местного лечения раневой инфекции. Правила введения лекарственных веществ в мазевые основы.
курсовая работа [50,1 K], добавлен 03.05.2012Три типа номенклатуры лекарственных форм: технологическая, торговая, исследовательская. Рассмотрение способов применения мазей. Сравнение номенклатуры мазей, представленных в справочниках и нормативных документах, и номенклатуры, представленные в аптеке.
курсовая работа [246,4 K], добавлен 10.11.2014Фармакопейные требования к суппозиториям, их достоинства и недостатки. Методы производства: выкатывание, прессование и выливание расплавленной массы в формы. Медицинские мази, их состав и виды. Дифильные и липофильные мазевые основы. Стандартизация мазей.
курсовая работа [59,0 K], добавлен 06.11.2013Назначение, устройство, принцип работы аквадистиллятора. Обработка и мытье аптечной посуды. Виды весов и правила взвешивания. Развеска, упаковка и оформление порошков, жидких лекарств и мазей. Асептические условия изготовления лекарственных препаратов.
отчет по практике [1,2 M], добавлен 31.10.2012Использование целлюлозы в технологии лекарств. Классификация и характеристика производных целлюлозы, применяемых в фармации. Стабилизация эмульсий, основы для мазей, изготовление таблеток и капсул, бактерицидные жидкости, пленкообразующие аэрозоли.
курсовая работа [78,4 K], добавлен 02.07.2012Характеристика мягких лекарственных средств (МЛС). Классификация МЛС, их преимущества и недостатки. Основные требования, предъявляемые к мазевым основам. Оборудование для получения мазей. Стандартизация и испытания МЛС. Упаковка, маркировка, хранение.
презентация [598,6 K], добавлен 07.06.2015Характеристика мягкой лекарственной формы - мазей. Нормативное регулирование и технологическая схема их производства на фармацевтических предприятиях. Обзор конструктивных особенностей оборудования и механизма действия. Методики стандартизации качества.
презентация [538,2 K], добавлен 23.03.2015Сутність мазевих основ для виготовлення лікарських сумішей, їх використання в сучасній фармакології, ефективність і переваги застосування. Фактори, що впливають на терапевтичний ефект мазі. Класифікація основ для мазей, їх різновиди та оцінка якості.
курсовая работа [705,4 K], добавлен 11.05.2009Биофармацевтические аспекты мазей. Структура кожи человека. Определение степени высвобождения лекарственных веществ. Равновесный диализ через полупроницаемую мембрану в модельную среду. Концентраты на основе бентонитов и других набухающих веществ.
курсовая работа [316,4 K], добавлен 08.05.2011Вещества органической или неорганической природы, которые используют в процессе производства и изготовления лекарственных форм. Требования к вспомогательным веществам, их классификация по функциональному назначению. Вода и гидрофильные растворители.
презентация [24,4 M], добавлен 17.06.2013Вспомогательные вещества в производстве мягких лекарственных форм, их классификация и роль в обеспечении терапевтической эффективности. Проведение исследования аппаратуры, используемой в производстве мазей. Характеристика сырья, материалов и продуктов.
курсовая работа [1,4 M], добавлен 17.05.2019Применение вспомогательных веществ. Вспомогательные вещества в технологии эмульсий. Эмульгаторы. Вспомогательные вещества в технологии эмульсионных мазей. Эмульсионные мазевые основы. Вспомогательные вещества в технологии пилюль. Жидкие и твердые вспомога
курсовая работа [44,4 K], добавлен 02.07.2005Мази, одни из древнейших лекарственных препаратов, значение которых сохранилось и в современной медицине. Мазевые основы и их классификация. Технологические стадии приготовления мазей. Клиническая картина псориаза, разновидности, лечение мазями.
курсовая работа [74,5 K], добавлен 05.02.2010Косметика як цілісна система знань про будову шкіри, про її роль в процесах життєдіяльності і загальному обміні організму, особливості. Загальна характеристика типів основ кремів та мазей. Знайомство з функціями шкіри: терморегуляторна, секреторна.
курсовая работа [2,2 M], добавлен 30.12.2013