Система комплемента
Структура и функции системы комплемента - комплекса белков сыворотки крови, способных к самоорганизации и опосредованию реакций гуморального иммунитета и фагоцитоза. Классический и альтернативный пути ее активации. Характеристика механизмом опсонизации.
Рубрика | Медицина |
Вид | статья |
Язык | русский |
Дата добавления | 18.08.2014 |
Размер файла | 259,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ГБОУ ВПО ПГМА им АК. Е.А Вагнера Министерства здравоохранения Российской Федерации
Кафедра микробиологии и вирусологии
Система комплемента
Работу выполнил Ковальчук О.В.
Преподаватель: Кузяев Р.С.
Пермь 2014
Содержание
Введение
1. История понятия
2. Общее представление
3. Основные этапы активации системы комплемента
4. Активация системы комплемента
5. Регуляция системы комплемента
6. Роль системы комплемента при болезнях
Литература
Введение
Система комплемента - комплекс белков, постоянно присутствующих в крови. Это каскадная система протеолитических ферментов, предназначенная для гуморальной защиты организма от действия чужеродных агентов, она участвует в реализации иммунного ответа организма. Является важным компонентом как врождённого, так и приобретённого иммунитета.
1. История понятия
В конце XIX столетия было установлено, что сыворотка крови содержит некий "фактор", обладающий бактерицидными свойствами. В 1896 году молодой бельгийский ученый Жюль Борде, работавший в Институте Пастера в Париже, показал, что в сыворотке имеются два разных вещества, совместное действие которых приводит к лизису бактерий: термостабильный фактор и термолабильный (теряющий свои свойства при нагревании сыворотки) фактор. Термостабильный фактор, как оказалось, мог действовать только против определенных микроорганизмов, в то время как термолабильный фактор имел неспецифическую антибактериальную активность. Термолабильный фактор позднее был назван комплементом. Термин "комплемент" ввел Пауль Эрлих в конце 1890-х годов. Эрлих был автором гуморальной теории иммунитета и ввел в иммунологию много терминов, которые впоследствии стали общепринятыми. Согласно его теории клетки, ответственные за иммунные реакции, имеют на поверхности рецепторы, которые служат для распознавания антигенов. Эти рецепторы мы сейчас называем "антителами" (основой вариабельного рецептора лимфоцитов является прикреплённое к мембране антитело класса IgD, реже IgM. Антитела других классов в отсутствие соответствующего антигена не прикреплены к клеткам). Рецепторы связываются с определенным антигеном, а также с термолабильным антибактериальным компонентом сыворотки крови. Эрлих назвал термолабильный фактор "комплементом" потому, что этот компонент крови "служит дополнением" к клеткам иммунной системы.
Эрлих полагал, что имеется множество комплементов, каждый из которых связывается со своим рецептором, подобно тому, как рецептор связывается со специфическим антигеном. В противоположность этому Борде утверждал, что существует "дополнение" только одного типа. В начале XX века спор был разрешен в пользу Борде; выяснилось, что комплемент может активироваться с участием специфических антител или самостоятельно, неспецифическим способом.
2. Общее представление
Компоненты системы комплемента
Комплемент - система белков, включающая около 20 взаимодействующих компонентов: С 1 (комплекс из трех белков), С 2, СЗ, …, С 9, фактор В, фактор D и ряд регуляторных белков. Все эти компоненты - растворимые белки с мол. массой от 24 000 до 400 000, циркулирующие в крови и тканевой жидкости. Белки комплемента синтезируются в основном в печени и составляют приблизительно 5 % от всей глобулиновой фракции плазмы крови. Большинство из них неактивны до тех пор, пока не будут приведены в действие или в результате иммунного ответа (с участием антител), или непосредственно внедрившимся микроорганизмом (см. ниже). Один из возможных результатов активации комплемента - последовательное объединение так называемых поздних компонентов (С 5, С 6, С 7, С 8 и С 9) в большой белковый комплекс, вызывающий лизис клеток (литический, или мембраноатакующий, комплекс). Агрегация поздних компонентов происходит в результате ряда последовательных реакций протеолитической активации с участием ранних компонентов (С 1, С 2, С 3, С 4, фактора В и фактора D). Большинство этих ранних компонентов - проферменты, последовательно активируемые путем протеолиза. Когда какой-либо из этих проферментов специфическим образом расщепляется, он становится активным протеолитическим ферментом и расщепляет следующий профермент, и т. д. Поскольку многие из активированных компонентов прочно связываются с мембранами, большинство этих событий происходит на поверхностях клеток. Центральный компонент этого протеолитического каскада - С 3. Его активация путем расщепления представляет собой главную реакцию всей цепи активации комплемента. С 3 может быть активирован двумя основными путями - классическим и альтернативным. В обоих случаях С 3 расщепляется ферментным комплексом, называемым С 3-конвертазой. Два разных пути приводят к образованию разных С 3-конвертаз, однако обе они образуются в результате спонтанного объединения двух компонентов комплемента, активированных ранее в цепи протеолитического каскада. С 3-конвертаза расщепляет С 3 на два фрагмента, больший из которых (С 3b) связывается с мембраной клетки-мишени рядом с С 3-конвертазой; в результате образуется ферментный комплекс еще больших размеров с измененной специфичностью - С 5-конвертаза. Затем С 5-конвертаза расщепляет С 5 и тем самым инициирует спонтанную сборку литического комплекса из поздних компонентов - от С 5 до С 9. Поскольку каждый активированный фермент расщепляет много молекул следующего профермента, каскад активации ранних компонентов действует как усилитель: каждая молекула, активированная в начале всей цепи, приводит к образованию множества литических комплексов.
3. Основные этапы активации системы комплемента
Классический и альтернативный пути активации системы комплемента.
Система комплемента работает как биохимический каскад реакций. Комплемент активируется тремя биохимическими путями: классическим, альтернативным и лектиновым путем. Все три пути активации производят разные варианты C3-конвертазы (белка, расщепляющего С 3). Классический путь (он был открыт первым, но эволюционно является новым) требует антител для активации (специфический иммунный ответ, приобретённый иммунитет), в то время как альтернативный и лектиновый пути могут быть активизированы антигенами без присутствия антител (неспецифический иммунный ответ, врождённый иммунитет). Итог активации комплемента во всех трёх случаях одинаков: C3-конвертаза гидролизует СЗ, создавая C3a и C3b и вызывая каскад дальнейшего гидролиза элементов системы комплемента и событий активации. В классическом пути для активации С 3-конвертазы необходимо образование комплекса С 4bC2a. Этот комплекс образуется при расщеплении С 2 и С 4 С 1-комплексом. С 1-комплекс, в свою очередь, для активации должен связаться с иммуноглобулинами класса М или G. C3b связывается с поверхностью болезнетворных микроорганизмов, что приводит к большей "заинтересованности" фагоцитов к связанным с СЗb клеткам (опсонизация). C5a - важный хемоаттрактант, помогающий привлекать в район активации системы комплемента новые иммунные клетки. И C3a, и C5a имеют анафилотоксическую активность, непосредственно вызывая дегрануляцию тучных клеток (как следствие - выделение медиаторов воспаления). C5b начинает формирование мембраноатакующих комплексов (МАК), состоящим из C5b, C6, C7, C8 и полимерного C9. МАК - цитолитический конечный продукт активации системы комплемента. МАК формирует трансмембранный канал, вызывающий осмотический лизис клетки-мишени. Макрофаги поглощают помеченные системой комплемента болезнетворные микроорганизмы.
Биологические функции
Сейчас выделяют следующие функции:
1. Опсонизирующая функция. Сразу вслед за активацией системы комплемента образуются опсонизирующие компоненты, которые покрывают патогенные организмы или иммунные комплексы, привлекая фагоцитов. Наличие на поверхности фагоцитирующих клеток рецептора к С 3b усиливает их прикрепление к опсонизированным бактериям и активирует процесс поглощения. Такое более тесное прикрепление С 3b-связанных клеток или иммунных комплексов к фагоцитирующим клеткам получило название феномена иммунного прикрепления.
2. Солюбилизация (т.е. растворение) иммунных комплексов (молекулой C3b). При недостаточности комплемента развивается иммунокомплексная патология (СКВ-подобные состояния). [СКВ = системная красная волчанка]
3. Участие в воспалительных реакциях. Активация системы комплемента приводит к выделению из тканевых базофилов (тучных клеток) и базофильных гранулоцитов крови биологически активных веществ (гистамина, серотонина, брадикинина), которые стимулируют воспалительную реакцию (медиаторов воспаления). Биологически активные компоненты, которые образуются при расщеплении С 3 и С 5, приводят к высвобождению вазоактивных аминов, таких как гистамин, из тканевых базофилов (тучных клеток) и базофильных гранулоцитов крови. В свою очередь это сопровождается расслаблением гладкой мускулатуры и сокращением клеток эндотелия капилляров, усилением сосудистой проницаемости. Фрагмент С 5а и другие продукты активации комплемента содействуют хемотаксису, агрегации и дегрануляции нейтрофилов и образованию свободных радикалов кислорода. Введение С 5а животным приводило к артериальной гипотонии, сужению легочных сосудов и повышению проницаемости сосудов из-за повреждения эндотелия.
4. Фукнции С 3а:
o выступать в роли хемотаксического фактора, вызывая миграцию нейтрофилов по направлению к месту его высвобождения;
o индуцировать прикрепление нейтрофилов к эндотелию сосудов и друг к другу;
o активировать нейтрофилы, вызывая в них развитие респираторного взрыва и дегрануляцию;
o стимулировать продукцию нейтрофилами лейкотриенов.
5. Цитотоксическая, или литическая функция. В конечной стадии активации системы комплемента образуется мембраноатакующий комплекс (МАК) из поздних компонентов комплемента, который атакует мембрану бактериальной или любой другой клетки и разрушает ее.
Фактор С 3е, образующийся при расщеплении фактора С 3b, обладает способностью вызывать миграцию нейтрофилов из костного мозга, и в таком случае быть причиной лейкоцитоза.
4. Активация системы комплемента
Классический путь
Классический путь запускается активацией комплекса С 1 (он включает одну молекулу С 1q и по две молекулы С 1r и С 1s). Комплекс С 1 связывается с помощью С 1q с иммуноглобулинами классов М и G, связанными с антигенами. Гексамерный C1q по форме напоминает букет нераскрытых тюльпанов, "бутоны" которого могут связываться с Fc участком антител. Для инициации этого пути достаточно единственной молекулы IgM, активация молекулами IgG менее эффективна и требует больше молекул IgG.
С 1q связывается прямо с поверхностью патогена, это ведет к конформационным изменениям молекулы С 1q, и вызывает активацию двух молекул сериновых протеаз С 1r. Они расщепляют С 1s (тоже сериновую протеазу). Потом комплекс С 1 связывается с С 4 и С 2 и затем расщепляет их, образуя С 2а и С 4b. С 4b и С 2а связываются друг с другом на поверхности патогена, и образуют С 3-конвертазу классического пути, С 4b2а. Появление С 3-конвертазы приводит к расщеплению С 3 на С 3а и С 3b. С 3b образует вместе с С 2а и С 4b С 5-конвертазу классического пути. С 5 расщепляется на C5a и C5b.C5b остается на мембране и соединяется с комплексом C4b2a3b.Потом соединяются С 6, С 7, С 8 и С 9,которая полимеризуется и возникает трубочка внутри мембраны. Тем самым нарушается осмотический баланс и в результате тургора бактерия лопается. Классический путь действует более точно, поскольку так уничтожается любая чужеродная клетка.
Альтернативный путь
Альтернативный путь запускается гидролизом C3 прямо на поверхности патогена. В альтернативном пути участвуют факторы В и D. С их помощью происходит образование фермента СЗbВb. Стабилизирует его и обеспечивает его длительное функционирование белок P. Далее РС 3bВb активирует С 3, в результате образуется С 5-конвертаза и запускается образование мембраноатакующего комплекса. Дальнейшая активация терминальных компонентов комплемента происходит так же, как и по классическому пути активации комплемента. В жидкости в комплексе CЗbВb В заменяется Н фактором и под воздействием дезактивирующего соединения(Н) превращается в С 3bi.Когда микробы попадают в организм комплекс СЗbВb начинает накапливаться на мембране. Он соединяется с С 5, который расщепляется на C5a и C5b. C5b остается на мембране. Потом соединяются С 6, С 7, С 8 и С 9.После соединения С 9 с С 8, происходит полимеризация С 9 (до 18 молекул сшиваются друг с другом) и образуется трубочка, которая пронизывает мембрану бактерии, начинается закачка воды и бактерия лопается. кровь белок опсонизация
Альтернативный путь отличается от классического следующим: при активации системы комплемента не нужно образование иммунных комплексов, он происходит без участия первых компонентов комплемента - С 1, С 2, С 4. Он также отличается тем, что срабатывает сразу же после появления антигенов - его активаторами могут быть бактериальные полисахариды и липополисахариды(являются митогенами), вирусные частицы, опухолевые клетки.
Лектиновый (маннозный) путь активации системы комплемента
Лектиновый путь гомологичен классическому пути активации системы комплемента. Он использует лектин, связывающий маннозу, (MBL) - белок, подобный C1q классического пути активации, который связывается с маннозными остатками и другими сахарами на мембране, что позволяет распознавать разнообразные болезнетворные микроорганизмы. MBL - сывороточный белок, принадлежащий к группе белков коллектинов, который синтезируется преимущественно в печени и может активировать каскад комплемента, непосредственно связываясь с поверхностью патогена.
В сыворотке крови MBL формирует комплекс с MASP-I и MASP-II (Mannan-binding lectin Associated Serine Protease, связывающие MBL сериновые протеазы). MASP-I и MASP-II весьма схожи с C1r и C1s классического пути активации и, возможно, имеют общего эволюционного предшественника. Когда несколько активных центров MBL связываются с определенным образом ориентированными маннозными остатками на фосфолипидном бислое болезнетворного микроорганизма, MASP-I и MASP-II активируются и расщепляют белок C4 на C4a и C4b, а белок С 2 на C2a и C2b. Затем C4b и C2a объединяются на поверхности болезнетворного микроорганизма, формируя C3-конвертазу, а C4a и C2b действуют как хемоаттрактанты для клеток иммунной системы.
5. Регуляция системы комплемента
Система комплемента может быть очень опасной для тканей хозяина, поэтому ее активация должна хорошо регулироваться. Большинство компонентов активны только в составе комплекса, при этом их активные формы способны существовать очень короткое время. Если в течение этого времени они не встретятся со следующим компонентом комплекса, то активные формы теряют связь с комплексом и становятся неактивными. Если концентрация какого-то из компонентов ниже пороговой (критической), то работа системы комплемента не приведет к физиологическим последствиям. Система комплемента регулируется специальными белками, которые находятся в плазме крови даже в большей концентрации, чем сами белки системы комплемента. Эти же белки представлены на мембранах собственных клеток организма, предохраняя их от атаки со стороны белков системы комплемента.
Регуляторные механизмы в основном действуют в трех точках.
1. С 1. Ингибитор С 1 контролирует классический и лектиновый пути активации. Действует двумя путями: ограничивает действие С 4 и С 2 с помощью связывания C1r- и С 1s-протеаз и подобным образом выключает лектиновый путь, удаляя ферменты MASP из MBP-комплекса.
2. С 3-конвертаза. Время жизни С 3-конвертазы уменьшают факторы ускорения распада. Некоторые из них находятся на поверхности собственных клеток (например, DAF и CR1). Они действуют на С 3-конвертазы и классического, и альтернативного путей активации. DAF ускоряет распад С 3-конвертазы альтернативного пути. СR1 (C3b/C4b receptor) расположен главным образом на поверхности эритроцитов и отвечает за удаление из плазмы крови опсонизированных иммунных комплексов. Другие регуляторные белки производятся печенью и в неактивном состоянии растворены в плазме крови. Фактор I - сериновая протеаза, расщепляющая C3b и C4b. С 4-связывающий белок (C4BP) расщепляет С 4 и помогает фактору I расщеплять C4b.Фактор H связывается с гликозаминогликанами, которые есть на собственных клетках, но не на клетках патогенов. Этот белок является кофактором фактора I, а также ингибирует активность C3bBb.
3. С 9. CD59 и Гомологичный Фактор Ограничения ингибируют полимеризацию С 9 во время образования мембраноатакующего комплекса, не давая ему сформироваться.
6. Роль системы комплемента при болезнях
Система комплемента играет большую роль во многих болезнях, связанных с иммунитетом.
При болезнях иммунных комплексов комплемент провоцирует воспаление главным образом двумя путями:
1. c C3b и C4b, фиксированными на иммунных комплексах, связываются лейкоцитами, активируемые и привлекаемые в места отложения этих комплексов образовавшимися здесь анафилатоксинами. Так начинается повреждение тканей при синдроме Гудпасчера (системный капиллярит с преимущественным поражением легких и почек по типу гемморагических пневмонита и гломерулонефрита). Для подавления воспалительной реакции на экспериментальных моделях этого заболевания достаточно уменьшить содержание в крови комплемента или нейтрофилов.
2. МАК (мембраноатакующий комплекс), внедряясь в мембрану собственных клеток организма, повреждает мембрану. При этом происходит высвобождение метаболитов арахидоновой кислоты - простагландинов. Этим обусловлено повреждение тканей при мембранозном нефрите, который в эксперименте удается вызвать антителами к субэпителиальным антигенам. Воспалительную реакцию в этом случае не подавляет устранение нейтрофилов, однако она полностью отсутствует у животных, дефицитных по C5.
Литература
1. Janeway CA Jr., Travers P, Walport M, Shlomchik MJ Immunobiology., 5th ed.. - Garland Publishing, 2001. - ISBN 0-8153-3642-X
2. Goldman AS, Prabhakar BS The Complement System // Baron's Medical Microbiology. - Univ of Texas Medical Branch, 1996. - ISBN 0-9631172-1-1
3. Dragon-Durey MA, Frйmeaux-Bacchi V Atypical haemolytic uraemic syndrome and mutations in complement regulator genes // Springer Semin. Immunopathol.. - 2005. - Т. 27. - № 3. - С. 359-74. doi:10.1007/s00281-005-0003-2. PMID 16189652
4. Zipfel PF, Misselwitz J, Licht C, Skerka C The role of defective complement control in hemolytic uremic syndrome // Semin. Thromb. Hemost.. - 2006. - Т. 32. - № 2. - С. 146-54. doi:10.1055/s-2006-939770. PMID 16575689.
5. Mooijaart SP, Koeijvoets KM, Sijbrands EJ, Daha MR, Westendorp RG (2007). "Complement Factor H polymorphism Y402H associates with inflammation, visual acuity, and cardiovascular mortality in the elderly population at large". doi:10.1016/j.exger.2007.08.001. PMID 17869048.
6. Bolger MS, Ross DS, Jiang H, Frank MM, Ghio AJ, Schwartz DA, Wright JR, Complement Levels and Activity in the Normal and LPS-Injured Lung, American Journal of Physiology: Lung Cellular and Molecular Physiology. 2006 Oct 27; PMID 17071722
7. Datta PK, Rappaport J, HIV and Complement: Hijacking an immune defence, Biomedicine and Pharmacotherapy, 2006 Nov; 60(9):561-568 PMID 16978830
Размещено на Allbest.ru
...Подобные документы
Структура и функции системы комплемента - комплекса белков сыворотки крови, способных к самоорганизации и опосредованию реакций гуморального иммунитета и фагоцитоза. Классический и альтернативный пути ее активации. Характеристика механизмом опсонизации.
презентация [412,0 K], добавлен 25.02.2014Система комплемента как совокупность различных белков (более тридцати), находящихся в плазме крови и связанных с поверхностью клетки, ее функции, пути активации. Анафилатоксины - сильные индукторы воспаления. Опсонизация и процессинг иммунных комплексов.
презентация [492,7 K], добавлен 28.12.2013Гуморальный иммунитет как один из механизмов реализации защитных свойств организма в жидкой среде. Неспецифические и специфические факторы гуморального иммунитета. Формирование антител. Иммунный ответ. Система комплемента, ее роль в заболеваниях.
презентация [1,2 M], добавлен 08.10.2017Система комплемента как одна из защитных систем организма, относящихся к неспецифическим факторам резистентности. Функции системы комплемента, компоненты, входящие в ее состав. Участие в воспалительных реакциях. Опсонизирующая и цитотоксическая функции.
презентация [557,4 K], добавлен 16.04.2012Применение реакции связывания комплемента при идентификации антигенов и в серодиагностике инфекций. Постановка реакций связывания и длительного связывания комплемента: варианты и основные компоненты. Подготовка ингредиентов, контроли главного опыта.
доклад [790,4 K], добавлен 27.06.2011Применение дисперсионного анализа по проверки равенства нескольких средних и непараметрических раскладов согласно критериям Краскала-Уоллиса и Джонкхиера с целью определения зависимости уровня комплемента в крови больных системной красной волчанкой.
курсовая работа [74,2 K], добавлен 09.08.2010Понятие, состав и изучение свойств адренорецепторов как рецепторных белков клеточной мембраны, взаимодействующих с внеклеточными сигнальными молекулами. Описание механизма активации внутриклеточных G-белков. Система циркуляции адренорецепторов в крови.
статья [14,4 K], добавлен 26.07.2013Функционирование и недостаточность иммунной системы. Первичные специфические комбинированные иммунодефициты. Болезнь Незелофа и синдром Ди-Джорджи. Врожденные дефекты фагоцитарной защиты и системы комплемента. Критерии аутоиммунных заболеваний.
реферат [28,1 K], добавлен 13.04.2009Стадии необратимой агрегации. Международная номенклатура факторов свертывания крови. Тромбоциты: понятие, функции. Антикоагулянты естественного происхождения. Факторы активации плазминогена. Группы крови по К. Ландштейнеру. Антигенные системы эритроцитов.
реферат [14,8 K], добавлен 19.04.2010Онтогенез местного иммунитета. Свертывание крови у детей в первые дни после рождения. Основная функция тромбоцитов. Иммунная система, ее место и масштабы влияния на здоровье человека. Мероприятия по сохранению и восстановлению микрофлоры кишечника.
презентация [701,7 K], добавлен 12.10.2015Главное предназначение лимфоцитов. Роль медиаторов клеточного и гуморального иммунитета в патогенезе бронхиальной астмы, обструктивной болезни легких, идеопатического фиброзирующего альвеолита. Изучение клинических данных пациентов с туберкулезом.
статья [37,2 K], добавлен 28.01.2015Механизмы клеточного и гуморального иммунитета. Резистентность организма к инфекциям. Аутоиммунные патологические реакции и развитие реакций отторжения при пересадках органов и тканей. Иммуностимуляторы и иммуносупрессоры, механизм их действия.
реферат [17,2 K], добавлен 21.08.2011Органы иммунной системы и лимфоциты, их образование, развитие, функции и значение. Антигенпредставляющие клетки; межклеточные кооперации при развитии гуморального иммунологического ответа; нейропептидный, гормональный механизмы и пути его регуляции.
курсовая работа [888,1 K], добавлен 05.01.2011Выявление антител или компонентов комплемента, фиксированных на поверхности эритроцитов. Типы проб Кумбса. Трактовка результатов прямой пробы Кумбса. Выявление изоантител в сыворотке крови человека. Лекарственная иммунная гемолитическая анемия.
презентация [643,6 K], добавлен 20.11.2014Первичные иммунодефициты: кроветворной стволовой клетки, системы Т- и В-лимфоцитов, системы комплемента, селективные, комбинированные формы дефицита иммуноглобулинов. Понятие и свойства вторичных иммунодефицитов, их отличительные признаки от первичных.
реферат [20,7 K], добавлен 17.03.2011Понятие иммунитета как реакций организма, направленных на нейтрализацию всего чужеродного, попадающего во внутреннюю среду. Неспецифическая и специфическая иммунная система. Анализ и классификация спектра иммунных ответов. Типы аллергических реакций.
презентация [1,1 M], добавлен 26.01.2014Первичные иммунодефициты: комбинированные, Т-клеточные, В-клеточные, дефекты системы мононуклеарных фагоцитов и гранулоцитов, недостаточность системы комплемента. Вторичные иммунодефициты: вирусные, при заболеваниях, при нарушении обмена веществ.
реферат [26,6 K], добавлен 18.08.2014Система регуляции агрегатного состояния крови. Свертывающая и противосвертывающая системы крови. Реакция стенки сосудов в ответ на их повреждение. Плазменные факторы свертывания крови. Роль сосудисто-тромбоцитарного гемостаза. Пути расщепления тромба.
презентация [43,4 K], добавлен 15.02.2014Внутренняя среда организма. Основные функции крови - жидкой ткани, состоящей из плазмы и взвешенных в ней кровяных телец. Значение белков плазмы. Форменные элементы крови. Взаимодействие веществ, приводящее к свертыванию крови. Группы крови, их описание.
презентация [2,5 M], добавлен 19.04.2016Общие функции крови: транспортная, гомеостатическая и регуляторная. Общее количество крови по отношению к массе тела у новорожденных и взрослых людей. Понятие гематокрита; физико-химические свойства крови. Белковые фракции плазмы крови и их значение.
презентация [3,6 M], добавлен 08.01.2014