Методы анализа лекарственных препаратов

Критерии фармацевтического анализа, ошибки, возможные при его проведении. Принципы испытаний подлинности лекарственных веществ, причины их недоброкачественности. Особенности физических, физико-химических и биологических методов фармацевтического анализа.

Рубрика Медицина
Вид дипломная работа
Язык русский
Дата добавления 02.01.2015
Размер файла 254,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Хроматография в тонком слое сорбента (ГФ XI, вып. 1, с. 102) отличается от хроматографии на бумаге тем, что процесс, протекающий при перемещении подвижной фазы, происходит на носителе (сорбенте), нанесенном тонким слоем на инертную поверхность. Твердый сорбент (неподвижная фаза) может быть закрепленным или не закрепленным на стеклянной пластинке. В качестве сорбента используют силикагель или оксид алюминия (квалификации "для хроматографии"). Для закрепления слоя добавляют небольшие количества сульфата кальция или крахмала. Для ТСХ используют также готовые стандартные пластинки с закрепленным слоем, выпускаемые промышленностью, типа "Силуфол УФ-254" размером 15 Х 15, 20 Х 20 см и др.

Преимуществами ТСХ являются простота приемов и оборудования, высокая чувствительность, широкий набор стандартизованных сорбентов, их устойчивость к температурным и химическим воздействиям, большие потенциальные возможности процессов разделения и детектирования, малая стоимость анализов, возможности проведения испытаний с лекарственными веществами, относящимися к любым классам соединений.

Метод ТСХ широко используется в теоретической и практической фармации для идентификации, обнаружения примесей, количественного определения не только конечных, но и промежуточных продуктов производства лекарств, а также оценки чистоты стандартных образцов лекарственных веществ.

Одним из вариантов ТСХ является хроматография на полиамидных пленках. Преимущества этого варианта заключаются в высокой чувствительности, быстроте выполнения, универсальности, возможности использования различных систем растворителей в малых объемах. Высокую эффективность хроматографического разделения дают такие отечественные сорбенты, как полиамидная крошка марки Б и полиэтилентерефталатная пленка. Подбор системы растворителей осуществляется экспериментальным путем так же, как в ТСХ.

Разработаны различные варианты, позволяющие совершенствовать методы хроматографирования на бумаге и в тонком слое сорбента. В ГФ XI описаны такие специальные приемы, как повторное и двумерное хроматографирование. Они позволяют достигнуть лучшего разделения анализируемых смесей веществ. Суть повторного хроматографирования заключается в том, что полученную хроматограмму высушивают и повторно пропускают подвижную фазу в том же направлении. Двумерное хроматографирование отличается тем, что повторное пропускание той же подвижной фазы осуществляется в перпендикулярном по отношению к первоначальному направлении.

В последние годы разработаны линейная, циркулярная и антициркулярная высокоэффективная тонкослойная хроматографии (ВЭТСХ). Создание последней вызвано получением сорбентов с более узким распределением частиц и пор, а также пленок, почти идеально однородных по толщине. Другие параметры, как, например, среднее значение размеров частиц и ширина их распределения, позволяют сократить время анализа, так как возрастает скорость протекания растворителя между частицами и внутри пор. В качестве сорбентов используют силикагель "Кизельгель 60" с величиной пор 6 нм, целлюлозу и др.

Предложен метод ультрамикрохроматографии. Процесс протекает в микротонком слое специально приготовленного сорбента, что резко повышает скорость и чувствительность анализа.

Для идентификации ряда лекарственных веществ сочетают ТСХ с ИК-спектроскопией, УФ-спектрофотометрией, интерферометрией. Известны два варианта сочетания ТСХ с другими методами для количественного анализа: определение вещества на самой хроматограмме и в элюате (после снятия с хроматограммы). Оба эти варианта очень часто применяют для анализа лекарственных форм. Важные преимущества по сравнению с другими комбинациями физико-химических методов анализа имеет совместное применение ТСХ с денситометрическим определением. Для качественного и количественного анализа фитохимических препаратов и лекарственного сырья используют такие комбинированные методы, как хроматофотометрия, хроматофлуориметрия, хромат о-ИК-спектроскопия, хроматополярография, хроматопланиметрические методы, а также денситофлуориметрия и денситоспектрофотометрия.

Электрофорез на бумаге и в тонких слоях сорбента по технике выполнения и аналитическим возможностям сходен с ТСХ.

В ГФ XI включен электрофорез -- метод анализа, основанный на способности заряженных частиц к перемещению в электрическом поле. Подобно ТСХ, электрофорез позволяет разделять и идентифицировать компоненты различных смесей. Скорость перемещения ионов при электрофорезе зависит от напряженности электрического поля, величины заряда, размера частицы, вязкости, рН среды, температуры и других факторов.

Фронтальный электрофорез проводят в свободной незакрепленной фазе в кювете, представляющей собой разборный U-образный канал. В кювете исследуемую смесь и буферный раствор располагают так, чтобы между ними была четкая граница, которая затем в процессе электрофореза расходится на ряд границ, соответствующих числу компонентов.

Зональный электрофорез проводят в закрепленной среде, которая выполняет роль стабилизатора электрофоретических зон. Зональный электрофорез имеет много вариантов: электрофорез в свободной жидкости, на крупнопористых носителях (на бумаге, проточных установках, колонках, в блоке), на мелкопористых носителях (в тонком слое, крахмальном геле, в полиакриламидном геле, диск-электрофорез, изотахофорез).

Известны также комбинированные методы зонального электрофореза -- иммуноэлектрофорез и метод пептидных карт (сочетание бумажной и тонкослойной хроматографии с высоковольтным электрофорезом).

Приборы для всех видов электрофореза имеют единую схему. Они содержат камеру для электрофореза, источник тока, электроды, соединяющие камеру с источником тока, и устройства для сбора и идентификации разделяемых веществ. Работа на этих приборах включает такие операции, как подготовка среды, нанесение смеси веществ, проведение электрофореза, обнаружение и количественное определение разделенных веществ.

Оценка полученных результатов электрофореза осуществляется различными способами: зарисовкой или фотографированием, определением величины абсолютной или относительной электрофоретической подвижности, определением физических, химических или биологических показателей каждой фракции, денситометрическим определением. Для окраски электрофореграмм используют красители различного состава или их смеси. Использование в качестве носителя в тонкослойном электрофорезе силигателя марки КСК позволило разработать методики анализа различных лекарственных веществ в таблетках, мазях, эмульсиях, ампулированных растворах, суппозиториях.

Газожидкостная (газовая) хроматография (ГЖХ) основана на распределении вещества между газовой и жидкой или твердой фазами.

Преимущество ГЖХ перед другими хроматографическими методами заключается в универсальности (можно разделять смеси газов, жидкостей и твердых веществ); способности разделять сложные смеси, содержащие до нескольких десятков компонентов; короткой продолжительности анализа (5--20 мин); достаточно высокой чувствительности (до 10-13 г); малой величине анализируемой пробы (до 10-4 г); сравнительно небольшой относительной ошибке (1--1,5%), которая может быть уменьшена (до 0,01--0,02%) при использовании интеграторов; простоте конструкции и надежности эксплуатации газовых хроматографов, Эти достоинства способствовали активному внедрению ГЖХ в практику анализа лекарственных веществ с различными физическими свойствами.

Прибор для ГЖХ -- газовый хроматограф -- включает систему измерения и регулирования скорости потока газа-носителя, систему ввода пробы испытуемого образца, газохроматографическую колонку, систему термостатирования и контроля температуры в различных узлах прибора и систему детектирования, регистрации и обработки полученной на приборе информации.

Газ-носитель поступает в хроматограф из баллона через редуктор. Система ввода анализируемой пробы включает испаритель и мембрану из термостойкой резины, расположенной на вводе. Объем пробы жидкости составляет 0,1--1 мкл, а газа -- от 0,5 до 5 мл. Колонка для ГЖХ представляет собой трубку (прямую или спиральную), изготовленную из нержавеющей стали или стекла, с внутренним диаметром 0,6--5 мм и длиной от 1 до 3 м. Твердый носитель служит для удерживания тонкой пленки неподвижной жидкой фазы. Готовят твердые Носителе из материалов на основе кремнезема -- диатомита или ки- зельгура, фтор углеродных полимеров, полистирола и др. В качестве неподвижной жидкой фазы используют высококипящую жидкость -- это углеводороды или их смеси, простые и сложные эфиры, полифенолы, амины, жирные кислоты и др. Испытуемое вещество (смесь) вводят в поток газа-носителя, где оно испаряется, и в виде пара проходит через колонку с сорбентом, распределяясь между газовой и жидкой или газовой и твердой фазами. Разделенные вещества элюируются из колонки газом-носителем, регистрируются детектором и фиксируются на хроматограмме в виде пиков. Наиболее часто используют детектор по теплопроводности и пламенно-ионизационный, а также термоионный и электронозахватный. Действие детектора основано на измерении теплопроводности газа-носителя в присутствии других веществ, а пламенно-ионизационного -- на измерении тока насыщения ионизированной газовой смеси в зависимости от ее состава. Термоионный и электронозахватный детекторы более селективны и чувствительны.

Метод ГЖХ может быть использован для испытаний подлинности лекарственных веществ. С этой целью применяют либо способ, основанный на использовании веществ-свидетелей, либо метод относительных удерживаний. В первом случае после анализа исследуемого образца в идентичных условиях хроматографируют вещества-свидетели, которые могут содержаться в испытуемом объекте. Если времена удерживания свидетеля и какого-либо компонента в испытуемом образце совпадают, то это может служить доказательством идентичности данных веществ. При испытании подлинности методом относительных удерживаний к пробе прибавляют определенное количество вещества-свидетеля. Затем анализируют по рекомендуемой методике и рассчитывают по формуле величину относительного удерживания, которая является постоянной для вещества в конкретных условиях выполнения анализа.

Количественный ГЖХ анализ лекарственных веществ выполняют в тех же условиях, что и качественный. Для расчетов количественного содержания используют такие параметры, как площадь или высота пиков веществ. Площадь пика на хроматограмме можно установить с помощью планиметра, интегратора или умножением высоты пика на его полуширину (ширину, измеренную на половине высоты).

Для количественного ГЖХ анализа используют такие методы, как метод абсолютной градуировки, метод внутренней нормализации и метод внутреннего стандарта. Сущность метода абсолютной градуировки заключается в установлении зависимости между количеством введенного в хроматограф вещества и высотой (или площадью) пика. При использовании метода внутренней нормализации сумму площадей пиков приводят к 100%, а затем вычисляют содержание каждого из них. Применение метода внутреннего стандарта основано на сравнении высоты или площади пика анализируемого и стандартного вещества, введенного в пробу в определенном количестве.

Метод ГЖХ все шире используется для качественного анализа лекарственных средств. На различных сорбентах величины относительного удерживания установлены для лекарственных веществ из различных химических групп, в том числе альдегидов, кетонов, фенолов, терпеноидов, амидов и сложных эфиров карбоновых кислот, амино- производных, производных пиразола, имидазола, барбитуровой кислоты, некоторых алкалоидов, а также для ряда сильнодействующих лекарственных веществ из числа производных фенилалкиламинов, бензодиазепина, фенотиазина (Н.Н. Дементьева).

Газовую хроматографию сочетают с другими методами. Для анализа настоек, представляющих собой тройные системы, применяют рефрактохроматографический метод. Сущность его заключается в том, что соотношение концентрации спирта и воды устанавливают методом ГЖХ, а экстрактивные вещества -- по показателю преломления. Эффективным оказалось сочетание ГЖХ и масс-спектрометрии. Хромато-масс-спектрометрические характеристики позволили осуществить качественный и количественный анализ ряда препаратов. Широкое распространение приобретает один из вариантов ГЖХ -- капиллярная хроматография, основанная на использовании колонок диаметром 0,1--1,0 мм и длиной 50--100 м.

Жидкостная хроматография (ЖХ) отличается от газовой хроматографии тем, что подвижной фазой служит не газ, а жидкость. В зависимости от характера неподвижной фазы различают твердожидкостную и жидко-жидкостную хроматографию. Вариантом колоночной ЖХ является высокоэффективная жидкостная хроматография (ВЭЖХ), которую называют также жидкостной хроматографией высокого давления. Характерной особенностью ВЭЖХ является то, что подвижная фаза проходит через колонку, наполненную сорбентом с большой скоростью за счет значительного давления. Метод ВЭЖХ позволяет разделять на индивидуальные вещества многокомпонентные смеси нелетучих органических соединений сложной химической структуры с различной молекулярной массой. Метод очень широко используется для идентификации и количественного определения в аналитической химии и в фармацевтическом анализе. Чувствительность ВЭЖХ достигает 10-6 г. На разделение смеси из 10--15 компонентов затрачивается 20--30 мин, причем выделяются вещества высокой степени чистоты.

Жидкостный хроматограф включает такие узлы, как дозатор, насос высокого давления, высокоэффективная колонка, детектор с регистрирующим устройством. Современные приборы оснащены устройствами, позволяющими автоматически вводить пробу, с помощью микропроцессора выполнять заданную программу хроматографического процесса, автоматически оптимизировать условия разделения и выдавать результаты, позволяющие осуществить качественную и количественную оценку анализируемой смеси веществ.

Подача элюента в колонку с заданной скоростью осуществляется с помощью насоса высокого давления до 20--50 МПа (200--500 атм) или низкого давления до 1--2 МПа (10--20 атм). Колонки для хроматографирования изготавливают из нержавеющей стали. Они имеют длину 10--25 см, внутренний диаметр 0,3--0,8 см и заполняются адсорбентом с диаметром частиц 5--10 мкм (сферической или неправильной формы). Адсорбент плотно упаковывается, что позволяет достигнуть высокоэффективного разделения смеси. Разделение производят в интервале температур 20--50° С, поддерживая ее с точностью ±0,1° С.

В приборах для ВЭЖХ используют спектрофотометрический, рефрактометрический, флуориметрический, пламенно-ионизационный, масс-спектрометрический, электрохимический и другие детекторы. Чаще всего детектором является спектрофотометр с переменной (190--900 нм) длиной волны.

Адсорбентом обычно служит силикагель либо с гидроксилированной поверхностью, либо с привитыми к поверхности различными функциональными группами. В качестве элюента используют различные углеводороды, добавляя к ним небольшие количества этанола или других растворителей. В обращенно-фазной ВЭЖХ колонки заполняют силикагелем с привитыми гидрофобными группами, а в качестве элюента берут водные растворы низших спиртов или ацетонитрил. В тех же условиях применяют ионпарную ВЭЖХ для разделения органических кислот, оснований и их солей, но в этом случае к элюенту добавляют ионные соединения, анион или катион которых содержит гидрофобную группу. Ионообменную ВЭЖХ применяют для разделения органических катионов и анионов, используя в качестве адсорбентов соединения, содержащие сульфо-группы, карбоксильные или аминогруппы разной основности. Элюентами служат водные буферные растворы с различным рН.

Вещества, способные образовывать комплексы с катионами металлов (например, оптические изомеры аминокислот), разделяют с помощью лигандообменной ВЭЖХ. Адсорбентами при этом служат соединения, способные образовывать комплексы с ионами металлов и разделяемым веществом.

Одной из разновидностей метода является микроколоночная жидкостная хроматография, представляющая собой универсальный ультрачувствительный и высокоэкономичный вариант ВЭЖХ. Принципиальное его отличие заключается в использовании микроколонок объемом около 200 мкл и спектрофотометра с объемом проточной кюветы 1 мкл в качестве детектора. В Российской Федерации выпускается микроколоночный жидкостный хроматограф "Милихром".

Метод ВЭЖХ успешно применен для качественной и количественной оценки ряда наркотических, ядовитых и сильнодействующих лекарственных веществ. С этой целью перспективно использование таких параметров, как время удерживания, коэффициент емкости, интегральные спектральные отношения (А.Х. Лайпанов). В нашей стране метод ВЭЖХ рекомендован во всех ФС, разработанных на стандартные образцы антибиотиков. В Фармакопее США (XII издание) метод ВЭЖХ применен для анализа большинства антибиотиков противоопухолевого действия и цефалоспоринового ряда.

Ряд преимуществ по сравнению с ГЖХ и ВЭЖХ имеет занимающая промежуточное положение между этими методами сверхкритическая флюидная хроматография. Преимущества метода заключаются в возможности разделения неустойчивых и нелетучих веществ, универсальном детектировании и высокой экспрессности. Так, например, сочетание сверхкритической флюидной хроматографии с УФ-детектором позволяет детектировать 40 алкалоидов в одном растении.

Эксклюзионная хроматография (гель-фильтрация, молекулярно-ситовая фильтрация, гельпроникающая хроматография) -- вид жидкостной распределительной хроматографии, в процессе которой разделение происходит по размерам молекул. В гель-фильтрации элюентом служит вода, а в гельпроникающей хроматографии -- органический растворитель. Неподвижной фазой являются пористые материалы с определенным узким распределением пор по диаметру. Исследуемое вещество, диаметр которого превышает диаметр пор, не может диффундировать внутрь таких сорбентов. Поэтому оно проходит через колонку быстрее, чем молекулы с меньшим размером, которые проникают в поры. Таким образом, обеспечивается разделение молекул в зависимости от их размера. Поры внутри геля заполнены жидкостью, которая занимает большую часть его объема. Применяют гели на основе декстрана, агарозы, полиакриламида. Метод может быть использован для определения молекулярной массы, а также для исследования, очистки и разделения веществ с молекулярной массой 102--108. Осуществляют эксклюзионную хроматографию в жидкостных хроматографах.

Колонки заполняют различными сорбентами: мягкими (сефадексы), полужесткими (полиакриламидные гели), жесткими (пористые стекла). Детектором служит проточный рефрактометр или спектрофотометр. В отличие от других видов хроматографии на выполнение испытания требуются небольшие затраты времени.

Количественное содержание каждого компонента смеси можно установить используя метод внутреннего стандарта или абсолютной калибровки, т.е. так же, как в ГЖХ. Время выхода каждого компонента из колонки в идентичных условиях разделения является постоянной величиной и может служить для идентификации вещества. Площадь пика пропорциональна количеству компонента и поэтому используется для определения его содержания в смеси.

Полибуферное распределение в фармацевтическом анализе применяют для разделения смесей веществ. Оно может быть использовано в анализе лекарственных форм, представляющих смеси оснований или кислот, для разделения смесей аминов, алкалоидов, органических кислот, фенолов, антибиотиков, а также для отделения веществ, диссоциирующих на ионы, от не диссоциирующих.

Экстракцию как метод разделения применяют в фармацевтическом анализе, особенно для разделения компонентов, входящих в состав лекарственных форм. В зависимости от исходной фазы различают экстракцию из твердого вещества и экстракцию из раствора (жидкостную), а по количеству операций -- однократную и многократную экстракции. Основное условие разделения -- выбор экстрагента, не смешивающегося с исходной фазой и легко отделяющегося от нее и от экстрагируемого вещества. Экстракцию как метод разделения сочетают с фотометрией.

Экстракционно - фотометрический метод основан на образовании цветных продуктов, способных экстрагироваться каким-либо органическим растворителем. Этот метод используют для анализа многих препаратов и лекарственных форм. Метод включен в ГФ XI, зарубежные фармакопеи.

Для экстракционно-фотометрического определения алифатических, ароматических, гетероциклических азотсодержащих лекарственных веществ используют различные группы кислотных красителей: азокрасители (метиловый оранжевый, магнезон ИРЕА, кислотный хром темно-синий, тропеолин 00), сульфофталеиновые красители (бромфеноловый синий, бромтимоловый синий, бромкрезоловый зеленый, бромкрезоловый пурпуровый, тимоловый синий, пирокатехиновый фиолетовый, ксиленоловый оранжевый), оксиксантеновые красители (эозин, эритрозин, флоксин, бенгальский розовый А и Б). Указанные красители образуют с азотсодержащими соединениями и их солями окрашенные комплексы или ионные ассоциаты, растворы которых отличаются высокими значениями молярных коэффициентов поглощения, что позволяет определять малые количества веществ. Окрашенные вещества экстрагируют в органическую фазу (обычно в хлороформ) и измеряют оптическую плотность с помощью спектрофотометра или фотоколориметра.

Чаще всего измеряют оптическую плотность раствора ионного ассоциата в органическом растворителе. Но в ряде случаев полученный ассоциат разрушают введением кислоты в органическую фазу или путем реэкстракции красителя водными растворами кислот или оснований, а затем измеряют абсорбцию свободного красителя. Анализ выполняют при оптимальном значении рН водной среды, которую устанавливают экспериментально для каждого испытуемого препарата. Наряду со стехиометрическим вариантом экстракционно-фотометрического метода применяют также субстехиометрический, сущность которого состоит в однократном экстрагировании ионного ассоциата, что в значительной степени упрощает методику выполнения анализа и сокращает время его выполнения.

Аминопроизводные соединения алифатического, ароматического и гетероциклического ряда ввиду наличия неподеленной пары электронов атома азота имеют высокую реакционную способность. Они, в частности, вступают в реакции с комплексными металлокислотами.

В качестве реактива, образующего тройные комплексы: органическое основание -- таллий (III) -- галогенид с препаратами, содержащими в молекуле третичный атом азота, и четвертичными аммониевыми основаниями, -- был использован тетрабромид таллия (III) -- бромталлиевая кислота (Г.И. Олешко). Разработаны способы экстракционно-фотометрического определения производных арилалифатических соединений (димедрол, спазмолитин), гетероциклических (акрихин, тропацин, гидрохлориды кокаина и папаверина), четвертичные аммониевые соединения (котарнина хлорид).

Тройные комплексы, образованные тиоцианатом железа (III) и молибдена (V) с алкалоидами и другими органическими основаниями, экстрагируются хлороформом в среде 2--3 М соляной кислоты, а тройные комплексы с пирокатехинатом молибдена (VI) -- при рН 2. Это послужило основой для разработки способов экстракционно-фотометрического определения в лекарственных формах димедрола, дибазола, антипирина с тиоцианатом молибдена (V), папаверина гидрохлорида с тиоцианатом железа (III), промедола и кокаина гидрохлорида с пирокатехинатом молибдена (VI) (С.Г. Дуксина).

Разрабатываются или получают дальнейшее развитие другие методы разделения, например эксорбция, представляющая собой сочетание экстракции и сорбции. Метод более эффективно позволяет извлекать растворенное вещество по сравнение с экстракционным или адсорбционным процессом. Большие возможности открывает использование капиллярного изотахофореза с УФ-детекторами в анализе различных природных биологически активных веществ. Метод дает возможность идентифицировать, устанавливать степень чистоты, определять количественно и испытывать стабильность лекарственных веществ, а также анализировать двух- и трехкомпонентные лекарственные формы.

Проточно - инжекционный анализ отличается простотой и доступностью аппаратуры, высокой производительностью (100--200 анализов/ч), возможностью широкого варьирования анализируемых концентраций. Особенно перспективен этот метод в серийном анализе и в разных точках технологических линий. Для детектирования используют фотометрические, амперометрические, флуориметрические методы.

4.8 Термические методы анализа

Нагревание лекарственных веществ до температуры, не вызывающей термического разложения, приводит к ряду изменений в их физических свойствах. Происходят полиморфные превращения, растворение в кристаллизационной воде, удаление сорбционной и кристаллизационной воды, сублимация, плавление, кипение. В зависимости от природы вещества, температуры и условий нагревания могут происходить химические превращения: структурирование, термическая, окислительная или гидролитическая деструкция. Термическая деструкция веществ сопровождается поглощением или выделением теплоты, а также образованием газообразных продуктов. Поэтому наиболее информативными и экспрессными методами оценки термической стабильности являются термография и термогравиметрия.

Термография позволяет оценить термическую стабильность по температурам термоэффекта, связанного с деструкцией исследуемого вещества.

Термогравиметрия дает возможность определить термическую стабильность по температуре, при которой наблюдается уменьшение массы вещества.

Термографический анализ лекарств весьма перспективен. Специфичность термограмм позволила использовать метод для идентификации целого ряда лекарственных веществ.

Характерная особенность термометрического титрования -- его универсальность. Один и тот же прибор можно использовать для различных видов определений, для анализа не требуются специфические индикаторы, селективные электроды. Область применения метода -- реакции нейтрализации, окисления -- восстановления и др.

Термический анализ основан на точной (до 0,1°С) регистрации равновесного состояния между кристаллической и жидкой фазами анализируемого вещества. Медленно нагревая или охлаждая сплав, устанавливают температуру, при которой появляются и исчезают кристаллы. Модификацией термического анализа является термомикроскопический метод, в котором используется поляризационная микроскопия для установления фазовых равновесий. Основные недостатки этих методов: невозможность использования для исследования термолабильных веществ, значительные затраты времени на выполнение анализа, отсутствие должной воспроизводимости. Значительно лучшей воспроизводимостью отличается дифференциальный термический анализ, основанный на регистрации изменения энергии в зависимости от температуры. Дифференциальный термический анализ позволяет определять наличие примесей в лекарственных веществах, прогнозировать сроки их годности, устанавливать однородность каждой партии и т.д.

Одной из модификаций дифференциального термического анализа, используемых для получения термических характеристик веществ, является дериватография. Сущность дериватографии заключается в регистрации изменений температуры образца, вызванных дегидратацией, плавлением, термической деструкцией и другими процессами, происходящими при его непрерывном нагревании. Метод сочетает экспрессность и информативность. С помощью дериватографов можно одновременно автоматически регистрировать простую и дифференциальную кривые нагревания, кривые и скорости изменения массы как функции времени. Используя указанные характеристики, можно исследовать полиморфные структуры, идентифицировать лекарственные вещества, давать качественную оценку стандартным образцам, изучать кинетику сушки и определять содержание влаги в лекарственных веществах или промежуточных продуктах их получения.

Дериватография оказалась эффективным методом для определения содержания влаги и общей золы в лекарственном растительном сырье, а также определения сухого остатка в жидких лекарственных формах, получаемых из этого сырья (настойки и экстракты).

Один из вариантов дифференциального термического анализа -- дифференциальная сканирующая калориметрия, применение которой в комплексе с другими физико-химическими методами оказалось эффективным для оценки качества стандартных образцов, отличающихся высокой степенью чистоты.

Метод дифференциальной микрокалориметрии, основанный на определении энтальпии плавления, рекомендован для количественного определения термически неустойчивых веществ, установления степени чистоты, стабильности, наличия полиморфных форм.

Термофрактография -- метод, основанный на нагревании сырья в определенном температурном интервале и улавливании образующихся продуктов по фракциям.

В последние годы проводятся исследования по комплексному применению физических и физико-химических методов. Это обеспечивает возможность получения новых характеристик и констант, позволяющих дать всестороннюю оценку лекарственного вещества или группы препаратов сходной химической структуры.

Глава 5. Биологические методы анализа

5.1 Биологический контроль качества лекарственных средств

Биологическую оценку качества лекарственных препаратов обычно проводят по силе фармакологического эффекта или по токсичности. Применяют биологические методы, когда с помощью физических, химических или физико-химических методов не удается сделать заключение о чистоте или токсичности лекарственного препарата или когда способ получения препарата не гарантирует постоянства активности (например, антибиотики).

Проводят биологические испытания на животных (кошки, собаки, кролики, лягушки и др.), отдельных изолированных органах (рог матки, часть кожи), отдельных группах клеток (форменные элементы крови), а также на определенных штаммах микроорганизмов. Активность препаратов выражают в единицах действия (ЕД).

Биологический контроль лекарств, содержащих сердечные гликози- ды. По ГФ XI проводят биологическую оценку активности лекарственного растительного сырья и полученных из него препаратов, содержащих сердечные гликозиды, в частности наперстянки (пурпурной, крупноцветковой и шерстистой), горицвета, ландыша, строфанта, желтушника серого. Испытания проводят на лягушках, кошках и голубях, устанавливая соответственно лягушачьи (ЛЕД), кошачьи (КЕД) и голубиные (ГЕД) единицы действия. Одна ЛЕД соответствует дозе стандартного образца, вызывающего в условиях опыта систолическую остановку сердца у большинства подопытных стандартных лягушек (самцы массой 28--33 г). Одна КЕД или ГЕД соответствует дозе стандартного образца или испытуемого препарата из расчета на 1 кг массы животного или птицы, вызывающего систолическую остановку сердца кошки или голубя. Содержание ЕД рассчитывают в 1,0 г исследуемого лекарственного средства, если испытывают растительное сырье или сухие концентраты; в одной таблетке или в 1 мл, если испытывают жидкие лекарственные формы.

Испытание на токсичность. В этот раздел ГФ XI, вып. 2 (с. 182) по сравнению с ГФ X внесен ряд дополнений и изменений, отражающих возрастающие требования к качеству лекарственных средств и необходимость унификации условий их испытаний. В статью введен раздел, в котором описан порядок отбора проб. Увеличена масса животных, на которых проводят испытание, указаны условия их содержания и срок наблюдения за ними. Для выполнения испытания отбирают по два флакона или ампулы от каждой серии, содержащей не более 10000 флаконов или ампул. Из партий с большим количеством отбирают по три ампулы (флакона) от каждой серии. Содержимое проб одной серии смешивают и испытывают на здоровых белых мышах обоего пола массой 19--21 г. Испытуемый раствор вводят в хвостовую вену пяти мышей и ведут наблюдение за животными 48 ч. Препарат считается выдержавшим испытание, если ни одна из подопытных мышей не погибнет в течение указанного срока. В случае гибели даже одной мыши испытание повторяют по определенной схеме. В частных статьях может быть указан и другой порядок проведения испытания на токсичность.

Испытания на пирогенность. Бактериальные пирогены представляют собой вещества микробного происхождения, способные вызвать у человека и теплокровных животных при попадании в кровяное русло повышение температуры тела, лейкопению, падение кровяного давления и другие изменения в различных органах и системах организма. Пирогенную реакцию вызывают грамотрицательные живые и мертвые микроорганизмы, а также продукты их распада. Допустимо содержание, например, в изотоническом растворе натрия хлорида 10 микроорганизмов в 1 мл, а при введении не более 100 мл допускается 100 на 1 мл. Испытанию на пирогенность подвергают воду для инъекций, инъекционные растворы, иммунобиологические лекарственные средства, растворители, используемые для приготовления инъекционных растворов, а также лекарственные формы, вызывающие, по сведениям клиник, пирогенную реакцию.

В ГФ XI, как и в фармакопеи других стран мира, включен биологический метод испытания пирогенности, основанный на измерении температуры тела кроликов после введения в ушную вену испытуемых стерильных жидкостей. Отбор проб проводится так же, как при испытании на токсичность. В общей статье (ГФ XI, вып. 2, с. 183--185) указаны требования к подопытным животным и порядок их подготовки к проведению испытаний. Испытуемый раствор проверяют на трех кроликах (не альбиносах), масса тела которых отличается не более чем на 0,5 кг. Температуру тела измеряют, вводя термометр в прямую кишку на глубину 5--7 см. Испытуемые жидкости считают непирогенными, если сумма повышенной температуры у трех кроликов равна или меньше 1,4°С. Если эта сумма превышает 2,2°С, то воду для инъекций или инъекционный раствор считают пирогенными. Если сумма повышения температуры у трех кроликов находится в пределах от 1,5 до 2,2° С, испытание повторяют дополнительно на пяти кроликах. Испытуемые жидкости считают непирогенными, если сумма повышений температуры у всех восьми кроликов не превышает 3,7°С. В частных ФС могут быть указаны другие пределы отклонений температуры. Кроликов, бывших в опыте, можно использовать для этой цели повторно не ранее чем через 3 сут., если введенный им раствор был непирогенным. Если же введенный раствор оказался пирогенным, то кроликов повторно можно использовать только через 2--3 недели. В ГФ XI по сравнению с ГФ X введена проверка на реактивность кроликов, впервые используемых для испытаний, и уточнен раздел о возможности их использования для повторных испытаний.

Рекомендуемый ГФ XI биологический метод отличается специфичностью, но не дает количественной оценки содержания пирогенных веществ. К существенным его недостаткам следует отнести трудоемкость и продолжительность испытаний, необходимость содержания животных, ухода за ними, сложность подготовки к проведению испытаний, зависимость результатов от индивидуальных особенностей каждого животного и т.д. Поэтому предпринимались попытки разработки других методов определения пирогенности.

Наряду с определением пирогенности на кроликах за рубежом используют микробиологический метод, основанный на подсчете общего числа микроорганизмов в исследуемой лекарственной форме до ее стерилизации. В нашей стране предложена простая и доступная методика обнаружения пирогенов, основанная На избирательной идентификации грамотрицательных микроорганизмов по реакции образования геля с применением 3%-ного раствора гидроксида калия. Методика может быть использована на химико-фармацевтических предприятиях.

Предпринята попытка заменить биологический метод определения пирогенности химическим. Растворы, содержащие пирогены, после обработки хиноном показывали отрицательную реакцию с тетрабромфенолфталеином. Пирогенал с триптофаном в присутствии серной кислоты образует буро-малиновое окрашивание при содержании пирогенала 1 мкг и более.

Исследовалась возможность спектрофотометрического определения пирогенных веществ в УФ-области спектра. Растворы фильтрата пирогенсодержащих культур микроорганизмов обнаруживают слабовыраженный максимум поглощения при 260 нм. По чувствительности спектрофотометрический метод определения пирогенов в 7-8 раз уступает биологическому испытанию на кроликах. Однако если перед спектрофотометрированием провести ультрафильтрование, то вследствие концентрирования пирогенов можно достигнуть сопоставимых результатов определения биологическим и спектрофотометрическим методами.

После обработки хиноном растворы пирогенов приобретают красную окраску и появляется максимум светопоглощения при 390 нм. Это позволило разработать фотоколориметрический способ определения пирогенов.

Высокая чувствительность люминесцентного метода создала предпосылки использования его для определения пирогенных веществ в концентрации до 1*10-11 г/мл. Разработаны методики люминесцентного обнаружения пирогенов в воде для инъекций и в некоторых инъекционных растворах с применением красителей родамина 6Ж и 1-анилино-нафталин-8-сульфоната. Методики основаны на способности пирогенов увеличивать интенсивность люминесценции указанных красителей. Они позволяют получать результаты, сопоставимые с биологическим методом.

Относительная ошибка спектрофотометрического и люминесцентного определения не превышает ±3%. Для определения пирогенности воды для инъекций используют также хемилюминесцентный метод.

Перспективным методом является полярография. Установлено, что фильтраты пирогенных культур даже в очень разбавленном состоянии оказывают сильное подавляющее действие на полярографический максимум кислорода. На этой основе разработан способ полярографической оценки качества воды для инъекций и некоторых инъекционных растворов.

Испытание на содержание веществ гистаминоподобного действия.

Данному испытанию подвергают парентеральные лекарственные средства. Выполняют его на кошках обоего пола массой не менее 2 кг под уретановым наркозом. Вначале животному, находящемуся под наркозом, вводят гистамин, проверяя его чувствительность к этому веществу. Затем с интервалом 5 мин продолжают повторные введения (0,1 мкг/кг) стандартного раствора гистамина до тех пор, пока при двух последовательных введениях не будет получено одинаковое снижение артериального давления, которое принимается за стандартное. После этого с интервалом 5 мин животному вводят испытуемый раствор с той же скоростью, с которой вводили гистамин. Препарат считают выдержавшим испытание, если снижение артериального давления после введения тест-дозы не превышает реакции на введение 0,1 мкг/кг в стандартном растворе.

5.2 Микробиологический контроль лекарственных средств

Впервые в ГФ XI включен новый вид биологического контроля -- определение микробиологической чистоты нестерильных лекарственных средств, т.е. установление состава и количества имеющейся в препарате микрофлоры и ее соответствие нормам, ограничивающим микробную обсемененность (контаминацию). Патогенные микроорганизмы (синегнойная палочка, кишечные бактерии) способны находиться в таблетках и гранулах от 6 до 18 мес., сохраняя морфологические и биохимические свойства. Микробиологическая чистота нестерильных лекарственных средств находится в зависимости от санитарно-гигиенических условий производства, дополнительной обработки сырья с целью его деконтаминации и состояния микробиологического контроля ОТК на всех этапах производства.

Испытание на микробиологическую чистоту. Необходимость проведения этого испытания вызвана тем, что лекарственные средства, в том числе выпускаемые в виде таких лекарственных форм, как таблетки, капсулы, гранулы, растворы, сиропы, мази, не стерилизуются в процессе производства. Поэтому они могут быть загрязнены микроорганизмами. Испытание включает количественное определение жизнеспособных бактерий и грибов и выявление некоторых видов микроорганизмов, представителей кишечной флоры и стафилококка, содержание которых недопустимо в нестерильных лекарственных средствах.

Выполняют испытание на микробиологическую чистоту в асептических условиях. В общей статье подробно описаны методы и питательные среды для контроля всех видов нестерильных лекарственных средств (ГФ XI, вып. 2, с. 193). Количественное определение микроорганизмов выполняют двухслойным агаровым методом в чашках Петри. Образец лекарственного средства в количестве 10 г (мл) растворяют, суспендируют или эмульгируют в фосфатном буферном растворе (рН 7,0) с таким расчетом, чтобы конечный объем раствора был 100 мл. Затем по 1 мл образца смешивают с питательной средой (4 мл).

Через 5 сут инкубирования при 30--35° С подсчитывают число бактериальных колоний на двух чашках и вычисляют число бактерий в 1 г (мл) образца.

Испытания на стерильность. Целью этого испытания является доказательство отсутствия в лекарственном средстве жизнеспособных микроорганизмов любого вида с максимально возможной достоверностью. Результаты испытания на стерильность -- один из важнейших показателей безопасности лекарственных средств.

Этому испытанию подвергаются все лекарства для парентерального введения, глазные капли и мази, лекарства, наносимые на открытую рану, и др. Эффективность данного вида контроля определяют такие факторы, как отбор образца для анализа, техника посева лекарственного средства, состав питательных сред, время инкубации йосевов, интерпретация и учет результатов испытания.

Приведенные в общей статье на стерильность (ГФ XI, вып.2, с. 187) методы контроля применяют для испытаний всех лекарственных средств независимо от их химической природы и лекарственной формы, если нет других указаний в частных статьях.

Для установления стерильности лекарства вначале определяют его антимикробное действие. Для контроля стерильности применяют биогликолевую среду и жидкую среду Сабуро, используя при этом метод прямого посева на питательные среды. Если лекарственное средство обладает выраженным антимикробным действием или разлито в емкости более 100 мл, то для контроля его стерильности используют метод мембранной фильтрации. Испытание выполняют на фильтрационной установке, включающей фильтродержатель с мембранным фильтром и колбу-приемник.

Метод мембранной фильтрации включен во многие зарубежные фармакопеи, как основной для проведения стерилизации. Несмотря на отдельные недостатки, этот метод имеет целый ряд преимуществ в отличие от прямого посева. Он устраняет антимикробное действие препаратов, которое при прямом посеве может исказить результаты определения, дает возможность исследовать большие объемы лекарственного средства, сократить время инкубации посевов, экономить питательные среды и т.д.

Выводы

Одна из наиболее важных задач фармацевтической химии -- это разработка и совершенствование методов оценки качества лекарственных средств.

Для установления чистоты лекарственных веществ используют различные физические, физико-химические, химические методы анализа или их сочетание. ГФ предлагает следующие методы контроля качества ЛC.

Физические и физико-химические методы. К ним относятся:

· определение температур плавления и затвердевания, а также температурных пределов перегонки;

· определение плотности,

· определение показателей преломления (рефрактометрия),

· определение оптического вращения (поляриметрия);

· спектрофотометрия (ультрафиолетовая, инфракрасная);

· фотоколориметрия,

· эмиссионная и атомно-абсорбционная спектрометрия,

· флуориметрия,

· спектроскопия ядерного магнитного резонанса,

· масс-спектрометрия;

· хроматография (адсорбционная, распределительная, ионообменная, газовая, высокоэффективная жидкостная);

· электрофорез (фронтальный, зональный, капиллярный);

· электрометрические методы (потенциометрическое определение рН, потенциометрическое титрование, амперометрическое титрование, вольтамперометрия).

Кроме того, возможно применение методов, альтернативных фармакопейным, которые иногда имеют более совершенные аналитические характеристики (скорость, точность анализа, автоматизация). В некоторых случаях фармацевтическое предприятие приобретает прибор, в основе использования которого лежит метод, еще не включенный в Фармакопею (например, метод романовской спектроскопии -- оптический дихроизм). Иногда целесообразно при определении подлинности или испытании на чистоту заменить хроматографическую методику на спектрофотометрическую. Фармакопейный метод определения примесей тяжелых металлов осаждением их в виде сульфидов или тиоацетамидов обладает рядом недостатков. Для определения примесей тяжелых металлов многие производители внедряют такие физико-химические методы анализа, как атомно-абсорбционная спектрометрия и атомно-эмиссионная спектрометрия с индуктивно связанной плазмой.

Важной физической константой, характеризующей подлинность и степень чистоты ЛC, является температура плавления. Чистое вещество имеет четкую температуру плавления, которая изменяется в присутствии примесей. Для веществ, которые плавятся с разложением, обычно указывается температура, при которой вещество разлагается и происходит резкое изменение его вида.

В некоторых частных статьях ГФ X рекомендуется определять температуру затвердевания или температуру кипения (по ГФ XI -- "температурные пределы перегонки") для ряда жидких ЛC. Температура кипения должна укладываться в интервал, приведенный в частной статье. Более широкий интервал свидетельствует о присутствии примесей.

Во многих частных статьях ГФ X приведены допустимые значения плотности, реже вязкости, подтверждающие подлинность и доброкачественность ЛC.

Практически все частные статьи ГФ X нормируют такой показатель качества ЛC, как растворимость в различных растворителях. Присутствие примесей в ЛB может повлиять на его растворимость, снижая или повышая ее в зависимости от природы примеси.

Критериями чистоты являются также цвет ЛB и/или прозрачность жидких лекарственных форм.

Определенным критерием чистоты JIC могут служить такие физические константы, как показатель преломления луча света в растворе испытуемого вещества (рефрактометрия) и удельное вращение, обусловленное способностью ряда веществ или их растворов вращать плоскость поляризации при прохождении через них плоскополяризованного света (поляриметрия). Методы определения этих констант относятся к оптическим методам анализа и применяются также для установления подлинности и количественного анализа ЛС и их лекарственных форм.

Важным критерием доброкачественности целого ряда ЛС является содержание в них воды. Изменение этого показателя (особенно при хранении) может изменить концентрацию действующего вещества, а, следовательно, и фармакологическую активность и сделать ЛС не пригодным к применению.

Химические методы. К ним относятся: качественные реакции на подлинность, растворимость, определение летучих веществ и воды, определение содержания азота в органических соединениях, титриметрические методы (кислотно-основное титрование, титрование в неводных растворителях, комплексонометрия), нитритометрия, кислотное число, число омыления, эфирное число, йодное число и др.

Биологические методы. Биологические методы контроля качества ЛС весьма разнообразны. Среди них испытания на токсичность, стерильность, микробиологическую чистоту.

Для проведения физико-химического анализа полупродуктов, субстанций лекарственных средств и готовых лекарственных форм при проверке их качества на соответствие требованиям ФС контрольно-аналитическая лаборатория должна быть оснащена следующим минимальным набором оборудования и приборов:

· ИК-спектрофотометр (для определения подлинности); спектрофотометр для спектрометрии в видимой и УФ-области (определение подлинности, количественное определение, однородность дозирования, растворимость);

· оборудование для тонкослойной хроматографии (ТСХ) (определение подлинности, родственных примесей);

· хроматограф для высокоэффективной жидкостной хроматографии (ВЭЖХ) (определение подлинности, количественное определение, определение родственных примесей, однородности дозирования, растворимости);

· газожидкостной хроматограф (ГЖХ) (содержание примесей, определение однородности дозирования);

· поляриметр (определение подлинности, количественное определение);

· потенциометр (измерение рН, количественное определение);

· атомно-абсорбционный спектрофотометр (элементный анализ тяжелых металлов и неметаллов);

· титратор К. Фишера (определение содержания воды);

· дериватограф (определение потери массы при высушивании).

Список использованной литературы

1. Арзамасцев А.П. Фармакопейный анализ - М.: Медицина, 1971.

2. Беликов В.Г. Фармацевтическая химия. В 2 частях. Часть 1. Общая фармацевтическая химия: Учеб. для фармац. ин-тов и фак. мед. ин-тов. -- М.: Высш. шк., 1993. - 432 с.

3. Глущенко Н. Н. Фармацевтическая химия: Учебник для студ. сред. проф. учеб. заведений / Н. Н. Глущенко, Т. В. Плетенева, В. А. Попков; Под ред. Т. В. Плетеневой. -- М.: Издательский центр "Академия", 2004. -- 384 с.

4. Драго Р. Физические методы в химии - М.: Мир, 1981

5. Кольтгоф И.М., Стенгер В.А. Объемный анализ В 2 томах - М.: Гос. научно-техническое издательство химической литературы, 1950

6. Коренман И.М. Фотометрический анализ - М.: Химия, 1970

7. Коростелев П. П, Фотометрический и комплексометрический анализ в металлургии - М.: Металлургия, 1984, 272 с.

8. Логинова Н. В., Полозов Г. И. Введение в фармацевтическую химию: Учеб. пособие - Мн.: БГУ, 2003.-250 с.

9. Мелентьева Г. А., Антонова Л. А. Фармацевтическая химия. -- М.: Медицина, 1985.-- 480 с.

10. Мискнджьян С.П. Кравченюк Л.П. Полярография лекарственных препаратов. - К.: Вища школа, 1976. 232 с

11. Фармацевтическая химия: Учеб. пособие / Под ред. Л.П. Арзамасцева. - М.: ГЭОТАР-МЕД, 2004. - 640 с.

12. Фармацевтический анализ лекарственных средств / Под общей редакцией В.А. Шаповаловой - Харьков: ИМП "Рубикон", 1995

13. Фармацевтичний аналіз: Навч. посіб. для студ. вищ. фармац. навч. закл. III--IV рівнів акредитації/П.О. Безуглий, В. О. Грудько, С. Г. Леонова та ін.; За ред. П.О. Безуглого,-- X.: Вид-во НФАУ; Золоті сторінки, 2001.-- 240 с.

14. Халецкий A.M. Фармацевтическая химия - Ленинград: Медицина, 1966

Размещено на Allbest.ru

...

Подобные документы

  • Специфические особенности фармацевтического анализа. Испытание на подлинность лекарственных препаратов. Источники и причины недоброкачественности лекарственных веществ. Классификация и характеристика методов контроля качества лекарственных веществ.

    реферат [3,0 M], добавлен 19.09.2010

  • Критерии фармацевтического анализа, общие принципы испытаний подлинности лекарственных веществ, критерии доброкачественности. Особенности экспресс-анализа лекарственных форм в условиях аптеки. Проведение экспериментального анализа таблеток анальгина.

    курсовая работа [46,1 K], добавлен 21.08.2011

  • Виды и основные принципы фармацевтического анализа как способа установления качества лекарственных веществ. Принципы проверки физических свойств лечебных препаратов. Особенности проведения весового, объемного, оптического анализов чистоты медикаментов.

    дипломная работа [1,3 M], добавлен 26.09.2010

  • Классификация физико-химических методов анализа. Молекулярно-абсорбционный спектральный анализ. Законы поглощения излучения. Визуальная колориметрия. Определение концентрации в фотоэлектроколориметрии. Спектрофотометрия лекарственных препаратов.

    реферат [492,7 K], добавлен 14.11.2010

  • Применение антибиотиков в медицине. Оценка качества, хранение и отпуск лекарственных форм. Химические строение и физико-химические свойства пенициллина, тетрациклина и стрептомицина. Основы фармацевтического анализа. Методы количественного определения.

    курсовая работа [1,5 M], добавлен 24.05.2014

  • Рефрактометрия как один из методов идентификации химических соединений, их количественного и структурного анализа, определения физико-химических параметров. Актуальность рефрактометрии для анализа лекарственных веществ для среднестатистической аптеки.

    курсовая работа [1,2 M], добавлен 02.06.2011

  • Изучение физико-химических методов анализа. Методы основанные на использовании магнитного поля. Теория методов по спектрометрии и фотоколореметрии в видимой области спектра. Спектрометрические и фотоколореметрические методы анализа лекарственных средств.

    курсовая работа [4,3 M], добавлен 17.08.2010

  • Классификация лекарственных форм и особенности их анализа. Количественные методы анализа однокомпонентных и многокомпонентных лекарственных форм. Физико-химические методы анализа без разделения компонентов смеси и после предварительного их разделения.

    реферат [50,2 K], добавлен 16.11.2010

  • Состояние маркетинговых исследований фармацевтического рынка ЛС. Методы анализа ассортимента лекарственных средств. Товароведческая характеристика винпоцетина. Анализ препаратов для улучшения мозгового кровообращения, разрешенных к применению в стране.

    курсовая работа [809,6 K], добавлен 03.02.2016

  • Государственное регулирование в сфере обращения лекарственных средств. Фальсификация лекарственных препаратов как важная проблем сегодняшнего фармацевтического рынка. Анализ состояния контроля качества лекарственных препаратов на современном этапе.

    курсовая работа [3,5 M], добавлен 07.04.2016

  • Понятие вспомогательных веществ как фармацевтического фактора; их классификация в зависимости от происхождения и назначения. Свойства стабилизаторов, пролонгаторов и корригентов запаха. Номенклатура вспомогательных веществ в жидких лекарственных формах.

    реферат [18,0 K], добавлен 31.05.2014

  • Взаимодействие химических соединений с электромагнитным излучением. Фотометрический метод анализа, обоснование эффективности его использования. Исследование возможности применения фотометрического анализа в контроле качества лекарственных средств.

    курсовая работа [932,4 K], добавлен 26.05.2015

  • Организация изготовления внутриаптечной заготовки. Методы исследования лекарственных веществ. Протокол результатов анализа препарата. Определение органолептических качеств, подлинности. Государственный контроль производства лекарственных средств.

    курсовая работа [50,1 K], добавлен 12.02.2010

  • Идентификация неорганических и органических лекарственных веществ. Испытание на специфические примеси. Кислотно-основное и окислительно-восстановительное титрование. Методы, основанные на поглощении электромагнитного излучения. Экстракция и электрофорез.

    курсовая работа [489,2 K], добавлен 30.03.2015

  • Физико-химические процессы, возникающие при неправильном хранении лекарственных средств. Специфика химических, биологических процессов при воздействии различных факторов. Зависимость стабильности лекарственных веществ от условий хранения и получения.

    курсовая работа [21,6 K], добавлен 12.02.2010

  • Классификация фармацевтических услуг. Роль фармацевтического работника в сфере фармацевтического информирования. Успешность работы провизора с покупателем, схемы построения их диалога. Роль рекламы в продвижении аптечных товаров и лекарственных средств.

    курсовая работа [34,7 K], добавлен 04.06.2015

  • Валидация методик анализа папаверина гидрохлорида в растворе для инъекций и других лекарственных формах. Химические и физические методы определения подлинности субстанции. Анализ содержания посторонних примесей методом тонкослойной хроматографии.

    курсовая работа [644,4 K], добавлен 02.06.2014

  • Общее понятие о стероидах - производных ряда углеводородов, главным образом прегнана, андростана, эстрана. Лекарственные формы стероидных препаратов, их физико-химические свойства. Начало применения глюкокортикоидов в качестве лекарственных средств.

    дипломная работа [4,7 M], добавлен 02.02.2016

  • Комбинированное действие лекарственных веществ. Синергизм и его основные виды. Понятие антагонизма и антидотизма. Фармацевтическое и физико-химическое взаимодействие лекарственных средств. Основные принципы взаимодействия лекарственных веществ.

    курсовая работа [157,9 K], добавлен 25.09.2014

  • Внутриаптечный контроль качества лекарственных средств. Химические и физико-химические методы анализа, количественное определение, стандартизация, оценка качества. Расчет относительной и абсолютной ошибок в титриметрическом анализе лекарственных форм.

    курсовая работа [308,5 K], добавлен 12.01.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.