Противоопухолевый иммунитет
Злокачественные опухоли как носители чужеродной генетической информации, объект защитной реакции со стороны иммунной системы организма-хозяина. Общая характеристика функций противоопухолевого иммунитета. Особенности трансплантации опухолевых клеток.
Рубрика | Медицина |
Вид | реферат |
Язык | русский |
Дата добавления | 11.12.2014 |
Размер файла | 231,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Противоопухолевый иммунитет
злокачественный опухоль иммунитет
Введение
Опухоли являются носителями особых антигенов, поэтому иммунный ответ организма на опухоль представляется вполне закономерным явлением. Совокупность клеточных и гуморальных реакций иммунного ответа организма на антигены опухоли и составляет противоопухолевой иммунитет. Морфологический анализ проявлений иммунного ответа требует знакомства с современными иммунологическими представлениями о противоопухолевой резистентности организма и о системе иммунологического надзора, частным проявлением которого, по-видимому, является противоопухолевая резистентность.
1.Понятие о противоопухолевом иммунитете
Злокачественные опухоли являются носителями чужеродной генетической информации и, следовательно, объектом защитной реакции со стороны иммунной системы организма-хозяина. Ею уничтожаются любые клетки, несущие чужеродную генетическую информацию. Злокачественно трансформированные клетки содержат продукты собственных измененных (мутировавших) или чужеродных (вирусных) генов. Защитное действие иммунной системы заключается в предотвращении потенциальной опасности развития огромного числа опухолей. Лишь немногие клетки, способные маскировать проявления своей чужеродности и обходящие иммунологический контроль, дают начало злокачественным новообразованиям.
Специфические для опухолей антигены уникальны для раковых клеток и не встречаются на нормальных клетках. Они являются результатом мутаций, возникающих в опухолевых клетках. Цитозольный процессинг мутантных белков дает пептиды, которые презентируются молекулами гистосовместимости I класса и индуцируют клеточный ответ на опухоли.
Злокачественную трансформацию клеток могут вызывать некоторые вирусы (вирус саркомы Рауса, ретровирусы, вирус папиломы и другие). В таком случае опухолевые клетки несут вирусные белки, которые являются для организма чужеродными и способны распознаваться иммунной системой за счет процессинга и презентации молекулами гистосовместимости I класса.
Различают также антигены, ассоциированные с опухолями. Они не уникальны для раковых клеток и нередко являются белками, присутствующими также в эмбриональных клетках. У взрослых их в норме нет или очень мало. В опухолевых клетках эти белки могут появляться за счет реактивации эмбриональных генов. Примером является альфа-фетопротеин, являющийся эмбриональным аналогом альбумина -- основного белка плазмы крови.
Главную роль в противоопухолевом иммунитете играет клеточный иммунный ответ.
CD8-положительные Т-лимфоциты. Цитотоксические CD8-положительные Т-лимфоциты выполняют прямую киллерную функцию. С помощью Т-клеточного рецептора они распознают на поверхности опухолевых клеток связанные с молекулами гистосовместимости I класса пептидные фрагменты белков, характерных для трансформированных клеток. Специфическое распознавание приводит к реализации цитотоксической функции CD8-положительных Т-клеток и уничтожению опухолевых клеток путем апоптоза.
CD4-положительные Т-хелперы 1 типа. Т-хелперы 1 типа выполняют регуляторные функции, помогая успешной реализации киллерной роли CD8-положительных Т-лимфоцитов. Они также привлекают и активируют тканевые макрофаги, дендритные клетки и моноцитарные клетки. Выработка CD4-положительными Т-клетками 1 типа цитокинов, и в первую очередь интерферона-гамма, приводит к миграции в зону локализации опухоли макрофагальных клеток, их активации и поглощению фрагментов опухолевых клеток, гибнущих путем апоптоза. Показано, что Т-хелперы 1 типа также могут выполнять цитотоксическую функцию.
Макрофаги. Макрофаги обладают фагоцитарной функцией и, кроме того, могут выполнять киллерную функцию, осуществляемую за счет локальной секреции цитотоксических продуктов, приводящих к гибели опухолевой клетки.
Цитотоксичность макрофагов связана также с описанным выше феноменом антителозависимой клеточной цитотоксичности. Антитела способны связываться с Fc-рецепторами на поверхности макрофагов и одновременно специфически взаимодействовать с опухолевыми мембранными антигенами. Образование мостиков между макрофагами и опухолевыми клетками-мишенями может приводить к атаке макрофага на клетку-мишень, в результате которой последняя погибает.
Натуральные киллеры. Натуральные киллеры мигрируют в зону локализации опухолевых клеток под воздействием продуцируемых CD4-положительными Т-клетками 1 типа цитокинов (интерферон-гамма). Интерферон обеспечивает направленную миграцию натуральных киллеров (NK-клеток). Они не обладают антигенной специфичностью, не требуют антигензависимой дифференцировки. Обнаружив злокачественную клетку, способны сразу оказать цитотоксическое действие. Как и цитотоксический Т-лимфоцит, один натуральный киллер может уничтожить множество опухолевых клеток.
Многие опухолевые клетки имеют на мембране пониженную плотность молекул HLA I класса, что рассматривается как один из путей ухода опухолевых клеток от иммунологического надзора. Ингибирующие рецепторы натуральных киллеров (KIR) в таком случае не находят достаточного количества своих лигандов -- молекул HLA I класса на мембране опухолевых клеток. Ингибирующий сигнал с KIR-рецепторов оказывается недостаточным, и NK-клетки осуществляют цитотоксическую атаку, убивая опухолевую клетку.
Кроме того, NK-клетки, несущие на своей поверхности один из Fc-рецепторов IgG (CD 16 антиген), способны проявлять антителозависимую клеточную цитотоксичность. Антитела против опухолевых антигенов, связанные Fc-участком через CD 16 антиген с NK-клеткой, служат мостиком между опухолевой клеткой и натуральным киллером. Формирование таких мостиков может приводить к цитотоксическому воздействию NK-клеток на опухоль.
Гуморальное звено иммунитета также участвует в реализации противоопухолевого иммунитета.
Интерфероны. Восстанавливают экспрессию молекул гистосовместимости I класса на мембране опухолевых клеток. Тем самым увеличивается противоопухолевая активность цитотоксических Т-лимфоцитов. Интерферон-гамма участвует в привлечении и активации цитотоксических Т-лимфоцитов, макрофагов и NK-клеток, играющих главную роль в иммунном ответе на опухоль.
Классический путь активации комплемента. Если с опухолевым антигеном, появившимся на клеточной мембране, специфически взаимодействуют антитела класса IgM, то может инициироваться классический путь активации комплемента. Результатом активации является комплементзависимый цитолиз. Для активации системы комплемента в этом случае достаточно одной молекулы IgM.
Антитела. Играют неоднозначную роль в противоопухолевом иммунитете. С одной стороны, они, как описано выше, вызывают гибель опухолевых клеток, активируя систему комплемента или реализуя антителозависимую клеточную цитотоксичность. С другой стороны, антитела могут вызывать защитный эффект по отношению к опухоли.
Нередко антитела класса IgG являются не только защитными по отношению к опухолям, но и могут усиливать их рост. Такой эффект связывают с блокадой антителами опухолевых антигенов на мембране опухолевой клетки и с исчезновением антигенов с поверхности клетки за счет эндоцитоза.
Защитные эффекты антител относят к способам, с помощью которых опухоль уходит из-под надзора иммунной системы. К другим способам ухода опухоли из-под иммунологического надзора относят понижение плотности экспрессии на мембране молекул гистосовместимости I класса, отсутствие способности опухолевых клеток активировать наивные Т-лимфоциты, выработку белков, подавляющих противоопухолевый иммунный ответ.
2.Трансплантация опухолевых клеток
В течение долгого времени -- до начала XX века все попытки трансплантации опухолевых клеток были неудачными. Пересаженные опухоли некоторое время росли, а затем неизменно отторгались. История современной иммунологии началась с открытия того факта, что опухоли, возникшие в колониях инбредных животных и трансплантированные инбредным животным той же группы, могут расти в организме нового хозяина, а при попытках трансплантации животным посторонних инбредных групп -- отторгаются. Это открытие положило начало эре генетики трансплантационных антигенов и получения генетически чистых линий экспериментальных животных.
С получением таких линий оказалось возможным в течение неограниченного времени пересаживать опухолевые клетки от одного животного другому и получать при этом воспроизводимые результаты. Таким образом, первые попытки вызвать противоопухолевый иммунный ответ привели к пониманию того, что в корректной экспериментальной системе исследования противоопухолевого иммунитета трансплантационные антигены на клетках опухоли и реципиента должны совпадать. Несоблюдение этого правила приведет к иммунному ответу преимущественно на трансплантационные антигены, а не на антигены опухоли. Впервые существование противоопухолевого иммунитета было продемонстрировано Гроссом в 1943 г., когда он показал, что саркомы, индуцированные метилхолантреном у мышей СЗН, можно трансплантировать мышам той же линии внутрикожно, а затем удалять хирургически либо простым наложением лигатуры и прекращением кровоснабжения опухоли.
У животных, подвергнутых такой процедуре, вторичная трансплантация той же опу холи приводит к ее отторжению. Полное же и убедительное доказательство существования опухолеспецифического отторжения трансплантированных раков было получено в 1957 г. в экспериментах Р.Т. Прена и Д.М. Мэйна, которые наиболее полно показали, что антигены, вызывающие отторжение опухолей, являются опухолеспецифическими и не присутствуют в нормальных тканях. Они показали также, что иммунизация опухолевыми клетками не вызывает отторжения трансплантатов кожи и других нормальных тканей. Следующее важное доказательство было получено в 1960 г. Георгом Клейном с соавт., который показал, что опухолеспецифическая резистентность к опухолям, индуцированным метилхолантреном, имеется непосредственно у так называемого аутохтонного хозяина -- т. е. у животного, у которого эта опухоль была индуцирована.
В последующие годы было показано, что индукция опухолеспецифической трансплантационной резистентности может быть вызвана опухолями, индуцированными другими химическими или физическими (такими, как ультрафиолетовые лучи) канцерогенами, а также спонтанно возникшими опухолями.
Отторжение опухолевых клеток либо его альтернатива -- рост опухоли в этой системе, по-видимому, подчиняются закону «все или ничего». За исключением высокоиммуногенных опухолей, как правило, существует пороговая доза опухолевых клеток, превышение которой приводит к опухолевому росту, остановить который иммунная система не в состоянии.
Иммуногенность опухолей в значительной мере зависит от способа их индукции, который, возможно, тесно связан с иммуносупрессивным действием канцерогенного фактора. Хорошо известно, что наименее иммуногенными опухолями являются спонтанные. Далее, в порядке усиления иммуногенности, могут быть названы опухоли, индуцированные метилхолантреном. который вызывает кратковременное состояние иммуносупрессии, и опухоли, индуцированные УФ-излучением -- наиболее иммуногенные в этом ряду. Особенностью последних является то, что пересадка таких опухолей обычно возможна только при использовании реципиентов с нарушенным клеточным иммунитетом -- например, мышей nude, лишенных тимуса и Т-клеток, тогда как у нормальных реципиентов такие опухоли не растут Особенностью экспериментальной системы, использующей УФ-излучения в качестве канцерогенного фактора, является стойкая и длительная системная супрессия иммунного ответа, связанная с подавлением ко-стимуляторной функции дендритных клеток кожи -- клеток Лангерганса. На фоне подавления клеточного иммунитета вполне вероятно возникновение иммуногенных вариантов опухолей, подавить рост которых нарушенная иммунная система не может. Таким образом, иммуногенность опухолей может быть тесно связана с ффективностью иммунологического надзора, в зависимости от которой в организме может происходить селекция тех или иных вариантов опухолевых клеток. Эта концепция подтверждается тем, что опухоли, индуцированные метилхолантреном у мышей, обработанных УФ-излучением. часто являются более иммуногенными, чем опухоли, индуцированные метилхолантреном у нормальных животных.
Схема
Экспериментальный дизайн работы, указывающей на существование антигенов на саркомах мыши, индуцированных метилхолантреном. Только мыши D и Е, которые получили предварительную инъекцию опухолевых клеток с последущим удалением опухоли, смогли отторгнуть вторичный опухолевый трансплантат. Иммунитет у мыши D является опухолеспецифическим, поскольку отторгается опухолевый, но не кожный трансплантат. Введение мыши С нормальных клеток опухоленосителя не защищает ее от роста опухоли, как и животное В, не подвергавшееся каким-либо воздействиям до пересадки опухолевых клеток
Поскольку трансплантация опухолевых клеток у человека невозможна, были предприняты попытки создать экспериментальные системы с использованием экспериментальных животных, в которых было бы возможно поддерживать линии опухолевых клеток человека и тестировать ответы на них. В качестве реципиентов для создания таких систем чаше всего используют мышей, несущих мутации beige и nude, лишенных NK- клеток и Т-клеток, либо мышей SCID, лишенных Т- и В-клеток. Иммунная система таких животных неспособна распознать трансплантационные антигены клеток человека, и поэтому трансплантации как опухолевых клеток, так и иммунокомпетентных клеток человека, отвечающих на опухолевые клетки, проходят успешно.
Такие мыши с трансплантированными иммунокомпетентными клетками человека получили название «humanized mice».
В последние годы широкое распространение получили также трансгенные экспериментальные животные и животные-нокауты по иммунологически значимым генам. Трансгенные Т-клеточные рецепторы позволяют получить значительное количество клеток с заранее известной специфичностью и, соответственно, значительно выраженный иммунный ответ к отдельным комбинациям молекула МНС-пептид. Перевод таких трансгенных животных на генетическую основу нокаутов по генам рекомбиназ, осушествляюших реаранжировку Т-клеточных и В-клеточных рецепторов (и поэтому лишенных Т- и В-клеток), позволяет получить трансгенных животных с Т-клетка ми, экспрессирующими только один тип антигенспецифического Т-клеточного рецептора без примеси Т-клеток, экспрессирующих эндогенные рецепторы.
Мыши, экспрессирующие трансгенный зеленый флуоресцентный белок, могут быть с успехом использованы при изучении процессов метастазирования опухолевых клеток и исследования механизмов дифференцировки предшественников иммунокомпетентных клеток и клеток памяти при адаптивном переносе нетрансгенным реципиентам. Большой интерес в последнее время представляет использование в исследованиях трансгенных моделей с тканеспецифической и стадиоспецифической экспрессией антигенов.
Следует ожидать, что в скором времени эти модели будут применены для исследования процессов внутритимусной селекции Т-лимфоцитов, специфичных к опухольассоциированным антигенам. Использование нокаутов по иммунологически значимым генам значительно расширяет аналитические возможности исследователя в изучении механизмов индукции противоопухолевого ответа. В частности, использование нокаутов по генам р2-мигроглобулина и транспортеров, ассоциированных с процессингом антигенов, позволяет выявить роль эндогенного процессинга и презентации антигена в организме реципиента и понять, распознается ли он непосредственно на опухолевой клетке или для возникновения иммунного ответа на него необходима кросс-презентация дендритными клетками. Использование нокаутов по генам CD4 и CD8 дает возможность оценить роль кооперации этих типов клеток в иммунном ответе на конкретный антиген и определить его зависимость от соответствующей субпопуляции Т-лимфоцитов.
В последние годы также предпринят ряд попыток генетической модификации опухолевых клеток, нацеленной на усиление иммуногенности опухолевых клеток трансфекцией генов цитокинов и костимулирующих лигандов профессиональных АРС. Наиболее часто для этого используются аденовирусные векторы, позволяющие получить транзитную экспрессию трансгенного белка в опухолевых клетках. Вместе с тем в последние годы все более широкое распространение получают методы трансфекции, основанные на использовании ретровирусных и лентивирусных векторов, позволяющие с высокой эффективностью получать стабильные трансфектанты с фиксированным количеством копий трансгена на геном.
Несмотря на то, что метод обнаружения опухольспецифического иммунитета по отторжению трансплантированных линий опухолевых клеток был разработан еще в середине прошлого века, он до сих пор остается основным редством оценки эффективности противоопухолевого иммунитета в эксперименте. В той или иной модификации он, как правило, присутствует в экспериментальных работах, нацеленных на разработку противоопухолевых терапевтических вакцин, изменение антигенных свойств опухолевых клеток, усиление их им-муногенности трансфекциями генов цитокинов и костимуляторных лигандов, иммунизацию пептидами и др.
Заключение
Таким образом, противоопухолевый иммунитет в основном определяется антибластической направленностью иммунных лимфоцитов. Это обстоятельство наряду с возможностью создания адоптивного иммунитета сближает противоопухолевый иммунитет с трансплантационным. Как упоминалось выше, экспериментальные модели противоопухолевого иммунитета требуют проведения исследований на сингенных животных, при этом их генетическая однородность каждый раз проверяется методом трансплантации кожи донора опухоли иммунизированным реципиентам. Антибластический эффект учитывают как проявление противоопухолевого иммунитета при условии приживления кожного трансплантата.
Создание противоопухолевого иммунитета особенно важно в наши дни, т.к. появляется всё больше факторов, вызывающих различные опухоли и предотвращение этих образований является одной из основных задач современной медицины.
Список литературы
1.Новиков В. В., Добротина Н. А., Бабаев А. А. Иммунология: Учебное пособие. Нижний Новгород: Изд-во ННГУ им. Н. И. Лобачевского, 2004. - 212 с.
2.Интернет ресурсы
3.MedUniver.com
Размещено на Allbest.ru
...Подобные документы
Этиология, патогенез возникновения опухоли - патологического разрастания, характеризующегося автономностью и способностью к неограниченному росту. Взаимодействие опухоли и организма-опухоленосителя. Факторы клеточного противоопухолевого иммунитета.
презентация [699,2 K], добавлен 16.12.2015Иммунитет — невосприимчивость, сопротивляемость организма к инфекциям и инвазиям, а также воздействию чужеродной генетической информации. Укрепление иммунитета: закаливание, прогулки, физические нагрузки, рациональное питание; позитивный настрой, сон.
презентация [1,1 M], добавлен 05.03.2013Характеристика системы иммунной защиты организма. Приобретенный иммунитет и его формы. Выработка антител и регуляция их продукции. Образование клеток иммунологической памяти. Возрастные особенности иммунитета, вторичные (приобретенные) иммунодефициты.
реферат [34,1 K], добавлен 11.04.2010Иммунитет как защитная реакция организма в ответ на внедрение инфекционных и других чужеродных агентов. Механизм действия иммунитета. Состав иммунной системы. Врожденный и приобретенный виды иммунитета. Определение состояния иммунной системы человека.
презентация [1,1 M], добавлен 20.05.2011Определение иммунитета, его типы и виды. Общая схема иммунного ответа. Маркеры и рецепторы клеток иммунной системы. Распределение T-клеток в организме. Особенности структуры имунноглобулина, его классы и типы. Общая характеристика энергетических реакций.
реферат [203,4 K], добавлен 19.10.2011Роль иммунологических механизмов в защите от опухолей вирусной природы. История исследований существования антигенов, связанных со злокачественными опухолями. Классификация и характеристика опухолевых антигенов. Эффекторные механизмы иммунитета.
реферат [488,2 K], добавлен 19.04.2014Проблемы специфического противоопухолевого иммунитета. Развитие иммунологии опухоли. Новинский как родоначальник экспериментальной онкологии. Особенности трансплантации опухолей. Гомотрансплантация опухоли млекопитающих. Особенности эксплантации опухолей.
реферат [15,2 K], добавлен 24.05.2010Понятие иммунитета у беспозвоночных, классификация клеток крови, индуцибельные гуморальные защитные факторы. Эволюция В-клеток и иммуноглобулинов, клетки системы врожденного иммунитета, антимикробные пептиды. Лимфомиелоидные ткани у низших позвоночных
реферат [32,5 K], добавлен 27.09.2009Цитокины и их клеточные рецепторы. Фагоцитоз как важный компонент антимикробной защиты. Выбор эффекторных механизмов клеточного иммунитета. Сетевые взаимодействия цитокинов. Реакции, направленные на устранение инфицированных вирусами клеток организма.
реферат [35,7 K], добавлен 28.09.2009Дерматофитии, отрубевидный лишай и пьедра. Споротрихоз и мицетома, микозы. Роль цитотоксической Т-лимфоциты в развитии клеточного иммунитета. Главные свойства опухоли. Иммунные макрофаги: понятие, свойства. Основоположник экспериментальной трансплантации.
презентация [2,6 M], добавлен 03.12.2014Центральные лимфоидные органы и иммунокомпетентные клетки. Виды иммунитета: врожденный и приобретенный. Формирование иммунной системы у новорожденного. Физиология его становления, характеризующаяся наличием критических периодов развития организма ребенка.
презентация [1,4 M], добавлен 15.05.2016Предмет и методы изучения онкологии, основные этапы ее развития в России и в мире. Опухоли в древние времена и направления их исследования. История клеток Генриетты Лакс. Доброкачественные и злокачественные опухоли. Профилактика опухолевых образований.
презентация [7,4 M], добавлен 02.05.2023Роль клеток миелоидного и лимфоидного рядов в функционировании иммунной системы. Комплементарная система как составляющая врожденного иммунитета. Положительная и отрицательная селекция развивающихся Т-клеток в тимусе и вне его. Этапы развития В-клеток.
реферат [30,1 K], добавлен 10.10.2009Общее понятие о врожденном иммунитете. Основные функции имунной системы. Система комплиментов, особенности её активации. Опсонизация, хемотаксис, мембранотопный повреждающий комплекс. Роль соматических клеток в иммунной защите организма человека.
презентация [58,0 K], добавлен 01.10.2013Понятие, виды иммунитета в зависимости от механизма развития и факторы, способствующие его ослаблению. Главные и вторичные органы иммунной системы. Признаки и причины иммунодефицитного состояния. Семь простых правил укрепления и повышения иммунитета.
научная работа [24,2 K], добавлен 27.01.2009Понятие местного иммунитета как комплекса приспособлений, защищающих поверхности, соприкасающиеся с внешней средой. Основные виды иммунитета. Иммунитет слизистых оболочек, легких и кожи, ассоциированная с ними лимфоидная ткань как отдел иммунной системы.
презентация [175,2 K], добавлен 08.05.2014Иммунитет как совокупность свойств и механизмов, обеспечивающих постоянство состава организма и его защиту от инфекционных и других чужеродных агентов, виды: врожденный, искусственный. Характеристика и анализ факторов неспецифической защиты организма.
презентация [139,5 K], добавлен 11.12.2012Опухоли - патологический процесс, влияющий на регуляцию деления клеток живого организма. Отличия опухолевых процессов головного мозга, их происхождение, топографическая рубрикация. Механизмы воздействия опухоли на головной мозг, стадии ее развития и виды.
презентация [19,3 K], добавлен 21.02.2014Органы иммунной системы. Клетки и медиаторы иммунной системы. Иммунный ответ как основная реакция иммунной системы. Возрастные особенности иммунитета. Критические периоды становления иммунной системы. Иммунная компетентность и аутоиммунные заболевания.
курсовая работа [1,4 M], добавлен 19.05.2016Основы работы иммунной системы человека. Строение иммунной системы, лимфоидные органы, иммунокомпентентные клетки, разновидности иммунитета. Классификация заболеваний ИС. Признаки и последствия ослабленного иммунитета, рекомендации по его укреплению.
презентация [1,4 M], добавлен 21.02.2012