Генотип микроорганизмов

Определение понятия генотипа - генетической конституции организма и совокупности всех наследственных задатков данной клетки или организма. Анализ генетической системы бактерий. Рассмотрение модели регуляции лактазного оперона и передачи информации.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 25.12.2014
Размер файла 3,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Московская ветеринарная академия»

Московская государственная академия ветеринарной медицины и биотехнологий им. К. И. Скрябина

(МГАВМиБ)

РЕФЕРАТ

по ветеринарной генетике

на тему: «Генотип микроорганизмов»

Выполнила студентка

1 курса 8 группы

Факультета ветеринарной медицины

Бодрова Анастасия

Москва 2014

Содержание

1. Что такое генотип

2. Генетическая система бактерий

3. Репликация бактериальной ДНК

4. Регуляция выражения генетической информации у бактерий

5. Перенос генетического материала бактерий

6. Генетическая изменчивость бактерий

7. Методы изучения генетики бактерий

1. Что такое генотип

Генотип - (от ген и греч. typos -- отпечаток), генетич. (наследственная) конституция организма, совокупность всех наследственных задатков данной клетки или организма, включая аллели генов, характер их физич. сцепления в хромосомах и наличие хромосомных перестроек. В узком смысле Г.-- совокупность аллелей гена или группы генов, контролирующих анализируемый признак у данного организма (в этом случае нерассматриваемая часть Г. выступает в качестве генотипической среды). Термин «Г.» предложен В. Иогапсеном в 1909. В совр. генетике Г. рассматривают не как меха-пич. набор независимо функционирующих генов (что было характерно для ранних этапов развития генетики), а как единую систему генетич. элементов, взаимодействующих на разл. уровнях (напр.. между аллелями одного гена или разных генов). Г. контролирует развитие, строение и жизнедеятельность организма, т.е. совокупность всех признаков организма -- его фенотип. Особи с разными Г. могут иметь одинаковый фенотип, поэтому для определения Г. организма необходимо проводить его генетич. анализ, напр. анализирующее скрещивание. Особи с одинаковым Г. в разл. условиях могут отличаться друг от друга по характеру проявления признаков (особенно количественных), т. е. различаться по фенотипу. Т. о., Г. определяет возможные пути развития организма и его отд. признаков во взаимодействии с внеш. средой. Примером влияния среды на фенотипич. проявление признаков может служить окраска меха у кроликов т. н. гималайской линии: при одном и том же Г. кролики при выращивании на холоде имеют чёрный мех, при умеренной темп-ре «гималайскую» окраску (белую, с чёрной мордой, ушами, лапами и хвостом), при повышенной темп-ре -- белый мех. В связи с этим в генетике используют понятие о норме реакции -- возможном размахе фенотипич. изменчивости без изменения Г. под влиянием внеш. условий (Г. определяет пределы нормы реакции). При изменении Г. или наличии особей с разными Г. говорят о генотнпич. изменчивости, являющейся одним из условий эволюц. процесса. Наличие особей одинакового Г. характерно для видов с бесполым (включая вегетативное) способом размножения и для чистых линий. Одинаковым Г. обладают идентичные (однояйцевые) близнецы, развивающиеся из одной оплодотворённой яйцеклетки.

Все гены организма, в совокупности определяющие все признаки организма - его фенотип. Если геном есть генетическая характеристика вида, то генотип является генетической характеристикой (конституцией) конкретного организма. При изучении наследования определённых признаков генотипом называют не все гены, а только те, которые эти признаки определяют.

Генотип представляет собой не механическую сумму автономных, независимо действующих генов, а сложную и целостную систему - генотипическую среду, в которой работа и реализация каждого гена зависят от влияния других генов. Так, при взаимодействии аллельных генов, помимо простых случаев доминантности и рецессивности, возможны неполное доминирование, кодоминирование (проявление сразу двух аллельных генов) и сверхдоминирование (более сильное проявление признака у гетерозигот по сравнению с гомозиготами).

При взаимодействии неаллельных генов возможны комплементарность (взаимодополняемость генов) и эпистаз (подавление одним геном другого). Эти формы взаимодействия относятся к качественным признакам. Степень развития многих т.н. количественных признаков (к ним относятся, напр., высота растений, масса и рост животных, жирность молока, яйценоскость кур и другие хозяйственно ценные свойства) зависит от совместного действия ряда неаллельных доминантных генов. Это явление называется полимерией, а гены, действующие в одном направлении, - полимерными генами. Обратное явление, когда один ген влияет на развитие нескольких признаков, называется плейотропией. В основе всех этих проявлений генотипической среды лежит то обстоятельство, что развитие любого признака происходит в результате целого ряда последовательных биохимических реакций, каждая из которых контролируется отдельным геном.

Особи с одинаковым генотипом, развивающиеся в разных условиях внешней среды, могут иметь различные фенотипы. В связи с этим в генетике было разработано представление о норме реакции, т.е. о тех границах, в пределах которых под влиянием разных условий среды может изменяться фенотип при данном генотипе. Таким образом, размах фенотипической изменчивости тоже определяется генотипом, или, другими словами, фенотип есть результат взаимодействия генотипа и внешней среды. Получение клеток и особей с одинаковым генотипом путём вегетативного размножения и клонирования важно как для решения научных проблем, так и практических задач сельского хозяйства, медицины, биотехнологии.

2. Генетическая система бактерий

Генетическая система бактерий состоит из ядерных и внеядерных структур. Аналог ядра прокариотов значительно отличается от ядра эукариотических клеток. Он представлен нуклеоидом , лишенным оболочки и включающем в себя почти всю ДНК бактерии. Бактериальная хромосома состоит из одной двунитевой молекулы ДНК кольцевой формы. Молекула ДНК построена из двух полинуклеотидных цепочек. Каждый нуклеотид состоит из азотистого основания, сахара дезоксирибозы и фосфатной группы. Азотистые основания представлены пуринами (аденин, гуанин) и пиримидинами (тимин, цитозин). Каждый нуклеотид обладает полярностью. У него имеются дезоксирибозный 3' -конец и фосфатный 5' -конец. Нуклеотиды соединяются в полинуклеотидную цепочку фосфодиэфирными связями между 5' -концом одного нуклеотида и 3' -концом другого. Соединение между двумя цепочками обеспечивается водородными связями комплементарных азотистых оснований: аденина с тимином, гуанина с цитозином. Нуклеотидные цепи антипараллельны: на каждом конце линейной молекулы ДНК расположены 5' -конец одной цепи и 3' -конец другой цепи. Наследственная информация у бактерий хранится в форме последовательности нуклеотидов ДНК, которая определяет последовательность аминокислотных остатков в молекуле белка. Каждому белку соответствует свой ген, т.е., дискретный участок на ДНК, отличающийся числом и специфичностью последовательности нуклеотидов. Бактериальная хромосома содержит до 4000 отдельных генов. Совокупность всех генов называется геномом. Внешнее проявление генома называется фенотипом. Размеры бактериальной хромосомы у различных представителей царства Procaryotae варьируют от 3 х 10 8 до 2,5 х 10 9 Д. Бактериальная клетка гаплоидна, а удвоение хромосомы всегда сопровождается ее делением.

Генетическая информация в бактериях может содержаться во внеядерных (внехромосомных) молекулах ДНК, представленных плазмидами, транспозонами и инсерционными (вставочными) последовательностями. Они не являются жизненно необходимыми, так как не кодируют информацию о синтезе ферментов, участвующих в метаболизме бактериальной клетки.

Плазмиды бактерий представляют собой двунитевые молекулы ДНК размером от 10 6 до 10 8 Д, несущие от 40 до 50 генов. Количество плазмид в бактериальной клетке может быть от 1 до 200. Выделяют плазмиды, находящиеся в виде отдельной замкнутой молекулы ДНК ( эписомы ) и встроенные в хромосому бактерии ( интегрированные плазмиды ). Плазмиды выполняют регуляторные и кодирующие функции. Первые направлены на компенсацию метаболических дефектов, вторые вносят в бактерию информацию о новых признаках. Как составляющая часть генетического материала бактерии плазмиды играют важную роль в ее жизнедеятельности, детерминируя такие характеристики, как способность продуцировать экзотоксины, ферменты или бактериоцины, устойчивость к лекарственным препаратам и т.д.

Удвоение ДНК некоторых плазмид индуцирует деление бактерий, т.е. увеличивает их «плодовитость». Такие плазмиды обозначают как F -плазмиды или F -факторы (от англ. fertility - плодовитость). Интегрированные F -плазмиды называют Hfr -плазмиды или Hfr -факторы (от англ. high frequency of recombinations - высокая частота рекомбинаций). Hfr -факторы осуществляют перенос части генетической информации данной хромосомы в другую клетку.

Плазмиды, детерминирующие устойчивость к лекарственным препаратам, называются R -плазмидами или R -факторами (от англ. resistance - устойчивость). R -плазмиды содержат гены, детерминирующие синтез ферментов, которые разрушают антибактериальные препараты. В результате бактериальная клетка становится устойчивой к действию целой группы лекарственных веществ. Многие R -плазмиды являются трансмиссивными и, распространяясь в популяции бактерий, переносят резистентность к воздействию антибактериальных препаратов.

Плазмиды патогенности контролируют вирулентные свойства микроорганизмов, детерминируя синтез факторов патогенности. Так, например, Ent -плазмида определяет синтез энтеротоксина. Развитие инфекционного процесса, вызванного возбудителями чумы, сибирской язвы, кишечного иерсиниоза, клещевого иксодового боррелиоза связано с функционированием плазмид патогенности.

Конъюгативные плазмиды переносятся от бактерии к бактерии внутри вида или между представителями близкородственных видов в процессе конъюгации. Чаще всего конъюгативными плазмидами являются F - или R -плазмиды. Подобные плазмиды относительно крупные (25-150 млн Д) и часто выявляются у грамотрицательных палочек. Большие плазмиды обычно присутствуют в количестве 1-2 копий на клетку и их репликация тесно связана с репликацией бактериальной хромосомы.

Неконъюгативные плазмиды обычно имеют небольшие размеры и характерны для грамположительных кокков, но встречаются также у некоторых грамотрицательных микроорганизмов (например, у Haemophilus influenzae , Neisseria gonorrhoeae ). Мелкие плазмиды могут присутствовать в больших количествах (более 30 на клетку), так как только наличие такого количества обеспечивает их распределение в потомстве во время клеточного деления. При наличии в бактерии одновременно конъюгативных и неконъюгативных плазмид донор может передавать и неконъюгативные плазмиды за счет связывания генетического материала последних с факторами, обеспечивающими их перенос в процессе конъюгации.

Подвижные генетические элементы входят в состав бактериального генома, бактериальной хромосомы и плазмид. К ним относятся вставочные последовательности в ДНК и транспозоны. Вставочные или инсерционные последовательности ( Is -элементы) представляют собой участки ДНК, способные перемещаться из одного места локализации в другое, и содержат только гены, необходимые для перемещения. Is -последовательности осуществляют координацию взаимодействий плазмид, умеренных фагов, транспозонов и нуклеоида для обеспечения репродукции; регулируют активность генов бактериальной клетки. Они могут инактивировать гены, в которые включились («выключение» гена) или, встраиваясь в хромосому, проявлять эффект промотора, включающего или выключающего транскрипцию соответствующих генов.

Транспозоны ( Tn ) - это сегменты ДНК, состоящие из вставочных последовательностей и структурных генов, обеспечивающих синтез молекул со специфическими биологическими свойствами (токсичность, устойчивость к антибиотикам и др.). Транспозоны не способны к самостоятельной репликации и размножаются только в составе бактериальной хромосомы.

3. Репликация бактериальной ДНК

Воспроизведение генетического материала бактерий осуществляется в процессе репликации, которая у бактерий протекает по полуконсервативному механизму. Это означает, что каждая из двух цепочек ДНК хромосомы или плазмиды служит матрицей для синтеза комплементарной дочерней цепочки ДНК. В процессе репликации участвует комплекс ферментов. Репликация начинается с момента расплетения двунитевой структуры ДНК, которое осуществляется ферментом ДНК-гидролазой. При этом формируются две репликативные вилки, которые двигаются в противоположных направлениях, пока не встретятся. Формирование новой дочерней цепи осуществляется ферментом ДНК-полимеразой. Особенностью функционирования ДНК-полимеразы является ее способность присоединять комплементарные матрице нуклеотиды к свободному 3 -концу растущей цепочки. Поэтому для осуществления реакции полимеризации нуклеотидов на матрице родительской цепочки ДНК-полимеразе требуется затравка, которая называется праймером (от англ. primer - запал). Праймер представляет собой короткую нуклеотидную цепочку, комплементарную матричной цепочки со свободным 3 -концом. На этом свойстве ДНК-полимеразы основана полимеразная цепная реакция (ПЦР), широко используемая в диагностике инфекционных заболеваний.

Две цепи двойной спирали ДНК комплементарны друг другу. На каждой цепи из структурных элементов ДНК - дезоксирибонуклеозидтрифосфатов - синтезируется новая цепь; при этом с каждым из оснований спаривается комплементарное ему основание, так что каждая из двух новых цепей будет комплементарна родительской цепи. Обе новые двойные цепи состоят из одной родительской и одной вновь синтезированной цепи. Такая точная репликация ДНК гарантирует сохранение генетической информации.

ДНК бактерий, будучи носителем наследственной информации, сама не служит матрицей для синтеза полипептидов. Биосинтез белков происходит на рибосомах , которые непосредственно с ДНК не соприкасаются. Передачу записанной в ДНК информации к местам синтеза белка осуществляет матричная или информационная РНК (мРНК). Она состоит из одной цепи и отличается от одиночной цепи ДНК тем, что тимин (Т) в РНК заменен урацилом ( U ). мРНК синтезируется на одной из цепей ДНК, причем механизм этого процесса сходен с механизмом репликации ДНК. Образование мРНК начинается на 5 ' -конце, и по последовательности оснований ее цепь комплементарна цепи ДНК. Этот процесс называется транскрипцией, а перевод нуклеотидной последовательности в последовательность аминокислот - трансляцией.

Каждый ген представлен определенным участком молекулы ДНК. Специфическая информация, содержащаяся в гене, определяется последовательностью оснований в цепи ДНК. Специфичность ферментных белков, синтез которых контролируют гены, определяются последовательностью аминокислот в полипептидных цепях. Эта же последовательность определяет и пространственную структуру белка - конформацию.

Рис. 1. Биосинтез белка. Перенос генетической информации осуществляется в два этапа. Сначала на матричной цепи ДНК образуется мРНК. Затем во время перемещения рибосомы вдоль мРНК (на схеме - слева направо) различные тРНК подводят к ней аминокислоты и устанавливают их в положение, определяемое триплетами мРНК. Аминокислоты соединяются между собой пептидными связями.

Так растет полипептидная цепь по мере продвижения рибосомы вдоль мРНК. Одновременно происходит закручивание этой цепи и свертывание ее в клубок, определяемое последовательностью аминокислот и природой их боковых цепей (гидрофобные и гидрофильные группы), и в результате возникает структура, обусловливающая специфические свойства и функцию данного белка. К мРНК обычно прикрепляется несколько рибосом, так что на одной и той же матрице одновременно синтезируется несколько полипептидных цепей. На конце мРНК находится кодон, от которого зависит отделение сформированной полипептидной цепи от рибосомы (рис. 1).

Таким образом, нуклеотидная последовательность ДНК представляет собой закодированную «инструкцию», определяющую структуру специфического белка. Этот универсальный процесс передачи информации при репликации ДНК, транскрипции и трансляции применим как к эукариотам, так и к прокариотам.

4. Регуляция выражения генетической информации у бактерий

Бактериальная клетка способна запустить или прекратить синтез того или иного фермента в зависимости от присутствия соответствующего субстрата. Для этого бактериальные гены объединены в группы ( кластеры ) таким образом, что все ферменты, необходимые для осуществления определенного пути биосинтеза, детерминируются генами, сцепленными друг с другом. Вся группа генов может транскрибироваться в одну полицистронную мРНК, которая последовательно транслируется рибосомами с образованием каждого из белков. Такая форма организации позволяет координировано регулировать выражение всех генов одной единицы транскрипции.

Экспрессия генов у прокариот регулируется главным образом на уровне транскрипции. Роль сигнальных веществ для запуска транскрипции играют молекулы-эффекторы, представляющие собой низкомолекулярные соединения, которые являются либо субстратом для фермента, либо продуктом ферментативной деятельности соответственно. Индукция и репрессия представляют собой разные стороны одного и того же явления. Малые молекулы, индуцирующие образование ферментов, способных метаболизировать их, называются индукторами. Те же, которые предотвращают образование ферментов, способных синтезировать их, - корепрессорами. Молекулы-эффекторы не могут вступать в прямое взаимодействие с ДНК, посредником для них служит специальный регуляторный белок. Регуляторный белок, который связывается с ДНК в отсутствии индуктора, называется репрессором.

Рис. 2. Модель регуляции лактазного оперона, активность которого определяется как индуцирующим действием субстрата, так и катаболитной репрессией. Для транскрипции оперона необходимо присоединение САР (сАМР-рецепторного белка) к промотору. Оно происходит только в присутствии сАМР. Глюкоза тормозит синтез сАМР и тем самым транскрипцию lac -оперона.

За синтез регуляторных белков ответственны регуляторные гены. В присутствии белка-репрессора транскрипция блокирована; его удаление обусловливает доступ РНК-полимеразы к генам и запуск транскрипции. Прекращение синтеза фермента при помощи белка-репрессора получило название репрессии. Репрессия позволяет бактериальной клетке избежать перевода своих ресурсов на ненужную в данный момент синтетическую активность. Если индуктор присутствует в клетке в высокой концентрации, то в результате специфического присоединения к регуляторному белку он изменяет его конформацию и тем самым - его способность связываться с ДНК.

Контроль транскрипции достигается взаимодействием регуляторного белка с регуляторным сайтом, называемым оператором , который расположен между структурными генами и промотором (участком, распознаваемым ДНК-зависимой РНК-полимеразой). Промотор служит местом связывания РНК-полимеразы, и от него начинается транскрипция. Совокупность промотора, оператора и структурных генов образует оперон. Оперон является функциональной генетической единицей, регулирующей экспрессию одного или группы генов (рис. 2).

5. Перенос генетического материала бактерий

Обмен генетическим материалом у бактерий осуществляется путем генетических рекомбинаций. Под генетической рекомбинацией подразумевают взаимодействие между двумя геномами, которое приводит к образованию рекомбинаций ДНК и формированию дочернего генома, сочетающего гены обоих родителей. Особенности рекомбинаций у бактерий определяются отсутствием истинного полового процесса и мейоза у прокариот и гаплоидным набором генов. В процессе рекомбинации бактерии условно делятся на клетки-доноры, которые передают генетический материал, и клетки-реципиенты, которые этот материал воспринимают. В клетку-реципиент проникает не вся, а только часть хромосомы клетки-донора, т.е. один или несколько генов. Образуется только один рекомбинант, генотип которого представлен в основном генотипом реципиента с включением фрагментов хромосомы донора.

Рекомбинация может быть гомологичной , при которой в процессе разрыва и воссоединения ДНК происходит обмен между участками ДНК, обладающими высокой степенью гомологии. Встречается также сайт-специфическая рекомбинация, которая происходит только в определенных участках (сайтах) генома и не требует высокой степени гомологии ДНК, например включение плазмиды в хромосому бактерии. Передача генетического материала между бактериями осуществляется 3-мя механизмами: конъюгацией, трансдукцией и трансформацией (рис. 3).

Коньюгация - это перенос генетического материала путем прямого контакта между двумя клетками. Необходимым условием конъюгации является наличие в клетке-доноре трансмиссивной плазмиды. Трансмиссивные плазмиды кодируют половые пили, образующие конъюгационную трубочку между клеткой-донором и клеткой-реципиентом, по которой плазмидная ДНК передается из клетки-донора в клетку-реципиент. В результате такого переноса клетка-реципиент получает донорские свойства. Интегративной трансмиссивной плазмидой является F -фактор. Клетки-доноры, обладающие F -фактором, обозначаются как F + -клетки, а клетки-реципиенты, не имеющие F -фактора - F - -клетки. Если F -фактор встраивается в хромосому клетки-донора и начинает функционировать в виде единого с хромосомой трансмиссивного репликона, то хромосома донора приобретает способность передаваться в клетку-реципиент. Донорские клетки, имеющие встроенный в хромосому F -фактор, называются Hfr -клетками. Хромосомная ДНК реплицируется, одна цепь копии хромосомы переносится в реципиентную F - -клетку, тогда как другая остается в Hfr + -клетке, т.е. донор сохраняет свое генетическое постоянство.

Рис. 3. Передача генетической информации у бактерий. I : 1 - бактериальная хромосома; 2 - F -фактор; 3 - гены, участвующие в рекомбинации; АВС - генотип донора; abc - генотип реципиента. II : 1 - бактериальная хромосома; 2 - гены, участвующие в рекомбинации: А - переносимый фагом ген; а - генотип реципиента; 3 - фаг. III : 1 - бактериальная хромосома; 2 - гены, участвующие в рекомбинации: А - генотип донора; а - генотип реципиента.

Передача генетического материала при конъюгации начинается с расщепления ДНК в районе локализации F -фактора. Одна нить донорской ДНК передается через конъюгационный мостик в клетку-реципиент. Процесс сопровождается достраиванием комплементарной нити до образования двунитевой структуры. Переданная в реципиентную клетку и достроенная до двунитевой структуры, нить ДНК рекомбинирует с гомологичным участком реципиентной ДНК с образованием стабильной генетической структуры.

Биологическая значимость конъюгации хорошо видна на примере распространения резистентности бактерий к антибиотикам. Устойчивость к антибиотикам бактерия может получить в результате мутации, что происходит 1 раз на каждые 10 6 клеточных делений. Однако, однажды изменившись, генетическая информация может быстро распространяться среди сходных бактерий посредством конъюгации, поскольку каждая третья из близкородственных бактерий способна именно к этому типу генетического переноса. генотип бактерия наследственный

Трансформация - передача генетической информации через выделенную из клетки-донора ДНК. Процесс трансформации может произвольно происходить в природе у некоторых видов бактерий, чаще грамположительных, когда ДНК, выделенная из погибших клеток, захватывается реципиентными клетками. Как правило, любая чужеродная ДНК, попадающая в бактериальную клетку, расщепляется рестрикционными эндонуклеазами; но при некоторых условиях такая ДНК может быть интегрирована в геном бактерии. По происхождению ДНК может быть плазмидной либо хромосомной и нести гены, трансформирующие реципиента. Подобным путем процессы трансформации могут распространять гены, кодирующие факторы вирулентности, среди бактериальных популяций; однако в обмене генетической информацией трансформация играет незначительную роль.

Трансформация служит хорошим инструментом для картирования хромосом, поскольку трансформированные клетки включают различные фрагменты ДНК. Определение частоты одновременного приобретения двух заданных характеристик (чем ближе расположены гены, тем более вероятно, что они оба включатся в один и тот же участок ДНК) дает информацию о взаиморасположении соответствующих генов в хромосоме. Перенос экстрагированной ДНК является основным методом генной инженерии, используемым при конструировании рекомбинантных штаммов с заданным геномом.

Трансдукция - передача бактериальной ДНК посредством бактериофага. В процессе репликации фага внутри бактерий фрагмент бактериальной ДНК проникает в фаговую частицу и переносится вместе с ней в бактерию-реципиент. При этом фаговые частицы как правило дефектны, они теряют способность к репродукции. Так как трансдуцируются лишь небольшие фрагменты ДНК, вероятность рекомбинации, затрагивающей какой-то определенный признак, очень мала: она составляет от 10 -6 до 10 -8. Существуют три типа трансдукции: неспецифическая (общая), специфическая и абортивная.

Общая (неспецифическая) трансдукция - перенос бактериофагом фрагмента любой части бактериальной хромосомы. В клетке, инфицированной бактериофагом, в ходе сборки дочерней популяции в головки некоторых фагов может проникнуть фрагмент бактериальной ДНК или плазмиды либо вместе с вирусной ДНК, либо вместо нее. Этот процесс происходит вследствие того, что бактериальная ДНК фрагментируется после фаговой инфекции и кусочек бактериальной ДНК того же размера, что и фаговая ДНК, проникает в вирусную частицу с частотой приблизительно 1 на 1000 фаговых частиц. При такой форме трансдукции в клетки-реципиенты могут быть внесены практически любые гены. Феномен неспецифической трансдукции может быть использован для картирования бактериальной хромосомы.

Специфическая трансдукция наблюдается в том случае, когда фаговая ДНК интегрирует в бактерию с образованием профага. При исключении ДНК фага из бактериальной хромосомы в результате случайного процесса захватывается прилегающий к месту включения фаговой ДНК фрагмент бактериальной хромосомы. Так как большинство умеренных фагов интегрируют в бактериальную ДНК в специфических участках, для таких бактериофагов характерен перенос в клетку-реципиент определенного участка бактериальной ДНК донора. Специфическая трансдукция может служить механизмом переноса вирулентных генов среди бактерий при условии, что эти гены локализованы в непосредственной близости от мест интеграции профага.

Наиболее характерным примером служит трансдукция, осуществляемая фагом л. Обычно он трансдуцирует определенные гены: gal (кодирует синтез галактозы) и bio (кодирует синтез биотина). При переходе в состояние профага фаг л включается в определенный участок хромосомы бактерии-хозяина - между генами gal и bio. Отделение фаговой ДНК от бактериальной хромосомы может происходить неточно и какой-то фрагмент ее останется в хромосоме, а близко расположенные гены будут захвачены фаговой ДНК. В случае заражения трансдуцирующим фагом клеток, дефектных по определенному гену, например gal - , может произойти рекомбинация с заменой собственного дефектного гена бактерии интактным трансдуцированным геном с образованием рекомбинанта (трансдуктанта) gal +.

Абортивная трансдукция. При абортивной трансдукции внесенный фрагмент ДНК донора не встраивается в хромосому реципиента, а остается в цитоплазме и там самостоятельно функционирует. Впоследствии он передается одной из дочерних клеток (т.е. наследуется однолинейно) и затем теряется в потомстве.

6. Генетическая изменчивость бактерий

Изменение бактериального генома могут происходить в результате мутаций.

Мутации - это изменения в последовательности нуклеотидов ДНК, проявляющиеся наследственно закрепленной утратой или изменением какого-либо признака или группы признаков. В их основе лежат ошибки копирования наследственной информации, возникающие при репликации. Фенотипическим проявлением мутации могут быть: изменение морфологии бактериальной клетки, возникновение потребности в факторах роста (например, в аминокислотах, витаминах), т.е. ауксотрофность; появление устойчивости к антибиотикам; изменение чувствительности к температуре; снижение вирулентности (аттенуация ). Мутации у бактерий носят ненаправленный характер.

Мутации могут быть спонтанными, т.е. возникающими самопроизвольно, без воздействия извне, и индуцированными. Спонтанные мутации появляются в результате ошибок репликации ДНК, неправильного формирования комплементарных пар оснований, структурных искажений ДНК и вследствие перемещения подвижных генетических элементов в процессе роста и размножения популяции бактерий. Спонтанные мутации могут обусловливать благоприятные и неблагоприятные генетические изменения. Вероятность возникновения определенных мутаций в расчете на одну клетку и на одну генерацию называют частотой мутирования. При высоких скоростях роста она постоянна, и ее обычно определяют для клеток в экспоненциальной фазе роста при оптимальных условиях среды. В фенотипе проявляются не все мутации. Непроявленные мутации называются молчащими. У мутанта может произойти обратная мутация или реверсия , в результате которой восстановятся свойства дикого штамма. Об истинной обратной мутации говорят лишь в тех случаях, когда вторая мутация точно восстанавливает исходный генотип, если же восстанавливается только фенотип, то говорят о вторичной реверсии или супрессорной мутации. Супрессорные мутации могут происходить как в исходном гене, так и в каких-либо других участках хромосомы ( интрагенные и экстрагенные супрессорные мутации).

Индуцированные мутации возникают под влиянием внешних факторов, которые называют мутагенами. Мутагены бывают физическими (УФ-лучи, г-радиация), химическими (аналоги пуриновых и пиримидиновых оснований, например, 2-аминопурин, азотистая кислота и ее аналоги, алкилирующие агенты и др.) и биологическими (транспозоны).

По протяженности повреждений мутации бывают точечными, когда повреждения ограничиваются одной парой нуклеотидов, и протяженными (аберрации). Мутации разделяют на хромосомные , обусловливающие появление нового признака при изменении двух и более участков хромосомы, и генные , обусловленные появлением нового признака при изменении гена. В этом случае может наблюдаться модификации оснований (изменения отдельных нуклеотидов), выпадение нескольких пар нуклеотидов (делеции), перемещение группы нуклеотидов в пределах хромосомы (транспозиция), разрыв путем вставки посторонней ДНК (инсерция) или добавление нуклеотидных пар (дупликация) и деформации спирали ДНК. Для точечных мутаций частота реверсий довольно высока, в то время как для аберраций реверсии не характерны.

Первичный эффект мутагенного фактора не обязательно ведет к истинной мутации. Новый фенотип проявляется только тогда, когда измененный ген начнет функционировать. С помощью различных методов удается накапливать и выделять мутантов с разного рода дефектами: с нарушением процессов транспорта или использования субстрата, с дефектами промежуточного обмена, с повышенной чувствительностью к температуре и т.д.

Теоретически, мутации, вызванные радиацией, химическими веществами или другими факторами, могли бы привести к вымиранию бактериальной популяции, однако в любой живой клетке существуют биохимические механизмы, способные полностью или частично восстанавливать исходную структуру ДНК. Совокупность ферментов, катализирующих реакции коррекции повреждений ДНК, составляют системы репарации , которые принципиально различаются по биохимическим механизмам восстановления генома. Известны три основных механизма коррекции дефектов ДНК:

· Непосредственная реверсия от поврежденной ДНК к исходной структуре;

· Эксцизия (`выпадение') повреждений с последующим восстановлением исходной структуры;

· Активация механизмов, обеспечивающих устойчивость к повреждениям.

Реверсия повреждений ДНК. К механизмам прямой реверсии повреждений ДНК относится световая репарация или фотореактивация (исправление деформации ДНК под действием УФ-лучей). Световая репарация осуществляется несколькими ферментами: фотолиазой (расщепляет тиминовый димер и восстанавливает целостность соседних тиминовых оснований), О 6 -метилтрансферазой (удаляет О 6 -метильную группу из остатков гуанина после действия метилирующих агентов), ДНК-пурин инсертазой (осуществляет встраивание утерянного при мутации основания в апуриновый сайт), ДНК-гликозилазой (удаление дефектных оснований). Все эти процессы происходят в один этап под действием конкретного фермента и безошибочно восстанавливают исходную структуру ДНК.

Системы эксцизионной репарации удаляют неправильно спаренные или поврежденные основания из ДНК и синтезируют новую последовательность ДНК, замещающую их. Место повреждения распознает эндонуклеаза, расщепляющая цепь ДНК вблизи дефекта, фрагмент удаляется, а дефект восполняется при помощи ДНК-полимеразы, которая проникает в брешь и встраивает в нее отсутствующие нуклеотиды, используя неповрежденную цепь ДНК в качестве матрицы. ДНК-лигаза ковалентно связывает 3' -конец вновь синтезированного участка ДНК с цепочкой. Поскольку эта система репарации основана на ресинтезе нуклеотидной цепи на базе неповрежденной матрицы, она также является практически безошибочной.

Репарационные механизмы устойчивости к повреждениям ДНК. Кроме механизмов исправления повреждений клетки имеют возможность `обойти' вызванную повреждениями блокаду репликации ДНК, например, путем репарации в процессе рекомбинации.

7. Методы изучения генетики бактерий

Выявление фенотипической изменчивости (модификации).

При посеве Proteus mirabilis на питательный агар вырастают колонии протея, окруженные зоной `роения'. При пересеве колоний петлей на поверхность питательного агара с 1% сухой желчью зоны роения исчезают, а при пересеве на обычный питательный агар все колонии вновь окружены зоной роения.

Определение Col -плазмид (колициногенных факторов).

Исследуемые культуры E. coli засевают методом укола в питательный агар в чашку Петри (по 7-8 уколов на 1 чашку). Посевы инкубируют при 37 ° С сутки и на внутреннюю поверхность чашки помещают кусочек ваты, смоченный хлороформом, в парах которого бактерии погибают. Затем поверхность агара равномерно заливают 3 мл расплавленного и остуженного до 45° С полужидкого (0,7%) питательного агара, смешанного с 0,1 мл 4-часовой бульонной индикаторной культуры (наиболее чувствительной к данному типу колицина). Результат учитывают через 18-24 ч инкубации при 37 ° С: вокруг посевов культур, продуцирующих колицины, появляются зоны подавления роста индикаторного штамма.

Определение колицинотипа.

В чашку Петри в питательный агар засевают эталонные штаммы бактерий с известным колицинотипом и инкубируют при 37 ° С сутки, после чего бактерии убивают в парах хлороформа. По поверхности агара равномерно распределяют 3 мл расплавленного и остуженного полужидкого агара, смешанного с 0,1 мл 4-часовой бульонной культуры E. coli неизвестного колицинотипа. Результаты учитывают через 18-24 ч. Если колицинотип индикаторной культуры и исследуемого штамма совпадут, то зоны подавления роста вокруг эталонного штамма не будет.

Тест перераспределения для выявления спонтанности мутаций.

В две чашки Петри с питательным агаром вносят по 0,1 мл суточной культуры E. coli М17 и распределяют равномерно по поверхности питательной среды. Через 6 ч инкубации при 37° С в одной из чашек перераспределяют шпателем выросшие микроколонии. Через 24 ч из каждой чашки культуры пересевают методом отпечатков на поверхность питательного агара с рифампицином. Через 24 ч инкубации учитывают результат: на поверхности среды с рифампицином в чашке без перераспределения выросли единичные колонии рифампицинрезистентных мутантов, а в чашке с перераспределением выросли более многочисленные (в десятки - сотни раз) колонии антибиотикоустойчивых мутантов.

Данный опыт показывает, что антибиотикоустойчивые мутанты возникли спонтанно, до контакта бактерий с селективным агентом - рифампицином. Уже через 6 ч на среде без антибиотика появляются микроколонии антибиотикоустойчивых мутантов. Благодаря перераспределению бактерии мутанты из этих микроколоний распространяются по всей поверхности среды и после посева отпечатками на среду с антибиотиками дадут начало многочисленным колониям мутантов, в то время как отпечатки с чашки без перераспределения выявляют только небольшое число колоний, соответственно исходным микроколониям мутантов.

Индукция мутаций под действием ультрафиолетового (УФ) облучения.

В качестве источника УФ-лучей используют бактерицидную лампу ВУФ-15, которую устанавливают на расстоянии 60 см от центра облучаемого объекта.

Для получения lac -мутантов E. coli предварительно выращивают на питательном бульоне в течение 14-18 ч. Клетки осаждают центрифугированием, ресуспендируют в 40 мл 0,1 моль раствора MgSО 4 и охлаждают на льду для прекращения деления клеток. Суспензию помещают в стерильную чашку Петри и облучают в течение 15-150 сек (предварительно определяют оптимальную мутагенную дозу, равную 0,1-1% от числа выживших бактерий), после чего клетки осаждают центрифугированием и ресуспендируют в питательном бульоне. Пробирку с бульоном инкубируют при 37 ° С в течение 14-18 ч. Разведения 10 -2 - 10 -5 по 0,1 мл высевают на среду Эндо. Параллельно делают контрольные посевы. lac -мутанты E. coli на среде Эндо образуют бесцветные колонии.

Для выделения антибиотикорезистентных мутантов используют штамм E. coli В или К12, который высевают после облучения на минимальный агар с определенной концентрацией антибиотика. Параллельно делают контрольные посевы. Клетки E. coli , выросшие на этой среде является антибиотикорезистентными.

Постановка опыта конъюгации.

Донор штамм E. coli К12 Hfr leu + Str s. Реципиент - штамм E.coli К12 F - leu - Str r. Селективная среда - минимальная глюкозосолевая среда со стрептомицином.

К 2 мл 3-часовой культуры реципиента добавляют 1 мл бульонной культуры донора и инкубируют 30 мин при

37 ° С. Затем смесь разводят до 10 -2 - 10 -3 и высевают по 0,1 мл на селективную среду в чашки Петри, где вырастут только рекомбинанты. В качестве контроля на среду сеют донорский и реципиентный штаммы, которые не будут расти на ней, так как первый штамм чувствителен к стрептомицину, а второй - ауксотроф по лейцину. После подстчета выросших колоний определяют частоту рекомбинаций по отношению количества рекомбинантных клеток к реципиентным.

Постановка опыта трансформации.

Реципиент - штамм Bacillus subtilis Str s (сенная палочка, чувствительная к стрептомицину). Донор - ДНК, выделенная из штамма B. subtilis Str r (устойчивого к стрептомицину). Селективная среда для отбора рекомбинантов (трансформантов) - питательный агар, содержащий 100 ЕД/мл стрептомицина.

К 1 мл бульонной культуры B. subtilis добавляют 1 мл ДНК донора и инкубируют 30 мин при 37 ° С. Для определения количества образовавшихся стрептомицинустойчивых рекомбинантов 0,1 мл смеси высевают на селективную среду. Частоту трансформации определяют по отношению количества выросших колоний рекомбинантных клеток к числу клеток реципиентного штамма.

Постановка опыта специфической трансдукции.

Реципиент - штамм E. coli lac -, лишенный в-галактозидазного оперона, контролирующего ферментацию лактозы. Трансдуцирующий фаг - фаг л dgal, в геноме которого часть генов замещена в-галактозидазным опероном E. coli. Селективная среда - среда Эндо, на которой лактозоотрицательные колонии бактерий реципиентного штамма образуют бесцветные колонии, а лактозоположительные колонии рекомбинантного штамма - ярко малиновые с металлическим оттенком.

К 1 мл 3-часовой бульонной культуре реципиентного штамма добавляют 1 мл трансдуцирующего фага в концентрации 10 6 - 10 7 частиц в 1 мл. Смесь инкубируют 60 мин при 37 ° С и готовят ряд десятикратных разведений. Из пробирки с 10 -6 разведением по 0,1 мл культуры высевают на три чашки со средой Эндо и инкубируют в течение суток. Величину трансдукции вычисляют по отношению количества клеток рекомбинантов, обнаруженных на всех чашках к числу клеток реципиентного штамма.

Список литературы

1. http://www.ssmu.ru/genetics

2. Биологический энциклопедический словарь. Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. -- 2-е изд.

3. Биология. Современная иллюстрированная энциклопедия. Гл. ред. А. П. Горкин; М.: Росмэн, 2006.

4. Генетика микроорганизмов. Захаров И, А,, Квитко К, В.

Размещено на Allbest.ru

...

Подобные документы

  • Поддержание генетической однородности организма. Фиксация антител на чужеродных антигенных детерминантах бактерий. Распознавание измененной генетической информации в клетках-мутантах и запуск иммунологических реакций направленных на их уничтожение.

    презентация [209,9 K], добавлен 16.03.2014

  • Расстройства жизнедеятельности организма, возникающие в результате нарушений генотипа. Патологические мутаций как причина наследственных болезней. Спонтанные и индуцированные мутации. Особенности наследственной передачи болезней, их отличия от фенокопий.

    презентация [73,0 K], добавлен 09.03.2017

  • Иммунитет — невосприимчивость, сопротивляемость организма к инфекциям и инвазиям, а также воздействию чужеродной генетической информации. Укрепление иммунитета: закаливание, прогулки, физические нагрузки, рациональное питание; позитивный настрой, сон.

    презентация [1,1 M], добавлен 05.03.2013

  • Понятие о наследственных болезнях, их классификация. Отличие наследственных заболеваний от наследственной предрасположенности и от врожденных патологий. Понятие и классификация мутагенов. Понятие резистентности организма, резистентность микроорганизмов.

    статья [13,9 K], добавлен 19.09.2012

  • Особенности реактивности детского возраста. Резистентность организма, определение, виды. Формы ответной реакции организма на раздражитель. Виды реактивности, характеристика. Роль пола, конституции в реактивности. Болезни пожилого и старческого возраста.

    лекция [8,7 M], добавлен 29.10.2014

  • Рассмотрение функций комплекса гистосовместимости человека. Определение связи туберкулеза с полиморфизмом гена рецептора к витамину D. Характеристика персистентных бактериальных инфекций. Изучение особенностей генотипа цитокинов среди разных популяций.

    курсовая работа [2,6 M], добавлен 22.05.2010

  • Рассмотрение понятия ткани как системы клеток и неклеточных структур, обладающих общностью развития, строения и функции. Пространственная организация микроворсинки в апикальной части каемчатой клетки. Классификация и морфология эпителиальных пластов.

    реферат [2,2 M], добавлен 09.09.2012

  • Содержание основных факторов неспецифической резистентности организма, существующие внешние и внутренние барьеры. Сущность и этапы фагоцитоза. Естественные клетки – киллера и белки острой фазы. Гуморальные неспецифические факторы организма от микробов.

    презентация [2,3 M], добавлен 22.10.2014

  • Понятие неспецифической резистентности как врожденного иммунитета, клетки, обеспечивающие его реакции. Особенности протекания фагоцитоз. Естественные клетки-киллеры и белки острой фазы. Гуморальные неспецифические факторы защиты организма от микробов.

    презентация [3,3 M], добавлен 03.12.2014

  • Старение и смерть генетически как процесс постепенного нарушения и потери важных функций организма или его частей, в частности способности к размножению и регенерации. Типы теорий старения: генетической запрограммированности и накопления "ошибок".

    презентация [871,2 K], добавлен 23.10.2014

  • Кожа, слизистые оболочки, микрофлора организма, температурный гомеостаз. Гуморальные и клеточные факторы неспецифической защиты организма. Система естественной цитотоксичности. Защитно-адаптационные механизмы. Клетки ретикулоэндотелиальной системы.

    презентация [56,2 K], добавлен 01.03.2015

  • Строение организма человека. Нервная и гуморальная регуляции. Клетки и ткани человеческого тела. Органы и системы органов. Биологически активные элементы. Интересные факты об организме человека. Факторы, обеспечивающие определённую коррекцию фенотипа.

    презентация [194,8 K], добавлен 06.03.2013

  • Определение понятия иммунного ответа организма. Пути и механизмы регуляции иммунного ответа с помощью нейромедиаторов, нейропептидов и гормонов. Основные клеточные регуляторные системы. Глюкокортикоидные гормоны и иммунологические процессы в организме.

    презентация [405,1 K], добавлен 20.05.2015

  • Строение, функции и значение эндокринной системы. Общие анатомо-физиологические свойства желез внутренней и внешней секреции; нейрогуморальная регуляция. Классификация эндокринных органов. Влияние гормонов на обмен веществ, рост и развитие организма.

    презентация [6,1 M], добавлен 19.04.2015

  • Рассмотрение роли нервной системы в регуляции функций организма. Характеристика строения и классификации (афферентные, эффекторные, ассоциативные) нейронов. Ознакомление с глиальными клетками (формирование миелиовой оболочки). Изучение состава синапса.

    контрольная работа [4,2 M], добавлен 26.02.2010

  • Понятие и основные черты экстремального состояния организма. Режимы жизнедеятельности организма и их отличия. Условия, ограничивающие обсуждение проблемы экстремального состояния организма в интересах клиники, порядок прогнозирования летального исхода.

    реферат [15,6 K], добавлен 23.08.2009

  • Факторы патогенности бактерий: адгезия, инвазия, агрессия и добычи питательных веществ. Химическое строение и функции капсул бактерий. Укрытие белками организма. Координированное поведение клеток. Структура и механизм действия эндотоксина и экзотоксина.

    презентация [2,0 M], добавлен 01.04.2019

  • Морфологические проявления развития воспалительной реакции организма на туберкулезную инфекцию. Исследование ферментативных реакций, от активности которых зависит функциональное состояние всех органов и организма в целом. Роль клеток соединительной ткани.

    реферат [459,2 K], добавлен 15.09.2010

  • Рассмотрение общего влияния поджелудочной железы на физиологическую активность органов и систем организма человека. Изучение влияния гипофиза, поджелудочной и околощитовидных желез, надпочечников; их роль в регуляции минерального обмена в тканях зуба.

    презентация [241,4 K], добавлен 04.11.2014

  • Состав и группы крови. Описание физиологических систем организма и принципов их работы. Активная и пассивная части опорно-двигательного аппарата. Свойство мышц менять степень эластичности под влиянием нервных импульсов. Процесс восстановления организма.

    контрольная работа [23,8 K], добавлен 09.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.