Нервно-мышечная передача

Физиология нервов и теория "местных токов". Классификация нервных волокон, законы проведения возбуждения по нервам. Парабиоз и его характеристика. Структура и механизм действия нервно-мышечного синопсиса. Физиология мышц, их сила и типы мышечной ткани.

Рубрика Медицина
Вид контрольная работа
Язык русский
Дата добавления 20.06.2014
Размер файла 4,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

ПЕНЗЕНСКАЯ ГОСУДАРСТВЕННАЯ ТЕХНОЛОГИЧЕСКАЯ АКАДЕМИЯ

Кафедра «Информационные технологии и менеджмент в медицинских и биотехнических системах» (ИТММБС)

Контрольная работа на тему: «Нервно-мышечная передача»

Проверил: д.м.н., профессор

Сафронов Алексей Иванович

Выполнила: ст-ка гр.11Пб1б

Хохлова В.А.

Пенза, 2013

Введение

Известно, что под влиянием раздражителя живые клетки и ткани из состояния физиологического покоя переходят в состояние активности. Наибольшая ответная реакция среди тканей на раздражение наблюдается со стороны нервной и мышечной ткани. Основными свойствами нервной и мышечной ткани являются возбудимость, возбуждение, проводимость, рефрактерность и сократимость. нерв парабиоз мышца физиология

Возбудимость -- это способность живой ткани отвечать на действие раздражителя изменением физиологических свойств и возникновением процесса возбуждения. Возбуждение -- это активный физиологический процесс, который возникает в ткани под влиянием раздражителей и характеризуется изменением уровня обменных процессов в тканях, выделением энергии, сокращением мышечной ткани, выделением секрета, генерацией нервного импульса. Проводимостью называют способность живой ткани проводить волны возбуждения (биопотенциалы). Рефрактерность -- это временное снижение возбуди?о?ти ткани, которое возникает в результате возбуждения. Лабильность -- это зависимость ткани от особенностей обменных процессов, которая может возбуждаться определенное количество раз за единицу времени.

Различают электрические, химические, механические и температурные раздражители, которые способны вызвать ответную реакцию со стороны возбудимых тканей. По биологическим признакам раздражители могут быть адекватными и неадекватными, а по силе -- подпороговыми, пороговыми и надпороговыми.

Решающее значение для появления возбуждения принадлежит силе раздражителя (закон раздражения). Существует определенная зависимость между силой раздражения и ответной реакцией. Чем больше сила раздражителя, тем выше, до соответствующего уровня, ответная реакция со стороны возбудимой ткани. Большое значение имеет и продолжительность действия раздражителя. Зависимость между силой раздражителя и продолжительностью его действия, необходимого для появления минимальной ответной реакции, определяется кривой силы -- времени (рис. 1). Минимальная сила тока (напряжения), способная вызвать возбуждение, называется реобазой (отрезок ординаты (ОА). Кроме реобазы, важным параметром кривой силы является хроноксия. Последняя отражает наименьший промежуток времени, во время которого ток, равный по силе удвоенной реобазе (отрезок абсциссы OF), вызывает в ткани возбуждение. По величине хроноксии судят о скорости появления возбуждения в ткани: чем меньше хроноксия, тем быстрее возникает возбуждение. Приспособление возбудимой ткани к медленному нарастанию силы раздражителя получило название аккомодации. Последняя обусловлена тем, что за время нарастания силы раздражителя в ткани происходят активные изменения, которые повышают порог раздражения и препятствуют развитию возбуждения. Таким образом, скорость нарастания раздражения во времени называют градиентом раздражения.

Рис. 1. Кривая силы -- времени

Закон градиента раздражения -- это реакция на раздражитель, которая зависит от срочности или крутизны нарастания раздражителя за определенное время: чем выше градиент раздражения, тем сильнее (до определенных пределов) ответная реакция возбудимого объекта.

Потенциал покоя (мембранный потенциал) -- это разность потенциалов между наружной поверхностью клетки и ее внутренним содержимым; он составляет около 60--90 мВ в зависи?о?ти от особенности той или иной клетки.

Потенциал действия (потенциал возбуждения) возникает при воздействии на участок нервного или мышечного волокна раздражителя достаточной силы и продолжительности. Проявлением возникшего возбуждения является быстрое колебание мембранного потенциала. При этом возбужденный участок имеет электроотрицательный заряд по отношению к невозбужденному. В потенциале действия различают ?е?тные колебания мембранного потенциала, пик потенциала действия и следовые потенциалы -- отрицательный и положительный. Пик потенциала действия представляет собой кратковременное изменение внутреннего потенциала и имеет очень быструю восходящую фазу и несколько замедленный спад. Вслед за пиком потенциала действия регистрируются более слабые и продолжительные отрицательные, а затем положительные следовые потенциалы. Продолжительность потенциала действия в нервных и мышечных волокнах составляет 0,1--5,0 мс. В развитии потенциала покоя и потенциала действия роль играет система проникающих каналов для ионов Na+, К+, С1-, Са2+. В нервной мембране присутствуют специфические натриевые, калиевые, хлорные и кальциевые каналы, которые пропускают только вышеназванные ионы. Эти каналы обладают воротными механизмами и могут быть открытыми и закрытыми. Определение состояния ионных каналов мембраны очень важно для образования потенциала покоя, где ведущая роль принадлежит неравномерному распределению ионов калия. В образовании потенциала действия основную роль играют ионы натрия. Проведение возбуждения -- специализированная функция нервных волокон. Скорость возбуждения по ним зависит в основном от диаметра и гистологических особенностей строения нервных волокон. Чем больше диаметр нервного волокна, тем выше в нем скорость распространения возбуждения. Например, по нервному волокну диаметром 12-- 22 мкм скорость распространения возбуждения составляет 70--120 м/с, а по нервному волокну диаметром 8--12 мкм -- только 40--70 м/с.

По гистологическому строению нервные волокна делят на миелиновые и безмиелиновые. Миелиновое волокно состоит из осевого цилиндра и покрывающей его миелиновой или шванновской оболочкой. Через равные промежутки миелиновая оболочка прерывается и оставляет открытые участки осевого цилиндра шириной около 1 мкм (перехват Ранвье). Поверхность осевого цилиндра представлена плазматической мембраной, а его содержимое -- аксоплазмой. Безмиелиновые волокна не имеют миелиновой оболочки, а покрыты только шванновскими клетками. Пространство между шванновскими клетками и осевым цилиндром заполнено межклеточной жидкостью, что дает возможность поверхностной мембране осевого цилиндра сообщаться с окружающей нервное волокно средой.

Передача возбуждения по миелиновым и безмиелиновым волокнам имеет свои особенности. Так, передача потенциала действия по миелиновому волокну происходит скачкообразно от одного перехвата Ранвье к другому, что дает возможность возбуждению распространяться без угасания. Скорость распространения по миелиновым волокнам значительно выше, чем по безмиелиновым. Если скорость возбуждения по двигательным нервным волокнам (покрытым миелиновой оболочкой) составляет 80--120 м/с, то по волокнам, которые не имеют миелиновых волокон, -- только 0,5--2,0 м/с. Распространение возбуждения по нервному волокну при нанесении возбуждения подчиняется соответствующим законам.

Закон физиологической целостности -- проведение возбуждения по нервному волокну возможно только в том случае, если сохраняется не только его анатомическая, но и физиологическая целостно?ть (непрерывность).

Закон двухстороннего проведения возбуждения -- передача возбуждения происходит в двух направлениях -- центростремительном и центробежном.

Закон изолированного проведения возбуждения -- при нанесении раздражения возбуждение проводится только по одному нервному волокну и не охватывает соседние волокна, что обусловливает строгую координацию рефлекторной деятельности. Нервные волокна мало у?тают. Это объясняется низкими энергетическими затратами и быстрыми восстановительными процессами.

Синапс -- это специализированная структура, которая обеспечивает передачу нервного импульса из нервного волокна на эффекторную клетку -- мышечное волокно, нейрон или секреторную клетку.

Нервно-мышечный синапс состоит из трех основных структур: пресинаптической мембраны, синаптической щели и постсинаптической мембраны. Пресинаптическая мембрана покрывает нервное окончание, а постсинаптическая -- эффекторную клетку. Между ними находится синаптическая щель. Постсинаптическая мембрана отличается от пресинаптической тем, что имеет белковые хеморецепторы, чувствительные не только к медиаторам, гормонам, но и к лекарственным и токсическим веществам. Строение нервно-мышечного синапса обусловливает его физиологические свойства:

1) односторонее проведение возбуждения (от пре- к постсинаптической мембране) при наличии чувствительных к медиатору рецепторов только в постсинаптической мембране;

2) синаптическая задержка проведения возбуждения, связанная с малой скоростью диффузии медиатора в сравнении со скоростью нервного импульса;

3) низкая лабильность и высокая у?талость синапса;

4) высокая избирательная чувствительность синапса к химическим веществам.

Передача возбуждения в синапсе представляет собой сложный физиологический процесс, который проходит несколько стадий:

1) с?нтез медиатора;

2) секреция медиатора;

3) взаимодействие медиатора с рецепторами постсинаптической мембраны;

4) инактивация (полная утрата активности) медиатора.

Нейромоторная единица -- это анатомическая и функциональная единица скелетных мышц, которая состоит из аксона (длинного отростка мотонейрона спинного мозга) и иннервируемых им определенного количества мышечных волокон. В состав нейромоторной единицы может входить разное количество мышечных волокон (от единиц до нескольких тысяч), которое зависит от специализации мышцы. Двигательная единица работает как единое целое.

Основной функцией скелетных мышц является сокращение, которое выражено различными движениями человека. Скелетные мышцы выполняют также рецепторную, обменную и терморегулирующую функции. Они образуются большим количеством многоядерных мышечных волокон. Сократительной частью мышечного волокна являются длинные мышечные нити -- миофибриллы, которые проходят внутри волокна от одного конца к другому и имеют поперечную очерченность. Последняя образована чередованием темных (анизотропных) А-дисков и светлых (изотропных) 1-дисков. В мышечном волокне содержатся также фибриллярный палочковидный белок -- тропомиозин и глобулярный белок -- тропонин. Механизм сокращения состоит в перемещении (перетягивании) тонких нитей вдоль толстых к центру саркомера за счет поперечных актиномиозиновых ?о?тиков. Основным источником энергии, необходимой для мышечного сокращения, служат аденоз?нтрифосфорная кислота (АТФ) и присутствие ионов Са2+ и Mg2+ . Преобразование химической энергии в механическую происходит в мышце как без кислорода, так и с его участием. Анаэробная (безкислородная) фаза характеризуется рядом последовательных реакций, которые приводят к распаду АТФ и креатинфосфата, и их восстановлением. Выделенная при этом энергия используется для сокращения мышц и восстановления (рес?нтеза) этих веществ. Аэробная (кислородная) фаза химических преобразований связана с процессами окисления молочной кислоты до углекислого газа и воды. Возникшая энергия используется для дальнейшего преобразования остатков молочной кислоты в глюкозу, а затем в гликоген.

Деятельность скелетной мускулатуры регулируется ЦНС -- корой головного мозга, через чувствительные, двигательные и симпатические нервные волокна. Скелетные мышцы обладают следующими физиологическими свойствами: возбудимостью, проводимостью, рефрактерностью, лабильностью и сокращением. Возбудимость, скорость распространения возбуждения, лабильность мышечной ткани ниже, чем в нервной, а рефракторный период продолжительнее нервного. Скелетные мышцы могут выполнять работу в режиме изотонического, изометрического и ауксото-ничного сокращения. При первом сокращении в основном происходит укорочение мышечного волокна, но напряжение остается постоянным, а при втором -- длина мышечных волокон остается неизменной, но изменяются длина и напряжение. Характер сокращения скелетных мышц зависит от частоты раздражения (частоты поступления нервных импульсов).

Раздражение одиночным импульсом ведет к одиночному мышечному сокращению, а следующих один за другим нервных импульсов -- к тетаническому сокращению, или тетанусу.

Физиологические свойства гладких мышц связаны с особенностью их строения, уровнем обменных процессов и значительно отличаются от особенностей скелетных мышц. Гладкие мышцы менее возбудимы, чем поперечно-полосатые. Сокращение гладкой мускулатуры происходит медленнее и продолжительнее. Рефракторный период у гладких мышц более удлиненный, чем у скелетных (до нескольких секунд). Характерная особенность гладких мышц -- их способность к автоматической деятельности, которая обеспечивается нервными элементами. Гладкие мышцы иннервируются симпатическими и парасимпатическими вегетативными нервами, обладают высокой чувствительностью к некоторым биологически активным веществам (ацетилхолин, адреналин, норадреналин, серотонин и др.).

1. Физиология нервов

Центральная нервная система у человека состоит из нервных клеток, каждая из которых имеет один аксон и много дендритов. Нервные волокна делятся на: мякотные (рис.1) и безмякотные (рис.2). Все они имеют шванновскую оболочку, а мякотные, кроме этого, покрыты еще миелиновой оболочкой между которой имеются перехваты Ранвье, в которых миелиновая оболочка отсутствует. Безмякотные волокна имеют малый диаметр, меньше 1,3 мкм, небольшую скорость распространения импульса до 2 м/сек, продолжительность ПД - 2 мсек. Мякотные возникли из безмякотных, диаметр до 25 мкм, скорость распространения возбуждения до 120 м/сек, продолжительность ПД - 0,4-0,5 мсек.

Мезаксон (mesaxon, LNH; мез- + аксон) -- структура, состоящая из двух цитоплазматических мембран, возникающая в процессе образования миелиновой оболочки при погружении аксона внутрь вращающегося вокруг него леммоцита (шванновской клетки).

Аксолемма (axolemma) - тонкая клеточная (плазматическая) мембрана, окружающая протоплазму аксона; видна только под электронным микроскопом.

Рис. 1. Строение миелинового (мякотного) нервного волокна: 1 - мезаксон; 2 - осевой цилиндр; 3 - насечки нейролеммы; 4 - узел нервного волокна; 5 - цитоплазма нейролеммоцита; 6 - ядро нейролеммоцита; 7 - нейро- лемма; 8 - эндоневрий (по В.Г. Елисееву и др.)

Рис. 2. Схема строения безмиелинового (безмякотного) нервного волокна: А - продольный срез; Б - поперечный срез; 1 - осевые цилиндры; 2 - аксолемма; 3 - мезаксон; 4 - клеточная оболочка нейролеммоцита (шванновской клетки); 5 - цитоплазма нейролеммоцита; 6 - ядро нейролеммоцита; 7 - контакт двух нейролеммоцитов (по В.Г. Елисееву и др.)

2. Распространение ПД по безмякотному волокну.

Немецкий физиолог Герман предложил теорию «местных токов», согласно которой при распространении возбуждения на мембране нервного волокна между возбужденным и невозбужденным участком возникает местный ток, который является раздражителем для невозбужденного участка. Если его величина достаточна для возникновения ПД в соседнем участке, то ПД распространяется на этот участок.

Распространение местных токов в безмякотных нервных волокнах прямопропорционально сопротивлению мембраны и обратнопропорционально сопротивлению внутри- и внеклеточной среды. Расстояние на которое распространяются местные токи будет тем больше, чем больше амплитуда ПД и чем меньше пороговый потенциал.

В мякотных волокнах возбуждение возникает при нанесении раздражения в перехватах Ранвье (теория Тасаки) и распространяется по мембране волокна сальтаторно (скачкообразно) (рис.3).

Рис.3.Проведение возбуждения в нервных волокнах. А - безмиелиновое волокно (электротоническое проведение). Б - миелиновое волокно (скачкообразное проведение). Миелин, полностью окружая аксон в межузловых промежутках, выступает в роли электрического изолятора, а межклеточная жидкость в перехватах Ранвье - проводник.

При этом может охватывать не только один, но и два перехвата Ранвье, что обеспечивает надежность, а также увеличивает скорость распространения возбуждения и экономически более выгодна, так как на 1 импульс в безмякотном волокне энергия расходуется в 20 раз больше, чем в мякотном. Таким образом, скорость и расстояние, на которое распространяется возбуждение в безмякотных волокнах пропорциональна диаметру, сопротивлению мембраны и амплитуде ПД; в мякотных прямопропорциональна длине межперехватных участков, а их длина тем больше, чем больше диаметр волокна. Скорость не зависит от силы раздражения.

Теория Германа была экспериментально подтверждена.

Гельмгольц - определил скорость распространения импульса у лягушки; Бабский - определил скорость распространения импульса у человека.

3. Типы нервных волокон

Эрландер и Гассер классифицировали различные нервные волокна на три группы А, В и С.

А - миелинизированные, наибольшего диаметра, скорость 120-70 м в сек, длительность ПД - минимальная, делятся на подгруппы: альфа, бета, гамма, дельта. Пример - аксоны мотонейронов.

В - миелинизированные волокна, меньшего диаметра, скорость 3-18 м в сек, ПД более длителен. Пример - преганглионарные волокна симпатической нервной системы.

С - немиелизированные нервные волокна, скорость менее 2 м в сек, длительность ПД наибольшая. Пример - постганглионарные волокна парасимпатической нервной системы.

4. Законы проведение возбуждения по нервам

I закон анатомо-физиологический целостности нервного волокна. Чтобы возбуждение распространялось по нервному волокну необходимо не только его морфологическая целостность, но и физиологическая непрерывность. Препараты для проводниковой анестезии нарушают физиологическую непрерывность тем, что инактивируют натриевую проницаемость в нервных волокнах.

II закон изолированного проведения возбуждения по нервному волокну. В смешанном нерве возбуждение с одного нервного волокна не передается на соседние, так как сопротивление межклеточной жидкости меньше чем сопротивление мембран соседних волокон. Этим обеспечивается точность проведения информации в нервных волокнах к иннервируемым структурам.

III закон двухстороннее проведение возбуждения. Распространение ПД по мембране нервного волокна возможно в обе стороны, так как строение мембраны на всем протяжении одинаково. В то же время возбуждение не может возвратиться в участок, где оно возникло, так как он находится в состоянии рефрактерности.

Парабиоз. Н.Е. Введенский, исследуя прохождение импульса через отрезок нерва на который воздействую химические или наркотические вещества (альтераторы), наблюдал резкое снижение лабильности. Парабиоз характеризуется постепенным развитием, в котором можно выделить четыре фазы:

I Продромальная (не всегда проявляется, так как очень кратковременная) характеризуется: повышением возбудимости, повышением лабильности.

II Уравнительная - эффекты от сильных и слабых раздражителей уравновешиваются.

III Парадоксальная - на сильные, либо частые раздражения эффект бывает меньше, чем на слабые или редкие.

IV Тормозная - ни сильные, ни слабые раздражения не вызывают сокращения мышц. Через поражённый участок не проходят импульсы.

Если второй парой электродов подействовать на поражённый участок, то возбуждение будет, т.е. ткань ещё жива.

Если снять альтератор, то ткань возвращается к исходному состоянию в обратном порядке фаз IV, III, II, I.

Парабиоз - это стойкое не распространяющееся возбуждение.

Возникают потенциалы меньшие по своей амплитуде, а дальше абортивные потенциалы, не способные распространяться: уменьшаются процессы Na-евой проницаемости, и увеличиваются процессы Na-евой инактивации.

5. Нервно-мышечная передача

Взаимодействие человека с внешней средой невозможно представить без его мышечной системы. Производимые движения скелетной мускулатурой необходимы как для выполнения простейших перемещений тела в пространстве, сложных манипуляций хирурга, стоматолога, выражения самых тонких чувств и мыслей с помощью речи, мимики, жестов. Работа сердца обеспечивает кровоснабжение всех органов, работа гладких мышц создает условия для нормального осуществления физиологических процессов, обеспечивающих гомеостаз, практически во всех системах: гастроинтестинальной, сердечно-сосудистой, выделительной, репродуктивной, дыхательной. Ведущая роль скелетной мускулатуры также в производстве тепла и поддержании температуры тела. Мышцы - это «машины», преобразующие химическую энергию в механическую (работу) и тепло. Масса мышц больше чем других органов, 40-50% от массы тела.

В естественных условиях (в нашем организме) возбуждение мышечного волокна (или нескольких мышечных волокон, составляющих мышцу) возникает в результате передачи возбуждения с нервного волокна на мембрану мышечного в местах контакта нерва и мышцы: нервно-мышечных синапсах. Волокно двигательного нерва, или аксон, соприкасается с мышцей, теряя при этом миелиновую оболочку, и разделяется на многочисленные веточки, входящие в контакт с сарколеммой (рис. 5). На этом уровне сарколемма представлена многочисленными желобками, расположенными рядами, которые и составляют постсинаптическую мембрану. Именно в этих желобках и заканчиваются волокна аксона.

В глубине синаптических желобков саркоплазма, расположенная ниже сарколеммы, под действием выпячивания мембраны ложится складками, образуя соединительные складки. Все это составляет подневральный аппарат.

Рис. 5. Нейромышечный синапс (из лекции P. Petit, Институт анестезиологии и реанимации, г. Лион).

6. Механизм нервно-мышечной передачи

Синапсы представляют собой коммуникационные структуры, которые формируются окончанием нервного волокна и прилегающей к нему мембраной мышечного волокна (пресинаптической нервной и постсинаптической мышечной мембранами).

Нервно-мышечная передача происходит в два этапа: первый -- на уровне аксона, второй -- на уровне синаптической мембраны(рис.6).

На месте окончаний аксона происходит три последовательных процесса.

1. Синтез ацетилхолина от ацетата с образованием ацетилкоэнзима А до передачи группы ацетатов на холин под действием холинацетилазы.

2. Накопление ацетилхолина в синаптических пузырьках происходит, вероятно, тремя разными путями. Пузырьки, находящиеся ближе к синаптической мембране, по-видимому, содержат кванты, которые могут быть использованы тотчас же или составить функциональный запас. В остальных синаптических пузырьках накопленные кванты мобилизуются, вероятно, после истощения функционального запаса. И, наконец, избыток ацетилхолина, не использованный нервной стимуляцией, обеспечивает повторное снабжение синаптических пузырьков.

3. Освобождение ацетилхолина происходит в результате разрыва некоторых синаптических пузырьков под действием нервного двигательного импульса. Ацетилхолин проникает в течение нескольких миллисекунд через синаптическое пространство и соединяется с рецепторными протеинами, находящимися в пузырьках постсннаптической мембраны.

Второй этап осуществляется на уровне постсинаптической мембраны. Эта мембрана, находясь в состоянии покоя, поляризуется благодаря присутствию ионов Na+ на поверхности и ионов К+ в глубине. Это расположение обеспечивает равновесие, названное потенциалом покоя. Разность потенциалов между наружной и внутренней поверхностями мембраны в покое составляет 90 мВ. Поступление ацетилхолина на рецепторы изменяет проницаемость мембраны по отношению к ионам, приводя к изменению распределения ионов по обеим сторонам мембраны. При этом Na+ интенсивно проникает в глубину, а К\ наоборот, перемещается на поверхность. Электрическое равновесие нарушается, мембрана деполяризуется, и потенциал покоя становится потенциалом концевой пластинки двигательного нерва. Если потенциал двигательного нерва достигает порога 30 мВ, то он при распространении вызывает мышечное расслабление вследствие деполяризации.

Рис.6. Механизм нервно-мышечной передачи

Когда нервный импульс достигает окончания аксона, на деполяризованной пресинаптической мембране открываются потенциалзависимые Са2+ каналы. Вход Са2+ в аксональное расширение (пресинаптическую мембрану) способствует высвобождению химических нейромедиаторов, находящихся в виде везикул (пузырьков) из окончания аксона. Медиаторы (в нервно-мышечном синапсе это всегда ацетилхолин) синтезируются в соме нервной клетки и путем аксонального транспорта транспортируются к окончанию аксона, где и выполняют свою роль. Медиатор диффундирует через синаптическую щель и связывается со специфическими рецепторами на постсинаптической мембране. Так как медиатором в нервно-мышечном синапсе является ацетилхолин, то рецепторы постсинаптической мембраны называют холинорецепторами. В результате этого процесса на постсинаптической мембране открываются хемочувствительные Nа+-каналы, возникает деполяризация, величина которой различна, и зависит от количества выделенного медиатора. Чаще всего возникает локальный процесс, который называют потенциалом концевой пластинки (ПКП). При повышении частоты стимуляции нервного волокна, усиливается деполяризация пресинаптической мембраны, а, следовательно, возрастает количество выделяемого медиатора и число активированных хемочувствительных Nа+каналов на постсинаптической мембране. Таким образом, возникают ПКП, которые по амплитуде деполяризации суммируются до порогового уровня, после чего, на мембране мышечного волокна, окружающей синапс, возникает ПД, который обладает способностью к распространению вдоль мембраны мышечного волокна. Чувствительность постсинаптической мембраны регулируется активностью фермента - ацетилхолинэстеразы (АЦХ-Э), который гидролизует медиатор АЦХ на составные компоненты (ацетил и холин) и возвращает назад - в пресинаптическую бляшку для ресинтеза. Без удаления медиатора на постсинаптической мембране развивается длительная деполяризация, которая ведет к нарушению проведения возбуждения в синапсе - синаптической депрессии. Таким образом, синаптическая связь обеспечивает одностороннее проведение возбуждения с нерва на мышцу, однако на все эти процессы расходуется время (синаптичекая задержка), что приводит к низкой лабильности синапса по сравнению с нервным волокном.

Таким образом, нервно-мышечный синапс является «выгодным» местом, куда можно воздействовать фармакологическими препаратами, изменяя чувствительность рецептора, активность фермента. Эти явления будут часто встречаться в практике врача: например, при отравлении токсином ботулизма - блокируется высвобождение медиатора АЦХ (разглаживание морщин в косметической медицине), блокада холиноререпторов (курареподобными препаратами, бунгаротоксином) нарушает открытие Nа+ каналов на постсинаптической мембране. Фосфоорганические соединения (множество инсектицидов) нарушает эффективность АЦХ-Э и вызывает длительную деполяризацию постсинаптической мембраны. В клинике используют специфические блокаторы нервно-мышечного проведения: блокада холинорецепторов курареподобными препаратами, сукцинилхолином и другими конкурентными ингибиторами, вытесняющими АЦХ с холинорецептора. При заболевании миастении из-за дефицита холинорецепторов на постсинаптической мембране (из-за их аутолитического разрушения) возникает прогрессирующая мышечной слабость, вплоть до полной остановки мышечных сокращений (остановка дыхания). В этом случае используют блокаторы АЦХ-Э, что приводит к увеличению длительности связывания медиатора с меньшим количеством холинорецепторов и несколько увеличивает амплитуду деполяризации постсинаптической мембраны.

7. Физиология мышц

Существует 3 типа мышечной ткани: поперечно-полосатая, сердечная, гладкая.

Скелетная мышечная ткань образует большой объем соматической мускулатуры. Содержит хорошо выраженное упорядоченное строение сократительных белков в виде поперечной исчерченности. Связей между отдельными мышечными волокнами нет. Регуляция сокращений происходит сознательно (рис.7).

Сердечная мышца содержит также поперечную исчерченность, но является функциональным синцитием. Благодаря наличию пейсмекерных клеток, обладает способностью генерировать спонтанные нервные импульсы, обеспечивающие сердечные сокращения (рис.8).

В гладких мышцах нет поперечной исчерченности, которая бы придавала определенные физические и физиологические свойства этой ткани. Так в отличие от скелетной, которой присуща высокая эластичность, в гладкой мышце больше выражено свойство пластичности, что обусловлено отсутствием четкой упорядоченности миофиламентов актина и миозина. В отличие от регулярной саркомерной структуры скелетных и сердечной мышц, тонкие филаменты гладких мышц присоединены к структурам в цитоплазме, называемым плотными тельцами (прикрепительными бляшками сарколеммы), состоящими из белка десмина. Гладкие мышцы бывают висцеральные (мультиунитарные) и полиэлементные (унитарные) (рис.9).

Висцеральные содержат мостики - щелевые контакты с низким сопротивлением электрическому току - синцитий. Висцеральные мышцы встречаются в стенках полых органов (кишечник, матка, мочеточники, мочевой пузырь).

Полиэлементные гладкие мышцы состоят из отдельных мышечных единиц без соединительных мостиков, поэтому для них характерны точные, четко дозированные сокращения, подобно скелетным. Однако, сокращения этих мышц нельзя контролировать, в отличие от скелетных (мышцы радужки глаза, цилиарного тела, семенных протоков, артерии). Благодаря своему строению (висцеральные) обладают большой пластичностью, однако при определенной предельной степени растяжения способны деполяризоваться и сокращаться (саморегуляция). Пример, давление внутри стенок мочевого пузыря мало изменяется при относительно небольшом его растяжении, если растяжение возрастает резко - происходит сокращение мышц детрузора - эвакуация мочи даже в тех случаях, когда иннервация нарушена. Полиэлементные гладкие мышцы имеют более мощную (плотную) иннервацию и слабое развитие межклеточных контактов (нексусов). Тонус этих мышц и его колебания имеют нейрогенную природу. Имеют парасимпатические и симпатические, а также метасимпатические волокна. Строение нервных окончаний в гладкой мышце отличается от строения нервно-мышечного синапса в скелетной мышцы. В гладкой мышце нет концевых пластинок и отдельных нервных окончаний. По всей длине разветвлений адренергических и холинергических нервных волокон имеются утолщения, называемые варикозами. Они содержат гранулы с медиатором, который выделяется из каждой варикозы. Клетки, лишенные непосредственных контактов с варикозами, активируются ПД, распространяющимися через нексусы на соседние клетки. По ходу следования нервного волокна мышечные клетки могут возбуждаться или тормозиться (стимуляция адренергических волокон уменьшает, а холинергических - увеличивает мышечную активность, в других, например в сосудах, норадреналин - усиливает, а ацетилхолин - уменьшает мышечный тонус. Ионная природа гладкой мышцы определяется особенностями каналов мембраны гладко-мышечной клетки. Основную роль в механизме генерации ПД играют ионы Са2+, но по этим каналам могут внутрь клетки двигаться и другие двухвалетные ионы Ва2+, Mg2+. Вход Са2+ в клетку необходим для поддержания тонуса мышц и развития сокращения, поэтому блокирование Са2+ каналов гладких мышц приводит к ограничению поступления этого иона в цитоплазму миоцитов внутренних органов и сосудов, что широко используется в практической медицине для коррекции моторной функции ЖКТ и тонуса сосудов.

Регуляция мышечных сокращений зависит от объема иннервации. Аксон спинно-мозгового (двигательного) мотонейрона ветвится на несколько терминалей (веточек), каждая из которых подходит к одному мышечному волокну. Поэтому в целостном организме, при возбуждении 1 нервного волокна сокращается группа мышц. Совокупность двигательного нейрона и мышечных волокон, которые он иннервирует называют двигательной единицей. Количество мышечных волокон, входящих в двигательную единицу, различно и зависит о функции, которую реализует каждая конкретная мышца в организме. В мышцах глаз, кисти руки, которые обеспечивают высокоточные, координированные движения, 1 двигательная единица содержит 3-5 мышечных волокон. Двигательные единицы мышц спины, бедра - состоят из нескольких сотен мышечных волокон, которые регулируются одним мотонейроном.

Вернемся к мембране мышечного волокна, на которой распространяется ПД, возникший в результате «успешного» проведения возбуждения через синапс. Продолжением мембраны мышечного волокна является саркотубулярная система, образующая поперечные инвагинации (впячивания) (Т-система поперечных трубочек). Система Т-трубочек выполняет несколько важных функций: является внутриклеточным депо ионов Са2+; сообщается с внеклеточной жидкостью и таким образом регулируется содержание Са2+ в ней; содержит потенциалчувствительные Nа+ каналы, которые дают возможность ПД распространяться как вдоль, так и вглубь мышечного волокна. Система Т-трубочек обеспечивает быстрое и согласованное возбуждение мышечной клетки, так как распространение деполяризации по Т-системе сопряжено с выходом Са2+ из цистерн саркоплазматического ретикулума, обеспечивает инициацию сокращения мышцы. Через Т-трубочки может происходить выделение продуктов обмена (например, молочной кислоты) из мышечной клетки в интерстиций (межклеточное пространство) и далее в кровь. Большой объем клетки скелетной мышцы невозможно было бы активировать быстро, если бы Са2+ поступал из внеклеточной среды. Накоплению Са2+ в саркоплазматическом ретикулуме способствует белок (кальсеквестрин), который непрочно связывает Са2+ в ретикулуме. Высвобождение Са2+ из саркоплазматического ретикулума в скелетных мышцах происходит благодаря взаимодействию Т трубочек и концевых цистерн (триада).

Ионы Са2+ попав в саркоплазму инициируют сокращение, связываясь с белком тропонином - блокатором актина в покое.

Рис.7. Поперечнополосатая мышечная ткань

1 - мышечное волокно; 2 - миофибрилла; 3 - саркомер; 4 - Z-линия;

5 - белок миозин; 6 - белок актин

Рис. 8. Слои миокарда желудочков сердца; вид сзади.

1 -- волокна миокарда (поверхностный слой), идущие от левого фиброзного кольца к правому желудочку; 2 -- поверхностный (продольный) слой миокарда в стенке правого желудочка; 3 -- завиток сердца; 4 -- глубокий (продольный) слой миокарда в стенке левого желудочка; 5 -- средний (кольцевой) слой миокарда в стенке левого желудочка; 6 -- поверхностный (продольный) слой миокарда в стенке левого желудочка.

Рис.9. Гладкие мышцы: состоят из мышечных клеток без поперечных волокон. Их главная особенность заключается в том, что они непроизвольные, то есть их нельзя сократить по своей воле. Из них образуются различные каналы тела: стенки пищевода, желудка и кишечника, вены и артерии и т.д.

Тонкая нить актина состоит из 2 тяжей фибриллярного актина, на котором нанизаны отдельные глобулы мономера актина (как бусы). Актин содержит активные центры (сайты) связывания с миозином, которые в состоянии покоя заблокированы тропонином. Тропонии подавляет АТФ-азную активность миозина, что делает невозможным расщепление АТФ и мышечные волокна пребывают в расслабленном состоянии. Крупный сократительный белок - миозин, состоящий из 6 полипептидных цепей, уложенных попарно. 2 из них - тяжелые цепи миоглобина, обладающие свойством ферментов. Связанный с трононином Са2+ освобождает активные центры актина для контакта с миозином. В присутствии актина миозиновый фермент (глобулярная головка) разрушает АТФ и взаимодействует с тонкими нитями актина, создавая движущую силу сокращения - образуя поперечные мостики («гребки») и мышца укорачивается (сокращается). Таким образом, АТФ обеспечивает сокращение энергией, гидролизуясь на глобулярных головках миозина. Энергия (Э) которая высвобождается при гидролизе АТФ, превращается в силу сокращения за счет конформационных (пространственных) изменений в миозине (рабочий ход - образование поперечных гребковых мостиков) - это тепло активации, выделяющее при связывании актина и миозина. АДФ, связанная с миозином, уменьшает сродство поперечного мостика к активному центру актина, что инициирует следующую фазу - мышечное расслабление. За счет гидролиза АТФ выделяется Э (тепло укорочения), которая идет на:

1) работу Са-АТФ-азы, (активация насоса происходит за счет неорганического фосфата, образующегося при гидролизе АТФ),

2) за счет Э происходит откачивание против градиента концентрации Са2+ назад в саркоплазматический ретикулум (активный транспорт).

3) АТФ в мышечной клетке обеспечивает работу Na+-К-АТФ-азы, обеспечивающей удаление Na+ из клетки и восстановление потенциала покоя (а, следовательно, и возбудимости) мышечной клетки.

АТФ обеспечивает процессы, как сокращения, так и расслабления. Если Са2+ не будет транспортироваться назад в СПР, то расслабление не наступит, развивается ригидность мышцы (при трупном окоченении), или в живом организме - при посттетанической контрактуре - накопление Са2+ в саркоплазме инициирует длительное мышечное сокращение вне поступления ПД через синапс на мембрану мышечного волокна.

Гладкая мышца содержит также тропомиозин, но не имеет тропонина, соотношение актина к миозину 14-16 к 1, сравните в скелетных соотношение актина к миозину 2 к 1. Гладкая мышца имеет щелевые контакты - это мостики, соединяющие мембраны соседних клеток. Регуляция сократительной активности гладких мышц происходит благодаря связыванию Са2+ с кальмодулином, активирующим киназу легкой цепи миозина, которая приводит к гидролизу АТФ и запускает цикл образования поперечных мостиков.

ПД скелетной мышцы длится около 2-4- мс и проходит по мембране мышечного волокна со скоростью около 5 м/с. 1 ПД вызывает одиночное мышечное сокращение, которое начинается через 2 мс после начала деполяризации мембраны (латентный период) и завершается сокращение почти одновременно с реполяризацией. Длительность одиночного сокращения различна и зависит от типа мышечной ткани. При частых стимулах развивается суммарное мышечное сокращение всех мышечных волокон, обладающих различным сопротивлением мембран к электрическому току. Однако, незначительные отличия порогов возбуждения обеспечивают синхронность мышечного сокращения целой мышцы. Наличие абсолютного рефрактерного периода около 1-3 мс, обуславливает возникновение различных видов тетанусов (суммарных мышечных сокращений). Существует зубчатый и гладкий тетанусы. Частота стимуляции мышцы для развития гладкого тетануса должна быть выше, чем для развития зубчатого. Стимул должен попадать в фазу укорочения мышцы, если же мышцы начала расслабляться, а мы ее стимулирует, то получаем - зубчатый тетанус. Минимальный промежуток времени между последовательными эффективными стимулами во время тетануса не может быть меньше рефрактерного периода, которые приблизительно соответствует длительности ПД. Поскольку мышцы состоят из мышечных волокон с различным уровнем возбудимости, имеется определенная зависимость между величиной стимула и ответной реакцией. Увеличение силы сокращения возможно до определенного предела, после которого амплитуда сокращения остается неизменной при увеличении амплитуды стимула (надо отметить, то в мышце суммируются не ПД, а сокращения). При этом все волокна, входящие в состав мышцы принимают участие в сокращении.

В организме человека имеются быстрые, фазные мышечные волокна (белые), длительность сокращения которых до 7,5 мс, и медленные, тонические (красные), которые обеспечивают сильные и мощные движения, длящиеся до 100 мс. Красные (тонические) имеют много волокон миозина типа I, которые отличаются низкой активностью АТФ-азы миозина. Скорость расщепления АТФ является фактором, предопределяющим частоту гребковых движений, и таким образом, скорость скольжения нитей актина вдоль миозина. Из СПР Са2+ транспортируется медленно, высокая окислительная способность, много капилляров, много миоглобина в структуре миозина (тяжелые цепи), много митохондрий. На стимул реагируют медленно, имеют длительный латентный период сокращения, поэтому способны к длительным, медленным, тоническим сокращениям, более резистентны к утомлению. Главная функция - поддержание положения тела. Белые мышцы содержат волокна миозина II типа. Гликолитический тип окисления, мало миоглобина, митохондрий, это волокна большого диаметра с высокой активность АТФ-азы миозина, способны развить значительную силу, но быстро утомляются.

8. Сила мышц

Определяется тем максимальным грузом, который мышца в состоянии чуть-чуть приподнять. Сила различных мышц неодинакова. Для сравнения силы разных мышц максимальный груз, который мышца в состоянии поднять делят на число квадратных сантиметров ее физиологического поперечного сечения. Силовые характеристики выше у мышц с перистым (косым) расположением волокон, при этом физиологическое сечение больше геометрического поперечного сечения. Сумма поперечного сечения не всегда совпадает с физиологическим сечением мышцы (только при параллельном расположении волокон.

9. Сила сокращения

Сила сокращения изолированной скелетной мышцы при прочих равных условиях зависит от исходной длины мышцы. Умеренное растяжение мышцы приводит к тому, что развиваемая ею сила возрастает по сравнению с силой, которую развивает нерастянутая мышца. Происходит суммирование пассивного напряжения, обусловленного наличием эластических компонентов мышцы, и активного сокращения (переход к правилу средних нагрузок - физиологический механизм данного закона). Способность совершать работу определяется произведением величины поднятого груза на высоту подъема. Величина работы мышцы постепенно увеличивается с увеличением массы поднимаемого груза, но до определенного предела, после которого увеличение массы груза приводит к снижению величины работы, так как высота подъема груза резко падает. Следовательно, максимальная работа совершается мышцей при средних величинах нагрузок. Сила сокращения и работа не остаются постоянными при статической и динамической работе. В результате продолжительной деятельности работоспособность скелетной мускулатуры понижается. Это явление называют утомлением. При этом снижается сила сокращений, увеличивается латентный период сокращения и период расслабления. Статический режим работы более утомителен, чем динамический (почему объяснить). Накапливаются продукты процессов окисления- молочная пировиноградная кислота, которые снижают возможность генерирования ПД. Нарушаются процессы ресинтеза АТФ и креатинфосфата, необходимых для энергетического обеспечения мышечного сокращения. В естественных условиях мышечное утомление при статической работе в основном определяется неадекватным регионарным кровотоком. Возникает «кислородное голодание» и утомление прогрессивно нарастает (рис.10).

Рис.10. Сила сокращения

10. Исследование нервно-мышечной передачи (Декремент-тест)

Описание методики

Пациент находится в положении сидя или лежа, на кожу накладываются поверхностные электроды. Стимулирующий поверхностный электрод располагается по ходу нерва. Пациент ощущает покалывание в месте стимуляции и ритмичное сокращение исследуемой мышцы. Ощущения могут быть болезненными. Исследование одной мышцы длится около 5-15 минут. При проведении декремент-теста часто проводятся фармакологические пробы с повторным исследованием на фоне действия препарата (чаще всего прозерина).

Исследуемые моторные нервы

В клинической практике чаще всего проводится исследование следующих мышц:

· Дельтовидная мышц

· Трехглавая мышца

· Мышца, отводящая мизинец кисти

· Мышца, приводящая большой палец кисти

· Круговая мышца глаза

· Двубрюшная мышца

· При необходимости возможно исследование других мышц

Противопоказания для стимуляционной ЭМГ

Каких либо особых противопоказаний не существует. Наличие имплантантов, кардиостимуляторов не является противопоказанием к исследованию.

Заболевания, при которых необходимо исследование нервно-мышечной передачи

Заболевания нервно-мышечного синапса

· Миастения аутоиммунная

Детского возраста

В сочетании с тимомой

В сочетании с коллагенозами

· Конгенитальная миастения (врожденная)

· Миастенические синдромы (синдром Ламберта-Итона, «slow channel» синдром)

· Ботулизм

· При эндокринной офтальмопатии, структурных и митохондриальных миопатиях для дифференциальной диагностики с синаптическими заболеваниями.

Рис.11. Декремент-тест

Список литературы

1. Гистология. Под редакцией Ю.И. Афанасьевой, Н.А. Юриной. М.: «Медицина», 1999 г.

2. Р. Эккерт, Д. Рендел, Дж. Огастин «Физиология животных» - 1 т. М.: «Мир», 1981 г.

3. К.П. Рябов «Гистология с основами эмбриологии» Минск: «Высшая школа», 1990 г.

4. Гистология. Под редакцией Улумбекова, проф. Ю.А. Челышева. М.: 1998 г.

5. Гистология. Под редакцией В.Г. Елисеева. М.: «Медицина», 1983 г.

Размещено на Allbest.ru

...

Подобные документы

  • Классификация мышц по степени поперечной исчерченности, их типы и функциональные особенности. Формы мышечных волокон. Общие и наиболее важные функции мышечной системы. Структура миофибриллы. Последовательность процессов при сокращении, их суммация.

    презентация [3,4 M], добавлен 05.01.2014

  • Представление о нервной системе. Физиология нервных волокон. Функционально-морфологическая организация синаптических структур. Механизмы проведения возбуждения по нервному волокну. Рефлекс как основной факт нервной деятельности. Медиаторы, их значение.

    лекция [1,5 M], добавлен 05.03.2015

  • Исследование функционального состояния нервно-мышечного аппарата человека методом хронаксиметрии в покое и после физических нагрузок. Принцип работы эргографа. Электромиотонометрия как способ измерения расслабления и напряжения мышц. Изучение ЭМГ.

    реферат [23,9 K], добавлен 09.12.2013

  • Строение и компоненты мышечного волокна. Саркомер как функциональная единица поперечно-полосатой мышцы, принципы его действия и эффективность. Теория мышечного сокращения, его энергетическое обеспечение. Особенности и механизмы сокращения гладких мышц.

    презентация [352,8 K], добавлен 05.03.2015

  • Гистологические особенности строения мякотных нервных волокон. Понятие и физиологические свойства синапсов. Двустороннее проведение возбуждения по нервному волокну. Сущность и стадии парабиоза. Химические изменения в нервных волокнах при возбуждении.

    реферат [887,9 K], добавлен 23.06.2010

  • Физиологические свойства скелетных мышц. Понятие о гормонах и их классификация. Функциональная характеристика неисчерченных мышц. Типы функционального влияния гормонов. Одиночное мышечное сокращение и его фазы. Гормональная регуляция и парагормоны.

    контрольная работа [15,8 K], добавлен 14.05.2009

  • Нормальная физиология. Патологическая физиология. Хронологическая таблица. Классификация по группам и подгруппам. Химическое строение, механизм действия. Источники происхождения и др. Механизм биологической активности препаратов данной группы.

    курсовая работа [74,6 K], добавлен 03.07.2008

  • Нервно-мышечные заболевания как многочисленная группа болезней, в основе которых лежит генетически детерминированное поражение скелетных мышц, периферических нервов или спинного мозга. Принципы формирования системы реабилитации, эффективные упражнения.

    презентация [3,5 M], добавлен 10.04.2016

  • Раздражимость как основное свойство живых клеток. Физиология возбудимых клеток. Строение и основные свойства клеточных мембран и ионных каналов. Физиология нервной ткани и синапсов. Классификация антиадренергических средств, механизм их действия.

    курсовая работа [194,6 K], добавлен 02.03.2014

  • Мышцы как органы тела человека, состоящие из мышечной ткани, способной сокращаться под влиянием нервных импульсов, их классификация и разновидности, функциональная роль. Особенности мышечной работы человеческого организма, динамической и статической.

    презентация [360,9 K], добавлен 23.04.2013

  • Физические и химические свойства фосфорорганические соединений (ФОС). Их токсичность при различных воздействиях на организм. Механизм действия ФОС, патогенез, превращения в организме. Характеристика нервно-паралитического действия. Профилактика поражений.

    курсовая работа [43,2 K], добавлен 02.03.2009

  • Особенности строения и физиологии нервно-мышечного аппарата. Характеристика основных видов электродиагностики. Аппаратура, общие указания по выполнению процедур. Определение параметров тока для электростимуляции. Анализ показаний к электростимуляции.

    эссе [1,2 M], добавлен 04.11.2015

  • Законы раздражения возбудимых тканей и следствия, которые из них вытекают. Физиология человека, регуляция и сенсорное обеспечение движений. Минимальная сила раздражителя. Законы силы, времени и адаптации организма человека. Наличие внешнего раздражителя.

    контрольная работа [16,7 K], добавлен 23.07.2009

  • Характеристика источников развития сердечной мышечной ткани, которые находятся в прекардиальной мезодерме. Анализ дифференцировки кардиомиоцитов. Особенности строения сердечной мышечной ткани. Сущность процесса регенерации сердечной мышечной ткани.

    презентация [1,1 M], добавлен 11.07.2012

  • Понятие, сущность и виды рефлексов. Общая характеристика, механизмы и основные условия синаптической передачи нервных импульсов. Окклюзия как эффект "занятой линии" нервных окончаний. Особенности количественной рефлекторной регуляции эфферентных нейронов.

    реферат [112,0 K], добавлен 19.09.2010

  • Физиология периферического и центрального речевого аппарата. Участие первой и второй сигнальной системы в образовании речи. Физические свойства звука. Механизм голосообразования (фонации). Сила, громкость, тембр и диапазон голоса. Процесс и типы дыхания.

    презентация [5,2 M], добавлен 22.10.2013

  • Чувствительные нервные окончания. Супрапороговое раздражение рецепторов. Лекарственные средства, понижающие и стимулирующие чувствительность окончаний нервов. Механизм действия местных анестетиков. Блокада проведения нервных импульсов по аксонам.

    презентация [233,2 K], добавлен 13.04.2015

  • Правила по технике безопасности при работе в физиологической лаборатории. Этапы приготовления нервно-мышечного препарата. Строение и физиологические функции биологических мембран возбудимых тканей. Первый и второй опыты Гальвани. Порог раздражения мышцы.

    методичка [1,4 M], добавлен 07.02.2013

  • Опорно-двигательная система цитоплазмы. Строение и химический состав мышечной ткани. Функциональная биохимия мышц. Биоэнергетические процессы при мышечной деятельности. Биохимия физических упражнений. Биохимические изменения в мышцах при патологии.

    учебное пособие [34,2 K], добавлен 19.07.2009

  • Понятие о физиологических функциях и их регуляции. Механизм и законы проведения возбуждения. Функциональное значение его структурных элементов нейрона. Особенности строения и функций вегетативной нервной системы. Строение и роль в организме надпочечников.

    контрольная работа [22,2 K], добавлен 14.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.