Сущность и действие витаминов

История открытия витаминов, их классификация. Общее понятие об авитаминозах; гипо- и гипервитаминозы. Содержание В2 в зелени и некоторых продуктах, потребность в нем. Роль в обмене веществ. Химическая природа, действие витаминов PP, В6, С. Витамин В12, Р.

Рубрика Медицина
Вид лекция
Язык русский
Дата добавления 27.10.2014
Размер файла 44,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Введение

витамин химический зелень

Ко второй половине 19 века было выяснено, что пищевая ценность продуктов питания определяется содержанием в них в основном следующих веществ: белков, жиров, углеводов, минеральных солей и воды.

Считалось общепризнанным, что если в пищу человека входят в определенных количествах все эти питательные вещества, то она полностью отвечает биологическим потребностям организма. Это мнение прочно укоренилось в науке и поддерживалось такими авторитетными физиологами того времени, как Петтенкофер, Фойт и Рубнер.

Однако практика далеко не всегда подтверждала правильность укоренившихся представлений о биологической полноценности пищи.

Практический опыт врачей и клинические наблюдения издавна с несомненностью указывали на существование ряда специфических заболеваний, непосредственно связанных с дефектами питания, хотя последнее полностью отвечало указанным выше требованиям. Об этом свидетельствовал также многовековой практический опыт участников длительных путешествий. Настоящим бичом для мореплавателей долгое время была цинга; от нее погибало моря ков больше, чем, например, в сражениях или от кораблекрушений. Так, из 160 участников известной экспедиции Васко де Гама прокладывавшей морской путь в Индию,100 человек погибли от цинги.

История морских и сухопутных путешествий давала также ряд поучительных примеров, указывавших на то, что возникновение цинги может быть предотвращено, а цинготные больные могут быть вылечены, если в их пищу вводить известное количество лимонного сока или отвара хвои.

Таким образом, практический опыт ясно указывал на то, что цинга и некоторые другие болезни связанны с дефектами питания, что даже самая обильная пища сама по себе еще далеко не всегда гарантирует от подобных заболеваний и что для предупреждения и лечения таких заболеваний необходимо вводить в организм какие-то дополнительные вещества, которые содержатся не во всякой пище.

1. ИСТОРИЯ ОТКРЫТИЯ ВИТАМИНОВ

Экспериментальное обоснование и научно-теоретическое обобщение этого многовекового практического опыта впервые стали возможны благодаря открывшем новую главу в науке исследованием русского ученого Николая Ивановича Лунина, изучавшего в лаборатории Г.А.Бунге роль минеральных веществ в питании.

Н.И.Лунин проводил свои опыты на мышах, содержавшихся на искусственно приготовленной пище. Эта пища состояла из смеси очищенного казеина (белок молока), жира молока, молочного сахара, солей, входящих в состав молока и воды. Казалось, налицо были все необходимые составные части молока; между тем мыши, находившееся на такой диете, не росли, теряли в весе, переставали поедать даваемый им корм и, наконец, погибали. В то же время контрольная партия мышей, получившая натуральное молоко, развивалась совершенно нормально. На основании этих работ Н.И.Лунин в 1880 г. пришел к следующему заключению: «...если, как вышеупомянутые опыты учат, невозможно обеспечить жизнь белками, жирами, сахаром, солями и водой, то из этого следует, что в молоке, помимо казеина, жира, молочного сахара и солей, содержатся еще другие вещества, незаменимые для питания. Представляет большой интерес исследовать эти вещества и изучить их значение для питания».

Это было важное научное открытие, опровергавшее установившееся положения в науке о питании. Результаты работ Н.И.Лунина стали оспариваться; их пытались объяснить, например, тем, что искусственно приготовленная пища, которой он в своих опытах кормил животных, была якобы невкусной.

В 1890 г. К.А.Сосин повторил опыты Н.И.Лунина с иным вариантом искусственной диеты и полностью подтвердил выводы Н.И.Лунина. Все же и после этого безупречный вывод не сразу получил всеобщее признание.

Блестящим подтверждением правильности вывода Н.И.Лунина установлением причины болезни бери-бери, которая была особенно широко распространена в Японии и Индонезии среди населения, питавшегося, главным образом, полированным рисом.

Врач Эйкман, работавший в тюремном госпитале на острове Ява, в 1896 году подметил, что куры, содержавшиеся во дворе госпиталя и питавшиеся обычным полированным рисом, страдали заболеванием, напоминающим бери-бери, после перевода кур на питание неочищенным рисом болезнь проходила.

Наблюдения Эйкмана, проведенные на большом числе заключенных в тюрьмах Явы, также показали, что среди людей, питавшихся очищенным рисом, бери-бери заболевал в среднем один человек из 40, тогда как в группе людей, питавшихся неочищенным рисом, ею заболевал лишь один человек из 10000.

Таким образом, стало ясно, что в оболочке риса (рисовых отрубях) содержится какое-то неизвестное вещество, предохраняющее от заболевания бери-бери. В 1911 году польский ученый Казимир Функ выделил это вещество в кристаллическом виде (оказавшееся, как потом выяснилось, смесью витаминов); оно было довольно устойчивым по отношению к кислотам и выдерживало, например, кипячение с 20%-ным раствором серной кислоты. В щелочных растворах активное начало, напротив, очень быстро разрушалось. По своим химическим свойствам это вещество принадлежало к органическим соединениям и содержало аминогруппу. Функ пришел к заключению, что бери-бери является только одной из болезней, вызываемых отсутствием каких-то особых веществ в пище.

Несмотря на то, что эти особые вещества присутствуют в пище, как подчеркнул ещё Н.И.Лунин, в малых количествах, они являются жизненно необходимыми. Так как первое вещество этой группы жизненно необходимых соединений содержало аминогруппу и обладало некоторыми свойствами аминов, Функ (1912) предложил назвать весь этот класс веществ - витаминами (лат, vitamin-амин жизни). Впоследствии, однако, оказалось, что многие вещества этого класса не содержат аминогруппы. Тем не менее, термин «витамины» настолько прочно вошел в обиход, что менять его не имело уже смысла.

После выделения из пищевых продуктов вещества, предохраняющего от заболевания бери-бери, был открыт ряд других витаминов. Большое значение в развитии учения о витаминах имели работы Гопкинса, Степпа, Мак Коллума, Мелэнби и многих других учёных.

В настоящее время известно около 20 различных витаминов. Установлена и их химическая структура; это дало возможность организовать промышленное производство витаминов не только путём переработки продуктов, в которых они содержаться в готовом виде, но и искусственно, путём их химического синтеза.

2.ОБЩЕЕ ПОНЯТИЕ ОБ АВИТАМИНОЗАХ; ГИПО- И ГИПЕРВИТАМИНОЗЫ

Болезни, которые возникают вследствие отсутствия в пище тех или иных витаминов, стали называть авитаминозами. Если болезнь возникает вследствие отсутствия нескольких витаминов, её называют полиавитаминозом. Однако типичные по своей клинической картине авитаминозы в настоящее время встречаются довольно редко. Чаще приходиться иметь дело с относительным недостатком какого-либо витамина; такое заболевание называется гиповитаминозом. Если правильно и своевременно поставлен диагноз, то авитаминозы и особенно гиповитаминозы легко излечить введением в организм соответствующих витаминов.

Чрезмерное введение в организм некоторых витаминов может вызвать заболевание, называемое гипервитаминозом.

В настоящее время многие изменения в обмене веществ при авитаминозе рассматривают как следствие нарушения ферментных систем. Известно, что многие витамины входят в состав ферментов в качестве компонентов их простатических или коферментных групп.

Многие авитаминозы можно рассматривать как патологические состояния, возникающие на почве выпадения функций тех или других коферментов. Однако в настоящее время механизм возникновения многих авитаминозов ещё неясен, поэтому пока ещё не представляется возможным трактовать все авитаминозы как состояния, возникающие на почве нарушения функций тех или иных коферментных систем.

С открытием витаминов и выяснением их природы открылись новые перспективы не только в предупреждении и лечении авитаминозов, но и в области лечения инфекционных заболеваний. Выяснилось, что некоторые фармацевтические препараты (например, из группы сульфаниламидных) частично напоминают по своей структуре и по некоторым химическим признакам витамины, необходимые для бактерий, но в то же время не обладают свойствами этих витаминов. Такие «замаскированные под витамины» вещества захватываются бактериями, при этом блокируются активные центры бактериальной клетки, нарушается её обмен и происходит гибель бактерий.

3. КЛАССИФИКАЦИЯ ВИТАМИНОВ

В настоящее время витамины можно охарактеризовать как низкомолекулярные органические соединения, которые, являясь необходимой составной частью пищи, присутствуют в ней в чрезвычайно малых количествах по сравнению с основными её компонентами.

Витамины - необходимый элемент пищи для человека и ряда живых организмов потому, что они не синтезируются или некоторые из них синтезируются в недостаточном количестве данным организмом. Витамины - это вещества, обеспечивающее нормальное течение биохимических и физиологических процессов в организме. Они могут быть отнесены к группе биологически активных соединений, оказывающих своё действие на обмен веществ в ничтожных концентрациях.

Витамины делят на две большие группы:1- витамины, растворимые в жирах, и 2-витамины, растворимые в воде. Каждая из этих групп содержит большое количество различных витаминов, которые обычно обозначают буквами латинского алфавита. Следует обратить внимание, что порядок этих букв не соответствует их обычному расположению в алфавите и не вполне отвечает исторической последовательности открытия витаминов.

В приводимой классификации витаминов в скобках указаны наиболее характерные биологические свойства данного витамина - его способность предотвращать развития того или иного заболевания. Обычно названию заболевания предшествует приставка «анти», указывающая на то, что данный витамин предупреждает или устраняет это заболевание.

ВИТАМИНЫ, РАСТВОРИМЫЕ В ЖИРАХ.

Витамин A (антиксерофталический).

Витамин D (антирахитический).

Витамин E (витамин размножения).

Витамин K (антигеморрагический)

ВИТАМИНЫ, РАСТВОРИМЫЕ В ВОДЕ.

Витамин В1 (антиневритный).

Витамин В2 (рибофлавин).

Витамин PP (антипеллагрический).

Витамин В6 (антидермитный).

Пантотен (антидерматитный фактор).

Биотин (витамин Н, фактор роста для грибков, дрожжей и бактерий, антисеборейный).

Инозит. Парааминобензойная кислота (фактор роста бактерий и фактор пигментации).

Фолиевая кислота (антианемический витамин, витамин роста для цыплят и бактерий).

Витамин В12 (антианемический витамин).

Витамин В15 (пангамовая кислота).

Витамин С (антискорбутный).

Витамин Р (витамин проницаемости).

Многие относят также к числу витаминов холин и непредельные жирные кислоты с двумя и большим числом двойных связей. Все вышеперечисленные растворимые в воде витамины, за исключением инозита и витаминов С и Р, содержат азот в своей молекуле, и их часто объединяют в один комплекс витаминов группы В.

ВИТАМИНЫ, РАСТВОРИМЫЕ В ВОДЕ.

ВИТАМИН В2 (рибофлавин).

Химическая природа и свойства витамина В2.

Выяснению структуры витамина В2 помогло наблюдение, что все активно действующие на рост препараты обладали жёлтой окраской и желто-зелёной флоуресценцией. Выяснилось, что между интенсивностью указанной окраски и фактором стимулирующим рост препарата в определённых условиях имеется параллелизм.

Вещество желто-зеленной флуоресценцией, растворимое в воде, оказалось весьма распространенным в природе; оно относится к группе естественных пигментов, известных под названием флавинов.К ним принадлежит например флавин молока (лактофлавин). Лактофлавин удалось выделить в химически чистом виде и доказать его тождество с витамином В2.

Витамин В2 - желтое кристаллическое вещество, хорошо растворимое в воде, разрушающееся при облучении ультрафиолетовыми лучами с образованием биологически неактивных соединений(люмифлавин в щелочной среде и люмихром в нейтральной или кислой).

Витамин В2 представляет собой метилированное производное изоаллоксазина, к которому в положении 9 присоединён спирт рибитол; поэтому витамин В2 часто называют рибофлавином, т.е. флавином, к которому присоединён пятиатомный спирт рибитол:

Наличие активных двойных связей в циклической структуре рибофлавина обуславливает некоторые химические реакции, лежащие в основе его биологического действия. Присоединяя водород по месту двойных связей, окрашенный рибофлавин легко превращается в бесцветное лейкосоединение. Последнее, отдавая при соответствующих условиях водород, снова переходит в рибофлавин, приобретая окраску. Таким образом, химические особенности строения витамина В2 и обусловленные этим строением свойства предопределяют возможность участия витамина В2 в окислительно-восстановительных процессах.

4. СОДЕРЖАНИЕ ВИТАМИНА В2 В НЕКОТОРЫХ ПРОДУКТАХ И ПОТРЕБНОСТЬ В НЕМ

Витамин В2 широко распространен во всех животных и растительных тканях. Он встречается либо в свободном состоянии (например, в молоке, сетчатке), либо, в большинстве случаев, в виде соединения, связанного с белком. Особенно богатым источником витамина В2 являются дрожжи, печень, почки, сердечная мышца млекопитающих, а также рыбные продукты. Довольно высоким содержанием рибофлавина отличаются многие растительные пищевые продукты.

Ежедневная потребность человека в витамине В2, по-видимому, равняется 2-4 мг рибофлавина.

5. РОЛЬ В ОБМЕНЕ ВЕЩЕСТВ

Витамин В2 встречается во всех растительных и животных тканях, хотя и в различных количествах. Это широкое распространение витамина В2 соответствует участию рибофлавина во многих биологических процессах. Действительно, можно считать твёрдо установленным, что существует группа ферментов, являющихся необходимыми звеньями в цепи катализаторов биологического окисления, которые имеют в составе своей простатической группы рибофлавин. Эту группу ферментов обычно называют флавиновыми ферментами.К ним принадлежат, например, желтый фермент, диафораза и ци-тохромредуктаза. Сюда же относятся оксидазы аминокислот, которые осуществляют окислительное дезаменирование аминокислот в животных тканях. Витамин В2входит в состав указанных коферментов в виде фосфорного эфира. Так как указанные флавиновые ферменты находятся во всех тканях, то недостаток в витамине В2 приводит к падению интенсивности тканевого дыхания и обмена веществ в целом, а следовательно, и к замедлению роста молодых животных.

В последнее время было установлено, что в состав простетических групп ряда ферментов, помимо флавоновой группы, входят атомы металлов(Cu,Fe,Mo).

ВИТАМИН РР (антипеллагрический витамин, никотинамид).

При отсутствии витамина РР (от английского pellagra preventing) в пище, у человека возникает заболевание, получившее название пеллагры.

ХИМИЧЕСКАЯ ПРИРОДА ВИТАМИНА РР.

Антипеллагрическим витамином является никотиновая кислота или её амид. Никотиновая кислота была известна химикам ещё с 1867 года, но только 70 лет спустя, было установлено, что это относительно простое и хорошо изученное вещество играет роль важнейшего витамина.

Никотиновая кислота представляет собой белое кристаллическое вещество хорошо растворимое в воде и спирте. При кипячении и автоклавировании биологическая активность никотиновой кислоты не изменяется.

5Никотиновая кислота Амид никотиновой кислоты

Активностью антипеллагрического витамина обладает как сама никотиновая кислота, так и амид никотиновой кислоты.

По-видимому, в организме свободная никотиновая кислота быстро превращается в амидникотиновой кислоты, который и является истинным антипеллагрическим витамином.

При введении никотиновой кислоты людям и животным, страдающим пеллагрой, все признаки заболевания исчезают.

СОДЕРЖАНИЕ ВИТАМИНА РР В НЕКОТОРЫХ ПРОДУКТАХ И ПОТРЕБНОСТЬ В НЁМ

Антипеллагрический витамин довольно широко распространён в природе, благодаря чему пеллагра при нормальном питании встречается редко. Большое количество витамина РР находится в рисовых отрубях, где содержание его доходит почти до 100 мг%. В дрожжах и пшеничных отрубях, в печени рогатого скота и свиней также содержится довольно значительное количество этого витамина.

Растения и некоторые микробы, а также, по-видимому, и некоторые животные (крысы)способны синтезировать антипеллагрический витамин и поэтому могут развиваться нормально и без поступления извне. В настоящее время выяснено, что РР может синтезироваться в организме из триптофана; недостаток триптофана в питании или нарушение его нормального обмена играет, поэтому, важную роль в возникновении пеллагры. Человек, по-видимому не обладает достаточной способностью к синтезу антипеллагрического витамина, и доставка никотиновой кислоты или её амида с пищей необходима, особенно при диете, не содержащей соответствующего количества триптофана и пиридоксина, например, при резком преобладании в пищевом рационе кукурузы (маиса). Суточная потребность в этом витамине для людей исчисляется в 15-25 мг для взрослых и 15 мг для детей.

РОЛЬ В ОБМЕНЕ ВЕЩЕСТВ

Никотиновая кислота, точнее, её амид, играет исключительно важную роль в обмене веществ. Достаточно сказать, что в состав ряда коферментных групп, катализирующих тканевое дыхание, входит амид никотиновой кислоты.

Отсутствие никотиновой кислоты в пище приводит к нарушению синтеза ферментов, катализирущих окислительно-восстановительные реакции, и ведет к нарушению механизма окисления тех или иных субстратов тканевого дыхания.

Избыток никотиновой кислоты выводится из организма с мочой в виде главным образом N1-метилникотинамида и частично некоторых других ее производных.

ВИТАМИН В6 (ПИРИДОКСИН)

Химическая природа и свойства витамина В6.

Вещества группы витамина В6 по своей химической природе являются производными пиридина. Одно из них - пиридоксин (2-метил-3окси-4,5-диокси-метилпиридил) - белое кристаллическое вещество, хорошо растворимое в воде и спирте.

Пиридоксин устойчив по отношению к кислотам и щелочам (например, 5 н. концентрации), но легко разрушается под влиянием света при pH=6,8.

6. СОДЕРЖАНИЕ ВИТАМИНА В6 В НЕКОТОРЫХ ПРОДУКТАХ И ПОТРЕБНОСТЬ В НЁМ

Витамин В6 весьма распространён в продуктах как живого, так и растительного происхождения. Особенно богаты им рисовые отруби, а также зародыши пшеницы, бобы, дрожжи, а из животных продуктов - почки, печень и мышцы.

Потребность человека в этом витамине точно не установлена, но при некоторых формах дерматитов, не поддающихся излечению витамином РР или другими витаминами, внутривенное введение 10-100 мг пиридоксина давало положительный лечебный эффект. Предполагают, что потребность организма человека в этом витамине составляет приблизительно 2 мг в день.

У человека недостаточность витамина В6, чаще всего, возникает в результате длительного приёма сульфаниломидов или антибиотиков - синтомицина, левомицина, биомицина, угнетающих рост кишечных микробов, в норме синтезирующих пиридоксин в количестве, достаточном для частичного покрытия потребности в нём организма человека.

РОЛЬ В ОБМЕНЕ ВЕЩЕСТВ

Два производных пиридоксина - пиридоксаль и пиридоксамин, играют важную роль в обмене аминокислот. Фосфорилированный пиридоксаль (фосфо-пиридоксаль) участвует в реакции переаминирования - переносе аминогруппы с аминокислоты на кетокислоту. Другими словами, система фосфопиридоксаль-фосфопиродоксамин выполняет коферментную функцию в процессе переаминирования.

Кроме того, было показано, что фосфопиридоксаль является коферментом декарбоксилаз некоторых аминокислот. Таким образом, две реакции азотистого обмена: переаминирование и декарбоксилирование аминокислот осуществляются при помощи одной и той же коферментной группы, образующейся в организме из витамина В6. Далее установлено, что фосфопиридоксаль играет коферментную роль превращения триптофана, которое, по-видимому, и ведёт к биосинтезу никотиновой кислоты, а также в превращениях ряда серосодержащих и оксиаминокислот.

ВИТАМИН С (АСКОРБИНОВАЯ КИСЛОТА)

К числу наиболее известных с давних времён заболеваний, возникающих на почве дефектов в питании, относится цинга, или скорбут. В средине века в Европе цинга была одной из страшных болезней, принимавший иногда характер повального мора. Наибольшее число жертв цинга уносила в могилу в зимнее и весеннее время года, когда население европейских стран было лишено возможности получать в достаточном количестве свежие овощи и фрукты.

Окончательно вопрос о причинах возникновения и способов лечения цинги был разрешен экспериментально лишь в 1907-1912 гг. в опытах на морских свинках. Оказалось, что морские свинки, подобно людям, подвержены заболеванию цингой, которая развивается на почве недостатков в питании.

Стало очевидным, что цинга возникает при отсутствии в пищеособого фактора. Этот фактор, предохраняющий от цинги, получил название витамина С, антицинготного, или антискорбутного, витамина.

ХИМИЧЕСКАЯ ПРИРОДА ВИТАМИНА С

Химическая природа аскорбиновой кислоты была выяснена после выделения её в кристаллической форме из ряда животных и растительных продуктов, особенно большое значение в ряду этих исследований имели работы А.Сент-Дьердьи и Хэворта.

Строение витамина С было окончательно установлено синтезом его из L-ксилозы. Витамин С получил название L-аскорбиновой кислоты.

Как видно из формулы, аскорбиновая кислота является ненасыщенным соединением и не содержит свободной карбоксильной группы. Кислый характер этого соединения обусловлен наличием двух фенольных гидроксилов, способных к диссоциации с отщеплением водородных ионов, по-видимому, в основном у третьего углеродного атома.

L-Аскорбиновая кислота представляет собой кристаллическое соединение, легко растворимое в воде с образованием кислых растворов. Наиболее замечательной особенностью этого соединения является его способность к обратимому окислению (дегидрированию) с образованием дегидроаскорбиновой кислоты.

Таким образом, L-Аскорбиновая кислота и её дегидроформа образуют окислительно-восстановительную систему, которая может, как отдавать, так и принимать водородные атомы, точнее электроны и протоны. Обе эти формы обладают антискорбутным действием. В присутствии широко распространенного в растительных тканях фермента - аскорбиноксидазы, или аскорбиназы, аскорбиновая кислота окисляется кислородом воздуха с образованием дегидроаскорбиновой кислоты и перекиси водорода.

Аскорбиновая кислота, особенно её дегидроформа, является весьма неустойчивым соединением. Превращение в дикетоулоновую кислоту, не обладающую витаминной активностью, является необратимым процессом, который заканчивается обычно окислительным распадом. Наиболее быстро витамин С разрушается в присутствии окислителей в нейтральной или щёлочной среде при нагревании. Поэтому при различных видах кулинарной обработки пищи часть витамина С обычно теряется. Аскорбиновая кислота обычно разрушается также и при изготовлении овощных и фруктовых консервов. Особенно быстро витамин С разрушается в присутствии следов солей тяжелых металлов (железо, медь). В настоящее время, однако, разработаны способы приготовления консервированных фруктов и овощей с сохранением их полной витаминной активности.

СОДЕРЖАНИЕ ВИТАМИНА С В НЕКОТОРЫХ ПРОДУКТАХ И ПОТРЕБНОСТЬ В НЁМ

Важно отметить, что большинство животных, за исключением морских свинок и обезьян, не нуждается в получении витамина С извне, так как аскорбиновая кислота синтезируется у них в печени из сахаров. Человек не обладает способностью к синтезу витамина С и должен обязательно получать его с пищей.

Потребность взрослого человека в витамине С соответствует 50-100мг аскорбиновой кислоты в день. В организме человека нет сколько-нибудь значительных резервов витамина С, поэтому необходимо систематическое, ежедневное поступление этого витамина с пищей.

Основными источниками витамина С являются растения. Особенно много аскорбиновой кислоты в перце, хрене, ягодах рябины, чёрной смородины, землянике, клубнике, в апельсинах, лимонах, мандаринах, капусте (как свежей, так и квашенной), в шпинате. Картофель хотя и содержит значительно меньше витамина С, чем вышеперечисленные продукты, но, принимая во внимание значение его в нашем питании, его следует признать наряду с капустой основным источником снабжения витамином С.

Здесь можно напомнить, что эпидемии цинги, свирепствовавшие в средние века в Европе в зимние и весенние месяцы года, исчезли после введения в сельское хозяйство европейских стран культуры картофеля.

Необходимо обратить внимание на важнейшие источники витамина С не пищевого характера - шиповник, хвою (сосны, ели и лиственницы) и листья черной смородины. Водные вытяжки из них представляют собой почти всегда доступное средство для предупреждения и лечения цинги.

РОЛЬ В ОБМЕНЕ ВЕЩЕСТВ

По-видимому, физиологическое значение витамина С теснейшим образом связано с его окислительно-восстановительными свойствами. Возможно, что этим следует объяснить и изменения в углеводном обмене при скорбуте, заключающиеся в постепенном исчезновением гликогена из печени и вначале повышенном, а затем пониженном содержании сахара в крови. По-видимому, в результате расстройства углеводного обмена при экспериментальном скорбуте наблюдается усиление процесса распада мышечного белка и появление креатина в моче (А.В.Палладин). Большое значение имеет витамин С для образования коллагенов и функции соединительной ткани. Витамин С играет роль в гидроксилировании и окисления гормонов коры надпочечников. Нарушение в превращениях тирозина, наблюдаемое при цинге, также указывает на важную роль витамина С в окислительных процессах. В моче человека обнаруживается аскорбиновая, дегидроаскорбиновая, дикетогулоновая и щавелевая кислоты, причём две последние являются продуктами необратимого превращения витамина С организме человека.

ВИТАМИН Р (ВИТАМИН ПРОНИЦАЕМОСТИ, ЦИТРИН)

Термин «витамин Р» является собирательным понятием. Этим термином объединяется целая группа веществ, обладающих сходным биологическим действием.

Витамин Р находится обычно в тех же растительных продуктах, в которых встречается и аскорбиновая кислота; этим и объясняется, что при цинге обычно наблюдаются симптомы, вызванные отсутствием в пище как аскорбиновой кислоты, так и витамина Р.

При отсутствии витамина Р в пище у людей и морских свинок повышается проницаемость кровеносных сосудов, почему этот витамин и получил название витамина Р (витамин проницаемости). Первоначально он был выделен из лимонов в виде весьма активного препарата.

Витамин Р вместе с аскорбиновой кислотой оказывает влияние на ход окислительно-восстановительных процессов в организме и тормозит действие гиалуронидазы.

ХИМИЧЕСКАЯ ПРИРОДА ВИТАМИНА Р

Имеется целая группа природных соединений, обладающих свойствами витамина Р. Эти соединения принадлежат главным образом к так называемым флавоновым пигментам - желтым и оранжевым веществам растительного происхождения, относящимся к классу глюкозидов.

Практическое значение в настоящее время имеют следующие препараты витамина Р: 1. рутин (глюкозид кверцитрина), получаемый из листьев гречихи; 2. «витамин Р» - препарат, выделяемый из листьев чайного дерева, основным действующим началом которого являются катехин и его галловые эфиры; 3. гесперидин (цитрин), выделяемый из кожуры цитрусовых.

Рутин имеет следующую структуру:

ВИТАМИН В12 (АНТИАНЕМИЧЕСКИЙ ВИТАМИН, КОБАЛАМИН).

На основании ряда работ было установлено, что в печени животных содержится вещество, регулирующее кроветворение и обладающее лечебным действием при злокачественной (пернициозной) анемии у людей. Уже однократная инъекция нескольких миллионных долей грамма этого вещества вызывает улучшение кроветворной функции. Это вещество получило название витамина В12, или антианемического витамина.

ХИМИЧЕСКАЯ ПРИРОДА ВИТАМИНА В12.

Применение препаратов витамина В12 с лечебной целью обнаружило интересную особенность: витамин В12 оказывает антианемическое действие при злокачественном малокровии только в том случае, если его вводят парентерально, и, наоборот, он малоактивен при применении через рот. Однако если давать витамин В12 в сочетании с нейтрализованным нормальным желудочным соком (который сам по себе не активен), то наблюдается хороший лечебный эффект.

Считают, что у здоровых людей желудочный сок содержит белок - мукопротеид - «внутренний фактор» Касла, который соединяется с витамином В12 («внешний фактор»), образуя новый, сложный белок. Витамин В12, связанный в таком белковом комплексе, может успешно всасываться из кишечника. При отсутствии «внутреннего фактора» всасывании витамина В12 резко нарушается. У больных злокачественной анемией в желудочном соке белок, необходимый для образования комплекса с витамином В12, отсутствует.

В этом случае всасывание витамина В12 нарушается, уменьшается количество витамина, поступающего в ткани животного организма, и таким путем возникает состояние авитаминоза. Эти данные представили новое объяснение связи, которая существует между развитием злокачественной анемии и нарушением функции желудка. Пернициозная анемия хотя и является авитаминозом, но возникает на почве органического заболевания желудка - нарушения секреции слизистой оболочкой желудка «внутреннего фактора» Касла.

РОЛЬ В ОБМЕНЕ ВЕЩЕСТВ.

По-видимому, витамину В12, точнее кобамидным коферментам, принадлежит важнейшая роль в синтезе, а возможно, и в переносе подвижных метильных групп. В процессах синтеза и переноса одно-углеродистых фрагментов наблюдается связь (механизм которой ещё не выяснен) между фолиевыми кислотами и группой кобаламина. Предполагают, что витамин В12 участвует также в ферментной системе.

НЕМНОГО О ЗЕЛЕНИ

Важным условием полноценного питания человека являются не только питательные, но также высокие ароматические и вкусовые свойства пищи. Применение пряных растений в домашней кулинарии позволяет разнообразить меню, создавать из одних и тех же продуктов блюда, различающиеся по вкусу и аромату.

Было замечено, что большинство пряных растений благотворно влияют на ферментативные и обменные процессы в организме, стимулирует не только пищеварительный процесс, но и другие функции, например, выведение из организмов различных шлаков и очищение его от механических и биологических засорений. К тому же пряно вкусовые растения богаты разнообразными витаминами, минеральными солями, микроэлементами, эфирными маслами. Добавление этих растений в небольших количествах в салаты, супы различные приправы повышает не только вкусовую, но и биологическую полноценность пищи, пополняет потребность организма человека в витаминах, минеральных элементах, улучшает усвояемость пищи, создаёт благоприятный физиологический и психологический настрой.

Заключение

Итак, витамины необходимы для жизни человека. Они издавна окружали человека, входили в привычный рацион его пищи, в виде разнообразных трав, овощей и фруктов.

Литература

1. Машковский М.Д. Лекарственные средства. В двух томах. Т.2. - Изд. 13-е, -Харьков: Торсинг, 1998. - 592с.

2. Гаевый М.Д. Фармакотерапия с основами клинической фармакологии. Волгоград, 1996. - 452с.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие витаминов как группы низкомолекулярных органических соединений, их участие в биохимических реакциях. Роль витаминов в обмене веществ, их классификация. Основные функции водорастворимых и жирорастворимых витаминов. Суточная потребность в витаминах.

    презентация [1,1 M], добавлен 13.11.2013

  • Сущность, классификация, виды витаминов, их роль в организме. История открытия и изучения витаминов. Суточные нормы и потребность человека в витаминах. Жирорастворимые и водорастворимые витамины: источники, назначение и близкие по структуре соединения.

    реферат [193,3 K], добавлен 24.02.2011

  • Распространение в продуктах витамина РР и суточная потребность организма. Химическое строение и свойства никотиновой кислоты, ее участие в обмене веществ. Причины развития, симптомы и лечение авитаминоза. Характеристика методов определения витаминов.

    реферат [79,9 K], добавлен 24.03.2011

  • Классификация витаминов, содержащихся в овощах. Критерии аскорбиновой кислоты. Содержание витаминов в продуктах питания и их кулинарная обработка. Источники витаминов растительного и животного происхождения. Полезность овощей и способы их хранения.

    реферат [20,0 K], добавлен 04.06.2010

  • Роль витаминов для нормального обмена веществ, жизнедеятельности организмов. Характеристика витаминов, их суточная потребность, источники. Клинические признаки гипо- и авитаминозов, лечение, профилактика. Проявления недостаточности минералов в организме.

    контрольная работа [39,8 K], добавлен 08.05.2011

  • Незаменимые органические вещества. История открытия витаминов и их классификация витаминов. Минеральные вещества. Прием витаминов и минеральных веществ, их роль в профилактике и лечении заболеваний. Коррекция витаминной недостаточности организма.

    реферат [33,4 K], добавлен 21.12.2008

  • Влияние витаминов и микроэлементов на организм человека и суточная потребность в них. Содержание витаминов в продуктах питания. Витамин А (ретинол, аксерофтол). Витамин В1 (тиамин, аневрин). Белки, жиры, углеводы. Образование гемоглобина, железо.

    реферат [33,0 K], добавлен 27.01.2009

  • История открытия витаминов; их свойства. Химическая структура, механизм биологического действия и теоретическая суточная доза водорастворимых витаминов. Основные особенности группы жирорастворимых витаминов. Хроматографические методы исследования.

    реферат [114,1 K], добавлен 05.07.2014

  • Понятие витаминов как низкомолекулярных органических веществ, поступающих в организм с продуктами питания, их основные источники и определение потребности для нормальной жизнедеятельности человеческого организма. История исследований действия витаминов.

    презентация [549,6 K], добавлен 24.08.2013

  • История открытия и классификация витаминов группы В. Химическое строения витамина В6. Признаки недостаточности или избыточности содержания витамина В6. Концентрация витаминов в тканях и суточная потребность в них. Взаимодействие с другими веществами.

    реферат [56,2 K], добавлен 05.12.2014

  • Классификация витаминов по мере выяснения их химической структуры и биохимической роли. Химическая формула аскорбиновой кислоты. Роль в организме тиамина. Свойства витамина РР. Суточная потребность организма в ретиноле, токофероле, кальцифероле.

    курсовая работа [44,9 K], добавлен 26.06.2014

  • История развития витаминов, их роль в питании человека. Содержание витаминов в основных пищевых продуктах, их классификация и группы. Степени витаминной недостаточности и ее влияние на здоровье человека. Рекомендации по разумному питанию учащихся.

    реферат [30,7 K], добавлен 08.12.2010

  • История открытия витаминов группы "В", их общая характеристика. Свойства витаминов, особенности применения, классификация по назначению и свойствам. Препараты, содержащие витамины группы "В". Механизм действия витаминов. Составление рецептов на витамины.

    курсовая работа [55,7 K], добавлен 17.02.2017

  • Понятие и свойства витаминов. Их действие как катализаторов и как субстратов в химических реакциях, регулирование жизнедеятельности организма, выполнение защитной функции. Классификация витаминов, причины авитаминоза. Современные продукты питания.

    контрольная работа [26,7 K], добавлен 23.01.2010

  • Понятие витаминов как группы низкомолекулярных органических соединений. Классификация витаминов (водорастворимые и жирорастворимые). Витаминоподобные соединения, провитамины. Устойчивость витаминов, антивитамины. Пути развития витаминной недостаточности.

    презентация [9,8 M], добавлен 24.04.2017

  • История развития витаминологии и общие представления о витаминах. Виды витаминов, растворимых в воде и жирах. Распространение в природе и суточная потребность. Пантотеновая кислота (витамин В3). Свойства аскорбиновой кислоты. Витаминоподобные вещества.

    курсовая работа [41,3 K], добавлен 08.06.2012

  • История открытия и классификация витаминов; их биологические свойства. Роль в организме ретинола, бета-каротина, филлохинона и меланхонина. Источники и признаки дефицита в организме тиамина, рибофлавина, пиридоксина, фолиевой и аскорбиновой кислоты.

    реферат [56,4 K], добавлен 25.09.2014

  • История открытия витаминов; их роль в жизни человека. Роль Лунинка, Эйкмана Христиана и Хопкинса в развитии витаминологии. Свойства ретинола, тиамина, аскорбиновой кислоты, кальциферола. Болезни, которые возникают при нехватке витаминов в организме.

    презентация [561,0 K], добавлен 31.05.2014

  • История открытия витаминов. Группа органических соединений, подавляющих их биологическую активность. Особенности поливитаминов. Болезни, обусловленные витаминной недостаточностью. Свойства ряда веществ этого ряда, их источники и признаки нехватки.

    презентация [1,5 M], добавлен 27.10.2013

  • Классификация витаминов - низкомолекулярных органических соединений различной химической природы, абсолютно необходимых для нормальной жизнедеятельности организмов. Биологическая роль витаминов, их суточная потребность и основные пищевые источники.

    презентация [173,3 K], добавлен 23.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.