Анатомо-физиологическая характеристика органов слуха, речи и зрения

Основные понятия и физиология органа слуха. Строение и возрастные особенности уха человека. Физиологические основы деятельности слухового анализатора. Анатомия органов речи. Строение и функции оболочек глазного яблока. Повреждения органа зрения у детей.

Рубрика Медицина
Вид курс лекций
Язык русский
Дата добавления 08.02.2015
Размер файла 653,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Тема 1. Модуль 1. Основные понятия и физиология органа слуха (1 час)

Предмет и задачи курса "Анатомия, физиология и патология органов слуха, речи и зрения". Значение данного курса в системе подготовки педагогов. Основные задачи курса. Связь предмета с медицинскими и педагогическими дисциплинами. Понятие об анализаторах. Строение и функция анализатора по Павлову: периферический, проводниковый, корковый отделы. Взаимосвязь всех сенсорных систем в организме.

Основные понятия: речевая система, сенсорные системы, этиология, патогенез, анамнез, анализатор, корковый конец анализатора.

Строение и функция анализатора по Павлову: периферический, проводниковый, корковый отделы.

Каждый анализатор представляет собой единую целостно функционирующую систему, состоящую из трех отделов: а) периферического, или рецепторного; б) среднего, или проводникового, с промежуточными нервными центрами; в) центрального, или коркового.

Периферический отдел анализатора состоит из особо устроенных нервных клеток, воспринимающих преимущественно определенный вид раздражений. Эти клетки и представляют собой рецептор, являющийся специальным трансформатором (преобразователем) энергии внешнего раздражения в энергию нервного возбуждения.

Проводниковый отдел состоит из нервных волокон и клеток промежуточных нервных центров в спинном мозгу и в стволовой части головного мозга. Функцией этого отдела является проведение нервного возбуждения от рецептора к корковому концу анализатора.

Центральный, или корковый, отдел является высшим отделом анализатора. В этом отделе нервное возбуждение превращается в ощущение. Здесь происходит высший анализ и синтез раздражений, приходящих из периферического конца анализатора. Здесь же, в коре головного мозга, осуществляется синтезирование раздражений, поступающих из разных рецепторов. Этот сложный аналитико-синтетический процесс и обеспечивает, в конечном счете, совершенное уравновешивание организма с внешней средой.

Задание для самостоятельной работы (1 час)

Подбор литературы по курсу.

Самостоятельное ознакомление с содержанием лекции.

Уточнение понятий из словаря.

Тема 2. Модуль 2. Анатомическое строение и возрастные особенности органа слуха (1 час)

Краткие сведения из сравнительной анатомии и эмбриологии. Строение, функции наружного уха и его возрастные особенности. Строение, функции среднего уха и его возрастные особенности. Строение, функции внутреннего уха и его возрастные особенности. Строение и функции проводникового отдела слухового анализатора. Строение и функции центрального отдела слухового анализатора.

Основные понятия: наружное ухо, внутреннее ухо, среднее ухо, евстахиева труба, кортиев орган, эндолимфа, пепелимфа, перекресток слуховых путей, бинауральный слух, корковый отдел анализатора, принцип гетерохронии, звуковысотный слух, фонематический слух.

Орган слуха относится к числу тех рецепторных (воспринимающих) аппаратов, при помощи которых осуществляются связь и уравновешивание организма животного и человека с внешней средой. Эти аппараты носят название анализаторов.

Краткие сведения из сравнительной анатомии и эмбриологии

Очень сложный по строению и функции слуховой анализатор человека произошел из очень просто устроенных образований у низших животных. Эти образования, имеющие различную форму, описаны под названиями "слуховых щупальцев" (у медуз), "слуховых ямок" (у кольчатых червей), "слуховых пузырьков" (у головоногих моллюсков и некоторых ракообразных).

Примером такого примитивного органа может служить слуховой пузырек головоногого моллюска -- осьминога (рис. 1).

Рис. 1. Слуховой пузырек осьминога (схема):

п -- полость в хрящевой массе стенки черепа; с -- слуховой пузырек; п -- слуховой нерв

Этот перепончатый пузырек расположен в круглой пещерке, в толще хрящевого черепа. Стенка пузырька выстлана эпителием, который в двух местах дифференцируется в чувствующие клетки. К этим клеткам подходят окончания соответствующего нерва, выходящего из головного мозга.

Слуховые пузырьки, считавшиеся ранее слуховыми органами, на самом деле являются органами равновесия. Из беспозвоночных животных только насекомые обладают своеобразными слуховыми органами в виде так называемых тимпанальных органов, имеющих вид особых перепонок, расположенных на конечностях насекомого; под перепонкой находится валик, состоящий из чувствительных клеток, воспринимающих звуковые колебания.

У позвоночных животных слуховой аппарат расположен в перепончатом лабиринте, который является одновременно и органом равновесия. Наиболее просто устроен лабиринт у рыб. Он развивается из наружного зародышевого листка (эктодермы) задней части головы. Здесь образуется вдавление в виде ямки, из которой развивается слуховой пузырек. Вначале слуховой пузырек сообщается с наружной поверхностью, затем он полностью отшнуровывается (рис. 2) и из него образуются три перепончатых полукружных канала, расположенных во взаимно перпендикулярных плоскостях, и два мешочка -- овальный и круглый (рис. 3).

Рис. 2. Схема перепончатого лабиринта рыбы:

о -- овальный мешочек; к -- круглый мешочек; п.к. -- полукружные каналы; л -- лагена

В нижнем отделе круглого мешочка образуется полый выступ (лагена), из которого у млекопитающих развивается спиральный канал улитки. Усложнение строения слухового аппарата у позвоночных животных проходит не только по линии дифференциации различных отделов лабиринта, но и по линии развития добавочных частей, служащих для передачи звуковых колебаний. Эти добавочные части обособляются в виде среднего уха, а затем, у высших позвоночных, -- и наружного уха. У человека зачаток слухового органа образуется на четвертой неделе развития зародыша в виде двух симметричных углублений эктодермы. Эти углубления постепенно становятся шарообразными и отделяются от наружной поверхности, превращаясь в слуховые пузырьки. В дальнейшем происходит дифференциация верхнего и нижнего отделов пузырьков: из верхнего отдела образуются зачатки полукружных каналов, а из нижнего -- зачаток канала улитки. Параллельно с развитием внутреннего уха (лабиринта) происходит развитие зачатков среднего и наружного уха. В то время как внутреннее ухо образуется из наружного зародышевого листка (эктодерма), среднее и наружное ухо развиваются из 1-й жаберной щели и ограничивающих ее 1-й и 2-й жаберных дуг.

Строение, функции наружного уха и его возрастные особенности. Периферический отдел слухового анализатора.

Периферический отдел слухового анализатора, или собственно ухо, в анатомическом отношении состоит из трех частей: наружного, среднего и внутреннего уха (рис. 4). Наружное ухо состоит из ушной раковины (рис. 5) и наружного слухового прохода. Ушная раковина представляет собой воронкообразную хрящевую пластинку, покрытую кожей и переходящую непосредственно в наружный слуховой проход. Нижняя часть ушной раковины, или мочка, лишена хряща. Впереди наружного слухового прохода расположен выступ ушной раковины -- козелок. Наружный слуховой проход состоит из хрящевой (наружной) и костной (внутренней) частей. Общая длина наружного слухового прохода у взрослых около 2,5 см. На месте перехода хрящевой части в костную наружный слуховой проход образует изгиб. Для выпрямления оси наружного слухового прохода приходится при его осмотре оттягивать ушную раковину у взрослых и у детей старшего возраста кзади - кверху, а у маленьких детей -- кзади - книзу.

Рис. 3. Строение органа слуха:

1 -- хрящ ушной раковины; 2 -- наружный слуховой проход; 3 -- барабанная перепонка; 4 -- слуховая труба; 5 -- слуховые косточки; 6 -- лабиринт; 7 -- внутренняя поверхность барабанной перепонки; 8 -- молоточек; 9 -- наковальня; 10 -- стремя; 11 -- полукружные каналы; 12 -- преддверье; 13 -- улитка; 14 - преддверный нерв; 15 -- улитковый нерв

На всем своем протяжении наружный слуховой проход покрыт кожей. Кожа, выстилающая хрящевую часть, снабжена волосками и содержит железы -- сальные и выделяющие ушную серу. Ширина просвета наружного слухового прохода не везде одинакова: он сужается в начале костной части и вторично -- в месте прикрепления барабанной перепонки. У маленьких детей наружный слуховой проход короче, чем у старших детей и взрослых, вследствие того, что костная его часть еще не успела развиться, и представлена лишь костным кольцом, в котором укреплена барабанная перепонка. Просвет наружного слухового прохода у новорожденных и маленьких детей представляется щелевидным, По мере роста ребенка просвет слухового прохода из щелевидного постепенно становится овальным.

Барабанная перепонка отделяет наружный слуховой проход от среднего уха и представляет собой тонкую упругую пластинку, покрытую со стороны слухового прохода тонким наружным слоем кожи (эпидермисом), а со стороны среднего уха -- слизистой оболочкой.

Барабанная перепонка имеет округло-овальную форму с наибольшим поперечником около 10 мм и наименьшим -- 8,5 мм, толщину -- около 0,1 мм. Она расположена под углом к оси наружного слухового прохода и втянута в сторону среднего уха, образуя подобие очень плоского конуса.

Величина барабанной перепонки с возрастом изменяется очень незначительно: у новорожденного она имеет почти те же размеры, что и у взрослого. Положение барабанной перепонки по мере развития ребенка подвергается заметным изменениям. У ребенка в возрасте до двух месяцев она расположена почти горизонтально, являясь как бы продолжением верхней стенки наружного слухового прохода и образуя с горизонтальной плоскостью угол всего лишь в 10--20°. У детей старшего возраста угол наклона к горизонтали достигает 40--45°.

Рис. 4. Ушная раковина:

1 -- козелок; 2 -- мочка

Большая часть барабанной перепонки вставлена, как часовое стекло, в особый костный желобок, находящийся в глубине слухового прохода, и называется натянутой в отличие от меньшей, передне-верхней части барабанной перепонки, которая прикреплена в том месте, где костный желобок прерывается. Эта часть барабанной перепонки называется расслабленной или шрапнеллевой перепонкой. Натянутая часть барабанной перепонки состоит из трех слоев: 1) наружного, обращенного к слуховому проходу, состоящего из эпидермиса; 2) среднего, состоящего из циркулярных (круговых) и радиарных (лучевых) фиброзных волокон; 3) внутреннего, образованного слизистой оболочкой. Циркулярные и радиарные волокна фиброзного слоя барабанной перепонки переплетаются между собой, что придает особую прочность ее натянутой части. При постепенном повышении воздушного давления она может выдерживать его до двух атмосфер (атм.), что составляет в современном измерении 200 000 паскалей, поскольку 1 атм.=105 паскалей (Па), т.е. 100 000 паскалей.

Рис. 5. Нормальная барабанная перепонка

В шрапнеллевой перепонке фиброзный слой отсутствует. Нормальная барабанная перепонка представляется при осмотре* в виде округло-овальной пластинки. Основной тон окраски барабанной перепонки -- жемчужно-серый (рис. 6). На этом общем фоне выделяются следующие опознавательные пункты (рис. 7). В передне-верхней части барабанной перепонки выпячивается в виде желтовато-белой точки короткий отросток молоточка. Кпереди и кзади от него отходят серовато-белые полоски -- это передняя и задняя складки, которые отделяют натянутую часть барабанной перепонки от расслабленной (шрапнеллевой). Книзу и кзади от короткого отростка тянется, резко выделяясь в виде острого гребешка, рукоятка молоточка; своим расширенным концом она доходит до центра барабанной перепонки, называемого пупком. Книзу и кпереди от пупка отходит блестящий световой рефлекс, имеющий форму узкого треугольника, вершина которого обращена к пупку, а основание -- к передненижнему краю барабанной перепонки.

Рис. 6

Этот рефлекс образуется вследствие отражения световых лучей от вогнутой поверхности барабанной перепонки.

Рис. 7. Квадранты барабанной перепонки:

1 -- задневерхний; 2 -- задненижний; 3 -- передневерхний; 4 -- передненижний

Для обозначения изменений, возникающих на барабанной перепонке, ее делят условно на четыре части посредством двух мысленно проведенных линий (рис. 8): одна из них проходит вдоль рукоятки молоточка и доходит до края барабанной перепонки; другая пересекает первую под прямым углом на уровне пупка. Этими двумя линиями барабанная перепонка разделяется на четыре сектора, или квадранта: передневерхний, передненижний, задневерхний и задненижний.

Осмотр наружного слухового прохода и барабанной перепонки, или отоскопия, производится при помощи ушной воронки, которая вводится в слуховой проход и служит для направления пучка света, отраженного от лобного рефлектора (вогнутого зеркала, укрепленного на лбу исследующего).

Строение, функции среднего уха и его возрастные особенности.

Среднее ухо представляет собой систему воздухоносных полостей в толще височной кости и состоит из барабанной полости, слуховой трубы и сосцевидного отростка с его костными ячейками (рис. 9).

Рис. 8. Полости среднего уха:

1 -- слуховая труба; 2 -- барабанная полость; 3 -- пещера; 4 -- ячейки сосцевидного отростка

Барабанная полость является центральной частью этой системы и представляет собой узкое пространство в толще височной кости объемом около 1 см3. В барабанной полости различают шесть стенок. Наружной стенкой на большей части ее протяжения является барабанная перепонка. Остальные стенки -- костные. Внутренняя стенка отделяет барабанную полость от внутреннего уха. В этой стенке есть два отверстия, называемые окнами: овальное, или окно преддверия (длинный диаметр 3--4 мм) и круглое, или окно улитки (диаметр 1--2 мм). В овальное окно вставлена, как в рамку, подножная пластинка стремени, прикрепленная к краям овального окна посредством кольцевидной связки. Круглое окно затянуто эластичной тонкой перепонкой, которая носит название вторичной барабанной перепонки. Верхняя стенка, или крыша барабанной полости, отделяет барабанную полость от полости черепа. Нижняя стенка граничит с крупным кровеносным сосудом -- луковицей яремной вены. В задней стенке внизу имеется отверстие, соединяющее барабанную полость с пещерой сосцевидного отростка.

Верхняя и нижняя стенки барабанной полости часто бывают очень тонкими, а нередко, особенно в раннем детском возрасте, в этих стенках бывают отверстия. Тогда слизистая оболочка барабанной полости прилегает непосредственно к мозговой оболочке или к луковице яремной вены, что представляет значительную опасность в смысле возможного перехода воспалительного процесса из барабанной полости на мозговые оболочки или на стенки яремной вены. В толще внутренней и задней стенок барабанной полости находится канал лицевого нерва. Благодаря тесной анатомической близости между этим каналом и барабанной полостью лицевой нерв может быть вовлечен в воспалительный процесс, развивающийся в среднем ухе, а при операциях на среднем ухе возникает опасность ранения лицевого нерва.

В барабанной полости помещается цепь слуховых косточек (рис. 10), состоящая из молоточка, наковальни и стремени. Молоточек имеет головку, рукоятку и два отростка (короткий и длинный).

Рис. 9. Слуховые косточки:

1 -- молоточек; 2 -- наковальня; 3 -- стремя

Наковальня состоит из тела, короткого и длинного отростков. Стремя состоит из двух дужек, головки и подножной пластинки. Рукоятка молоточка вращена в фиброзный слой барабанной перепонки, причем нижний конец рукоятки образует в центре барабанной перепонки выступ -- пупок, а короткий отросток образует выпячивание в передне-верхней части. Эти выступы определяют тот характерный вид, который имеет барабанная перепонка при осмотре. Головка молоточка сочленяется с телом наковальни, а она своим длинным отростком сочленяется с головкой стремени. Подножная пластинка стремени, как было сказано, входит в овальное окно, соединяющее среднее ухо с внутренним. Определенное напряжение барабанной перепонки и цепи слуховых косточек обеспечивается двумя мышцами -- натягивающей барабанную перепонку и стремянной. Первая из них прикрепляется к рукоятке молоточка, а вторая -- к головке стремени.

Слуховая, или евстахиева, труба представляет собой канал длиной (у взрослых) 3,5 см, соединяющий барабанную полость с носоглоткой. Барабанное устье евстахиевой трубы расположено в передней стенке барабанной полости, а носоглоточное -- в боковой стенке носоглотки. Та часть евстахиевой трубы, которая прилежит к барабанной полости, является костной, а часть, обращенная к носоглотке, имеет хрящевые стенки. Вся евстахиева труба выстлана мерцательным эпителием: движение его волосков направлено в сторону носоглотки. Стенки хрящевой части евстахиевой трубы, обычно соприкасающиеся между собой, в момент глотания (благодаря сокращению глоточных мышц) расходятся, пропуская воздух из носоглотки в барабанную полость. У маленьких детей евстахиева труба короче и просвет ее шире, чем у детей старшего возраста и у взрослых.

Сосцевидный отросток представляет собой костное образование, похожее по форме на сосок, откуда и произошло его название. Это отросток височной кости, расположенный позади ушной раковины. В толще сосцевидного отростка находятся ячейки, сообщающиеся друг с другом посредством узких щелей. Форма, величина и число этих ячеек очень изменчивы, но одна из них, самая крупная, носящая название пещеры (антрум), имеется постоянно. Пещера сообщается с барабанной полостью через отверстие в задней стенке последней. Пещера отделяется от полости черепа костной пластинкой, иногда очень тонкой. Ячейки сосцевидного отростка доходят иногда до большой венозной пазухи мозга (поперечного синуса) и отделяются от нее также лишь тонким слоем кости.

У детей приблизительно до двух лет сосцевидный отросток еще не развит и выглядит как костный бугорок. Однако пещера существует уже у новорожденного ребенка.

Все полости среднего уха (барабанная полость, евстахиева труба и ячейки сосцевидного отростка) наполнены воздухом, а стенки их выстланы тончайшей слизистой оболочкой, являющейся продолжением слизистой оболочки носоглотки. Обмен воздуха в среднем ухе происходит через евстахиеву трубу: при глотательных движениях воздух из носоглотки поступает в евстахиеву трубу, а оттуда -- в барабанную полость и отчасти в ячейки сосцевидного отростка.

Строение, функции внутреннего уха и его возрастные особенности.

Внутреннее ухо, или ушной лабиринт, представляет собой систему каналов и полостей в толще височной кости.

Рис. 10. Слепок с костного лабиринта:

1 -- преддверие; 2 -- верхний полукружный канал; 3-- наружный полукружный канал; 4 -- задний полукружный канал; 5 -- улитка

Эта система состоит из преддверия, полукружных каналов и улитки (см. рис. 4).

Различают костный (рис. 11) и перепончатый лабиринты, причем костный лабиринт является как бы футляром для перепончатого. Перепончатый лабиринт наполнен особой жидкостью -- эндолимфой, а пространство между перепончатым и костным лабиринтами также заполнено жидкостью -- перилимфой.

Преддверие составляет центральную часть лабиринта и состоит из двух перепончатых мешочков: переднего (круглого) и заднего (овального). Передний мешочек сообщается с улиткой, а задний -- с полукружными каналами.

Полукружных каналов три: верхний, задний и наружный. Они расположены в трех взаимно перпендикулярных плоскостях. Один из концов каждого канала гладкий, а другой имеет расширение -- ампулу. Преддверие и полукружные каналы образуют так называемый вестибулярный аппарат и являются периферическим отделом пространственного анализатора, или органа равновесия. В преддверии и полукружных каналах располагаются группы специфических нервных клеток, образующих концевой аппарат, или рецептор, вестибулярного нерва. В мешочках преддверия таким рецептором является отолитовый аппарат, т.е. концевые нервные клетки, прикрытые перепонкой, содержащей особые кристаллы -- отолиты. В полукружных каналах рецептор состоит из специфических волосковых нервных клеток, образующих в ампуле каждого из каналов особый гребешок. Прямолинейные движения вызывают смещение отолитов в мешочках преддверия, а вращательные (угловые) движения сопровождаются перемещением эндолимфы в полукружных каналах и влекут за собой раздражение чувствительных волосковых клеток в ампулярных гребешках. Раздражения концевого аппарата передаются по волокнам вестибулярного нерва в центральную нервную систему. В ответ на них возникают рефлекторные реакции, которые способствуют сохранению равновесия. Одной из таких рефлекторных реакций является лабиринтный нистагм, т.е. ритмические движения глазных яблок, состоящие из двух компонентов -- быстрого отведения и медленного возвращения в первоначальное положение. Направление нистагма определяется по его быстрому компоненту.

Улитка представляет собой спиральный костный канал, идущий вокруг костной колонки и образующий 2*/2 завитка (основной, средний и верхний), причем каждый последующий завиток меньше предыдущего, так что улитка действительно напоминает по своей форме раковину садовой улитки. Канал улитки имеет длину около 22 мм.

Рис. 11. Вертикальный разрез через костную улитку: 1 -- костная колонка; 2 -- спиральный костный гребень; 3 -- преддверная лестница; 4 -- барабанная лестница

По всей своей длине костный канал улитки разделен на два этажа, называемых лестницами. Границей между ними служит спиральный костный гребень (рис. 12) и отходящая от края этого гребня эластичная перепонка -- основная мембрана (рис. 13). Верхний этаж носит название преддверной лестницы (которая ведет в преддверие), а оно сообщается с барабанной полостью через овальное окно. Нижний этаж -- барабанная лестница, которая сообщается непосредственно с барабанной полостью через круглое окно. У верхушки улитки преддверная и барабанная лестницы соединяются между собой через узкое отверстие. Преддверная лестница разделена посредством тонкой перепончатой перегородки, так называемой рейснеровой мембраны, на два канала: собственно преддверную лестницу и перепончатый канал улитки, или улитковый ход.

Улитковый ход наполнен эндолимфой, преддверная и барабанная лестницы -- перилимфой.

Рис. 12. Поперечный разрез через один из завитков улитки:

1 -- основная мембрана; 2 - волокна слухового нерва; 3-- костная стенка улитки; 4 -- слуховые (волосковые) клетки; 5 -- поддерживающие клетки; 6 -- покровная мембрана; 7 -- рейснерова мембрана; п -- преддверная лестница; Б -- барабанная лестница; У -- улитковый ход

В улитковом ходе расположен кортиев (спиральный) орган. Основной его функциональной частью являются слуховые клетки, заканчивающиеся чувствительными волосками и потому называемые также волосковыми клетками. Эти клетки расположены в несколько рядов и представляют собой специфический концевой аппарат слухового анализатора, или слуховой рецептор. Слуховых клеток насчитывается свыше 20 000. Кроме слуховых клеток, в состав кортиева органа входит поддерживающий аппарат, состоящий из нескольких рядов опорных клеток. Над кортиевым органом и на очень близком расстоянии от него расположена особая перепонка, так называемая покровная, или кортиева, мембрана. Согласно новейшим данным, имеется прямая связь между покровной мембраной и волосковыми слуховыми клетками. Покровная мембрана вплотную подходит к волосковым клеткам, причем волоски слуховых клеток проникают в ткань покровной мембраны. Кортиев орган расположен на основной мембране, которая состоит из нескольких тысяч поперечных волокон разной длины, натянутых между краем спирального костного гребня и противоположной стенкой улитки. Эти волокна весьма упруги, но между собой связаны слабо. По форме основная мембрана представляет собой спирально изогнутую ленту, ширина которой постепенно увеличивается от основания улитки к ее вершине.

Строение и функции проводникового отдела слухового анализатора.

Периферический отдел слухового анализатора соединяется с центральным, или корковым, концом проводящими нервными путями, состоящими из четырех отрезков, или невронов.

К кортиеву органу подходят нервные волокна из спирального нервного узла, расположенного в основании спирального костного гребня улитки. Этот узел состоит из нервных клеток с двумя отростками (биполярных клеток). Один из этих отростков направляется к кортиеву органу и подходит к небольшой группе волосковых клеток, а другой -- входит в состав слухового нерва.

Слуховой нерв содержит около 17 000 нервных волокон, каждое из которых состоит из осевого цилиндра, являющегося собственно нервным волокном, и особой жировой миелиновой оболочки. Таким образом, слуховой нерв построен наподобие телефонного кабеля, состоящего из отдельных изолированных проводов. Слуховой нерв выходит из внутреннего уха через внутренний слуховой проход в полость черепа и проникает в основание мозга. Отсюда волокна слухового нерва направляются к слуховым ядрам продолговатого мозга, где и заканчивается первый нейрон (рис. 14).

Рис. 13. Схема слуховых проводящих путей и центров: 1 -- улитка; 2 -- слуховые

От слуховых ядер в продолговатом мозгу начинается второй нейрон. Часть нервных волокон от ядер идет по одноименной стороне, а большая часть их переходит на противоположную сторону. Далее волокна доходят до оливы продолговатого мозга, откуда начинается третий нейрон. Волокна третьего нейрона заканчиваются в подкорковых слуховых центрах -- заднем двухолмии и внутреннем коленчатом теле. Отсюда начинается последний, четвертый, нейрон слухового пути, заканчивающийся в корковом конце слухового анализатора -- височной доле мозга.

Строение и функции центрального отдела слухового анализатора.

Центральный конец слухового анализатора расположен в коре верхнего отдела височной доли каждого из полушарий головного мозга (в слуховой области коры). Особенно важное значение в восприятии звуковых раздражений имеют, по-видимому, поперечные височные извилины, или так называемые извилины Гешля. Как уже сказано, в продолговатом мозгу происходит частичный перекрест нервных волокон, соединяющих периферический отдел слухового анализатора с его центральным отделом. Таким образом, корковый центр слуха одного полушария оказывается связанным с периферическими рецепторами (кортиевыми органами) обеих сторон. И наоборот, каждый кортиев орган связан с обоими корковыми центрами слуха (двустороннее представительство в коре головного мозга).

Задание для самостоятельной работы (1 час)

Самостоятельное ознакомление с содержанием лекции.

Уточнение понятий из словаря.

Сделать конспект по теме "Развитие слуховой сенсорной системы в онтогенезе"

План:

Основные закономерности эволюции слуховой системы и краткая характеристика развития органов слуха у типичных представителей животного мира.

Этапы формирования слуховой системы в пренатальном онтогенезе человека.

Критические периоды в развитии слуховой сенсорной системы в онтогенезе.

Роль эндогенных и экзогенных факторов в нарушении закладки и развитии органов слуха.

Тема 3. Модуль 3. Физиологические основы деятельности слухового анализатора (1 час)

Физические и акустические свойства звука. Звукопроводящая функция органа слуха. Звуковоспринимающая функция органа слуха. Чувствительность органа слуха.

Основные понятия: амплитуда, частота звуковых колебаний, децибелы, высота звука - герц, тембр, фонация, воздушное и костное звукопроведение, кортиев орган, микрофонный эффект улитки, порог слухового ощущения, порог звукового дискомфорта, динамический диапазон восприятия звуков речи, слуховая адаптация, слуховое утомление, бинауральный слух.

Физиологические и акустические свойства звука

Звук и его виды

Адекватным раздражителем слухового анализатора является звук, который представляет собой колебательные движения среды (воздуха, воды, почвы и пр.). В звуке, как и во всяком колебательном движении, различают амплитуду -- размах колебаний, период -- время, в течение которого совершается полное колебательное движение, и частоту -- число полных колебаний в 1 с.

Источником звука является колеблющееся тело. В силу упругости, присущей любому веществу, любой среде, колебания, возникающие в одном месте, передаются на соседние участки, причем возникают уплотнения и разрежения среды. Эти уплотнения и разрежения распространяются во все стороны с определенной скоростью, зависящей от величины упругости и плотности среды. Так возникают звуковые волны, состоящие из чередующихся друг с другом уплотнений и разрежений среды (рис. 1).

Рис. 1. Распространение звуковой волны

Одинаковые состояния колеблющейся среды, т.е. сгущения, разрежения и все промежуточные состояния, называют фазами звуковой волны. Расстояние между одинаковыми фазами называют длиной волны. Скорость распространения звуковой волны неодинакова в различных средах. Так, например, в воздухе при 0°С она равна 332 м/с, а в воде -- 1450 м/с. С повышением температуры скорость звука в воздухе увеличивается и, например, при 16°С равна уже 340 м/с.

По характеру колебательных движений звуки делятся на две группы -- тоны и шумы. Если колебание совершается ритмично, т.е. через определенные промежутки времени повторяются одинаковые фазы звуковой волны, то образующийся при этом звук воспринимается как музыкальный тон. Простейший вид тона - гармоническое колебание, так называемый чистый тон. Закон, по которому происходит это колебание, т.е. изменение амплитуды данного колебания во времени, графически изображается синусоидой, поэтому такие колебания называются иначе синусоидальными (рис. 2). Примером чистого тона может служить звук камертона (прибора, применяемого для настройки музыкальных инструментов). В музыкальных звуках к основному тону обычно присоединяются верхние гармонические тоны, или обертоны, с числом колебаний, кратным числу колебаний основного тона. Наличие обертонов объясняется тем, что звучащее тело колеблется не только целиком, но и отдельными частями. Проводя смычком по натянутой струне, мы получаем колебания всей струны в целом и, кроме того, вдвое более частые колебания каждой половины струны, втрое более частые колебания каждой трети струны и т.д. Другую группу звуков составляют шумы. К шумам относят такие звуки, как скрип, стук, крик, вой, шорох и т. п. Шумы представляют собой совокупность беспорядочных (хаотических) колебаний, не связанных между собой какой-либо правильной числовой зависимостью, которая характерна для гармонических колебаний, входящих в состав музыкальных звуков.

Рис. 2. Графическое изображение гармонического колебания (синусоида)

Свойства звука

В звуке различают три основных свойства: силу, высоту и тембр.

Сила звука зависит от величины амплитуды колебаний. Чем больше амплитуда, т.е. чем шире размах колебаний, тем звук сильнее, и, наоборот, чем меньше размах, тем меньше сила звука. Амплитуда колебаний ветвей звучащего камертона постепенно уменьшается, уменьшается размах колебаний частиц окружающей среды (воздуха) и соответственно -- сила звука камертона.

Сила звука определяется величиной давления, которое производит звуковая волна на единицу поверхности. Звуковое давление (как и атмосферное) измеряется в паскалях (Па), показывающих, какая сила в ньютонах (Н) действует на площадь в квадратных метрах (м2). Давление в 1 Па=1Н/1м2. Давление в 1 атмосферу (атм.) приблизительно составляет 105 паскалей (Па), т.е. 100 000 Па.

На практике оказывается более удобным измерять силу звука не в абсолютных, а в относительных единицах.

При этом определяют величину отношения данной силы звука к силе звука, условно принятой за нулевую, т.е. за уровень отсчета.

Это отношение часто выражается огромными цифрами, поэтому пользуются его логарифмом, величина которого обозначается в белах.

Обычно применяется единица в десять раз меньшая -- децибел (дБ).

Если, например, говорят, что сила звука равна 30 дБ, то это значит, что отношение данной силы к силе, условно принятой за нулевую, равно 103, т.е. 1000, или, другими словами, данная сила звука в 1000 раз больше нулевой. Вообще, для того чтобы, зная число децибел, определить величину отношения данной силы звука к нулевому уровню, нужно число децибел разделить на 10 и возвести в 10-ю степень, равную полученному частному.

Таблица 1 дает конкретное представление об уровне интенсивности некоторых звуков в децибелах.

Таблица 1

Уровень интенсивности разных звуков

Уровень его

Звук

интенсивности (дБ)

Едва слышимый звук (порог слышимости)

0

Шелест листьев при ветре

10

Обычный шепот (около уха)

25-30

Шумовой фон в городе ночью

40

Шум спокойной улицы днем

50-60

Речь средней громкости

60-70

Оркестр, громкая музыка по радио

80

Шум в поезде метро

90

Очень громкая речь (крик)

90

Удары молотка по стальной плите

100

Шум авиационного мотора

120

Высота звука зависит от частоты колебаний звучащего тела и измеряется числом полных колебаний в секунду. Звуки с малым числом колебаний в секунду (до 200--300) называют низкими, с большим числом колебаний (выше 2000) -- высокими. Число колебаний в секунду обозначается сокращенно Гц (герц -- по имени физика Герца).

Тембр звука. Тембром, или окраской, звука называют то его свойство, благодаря которому можно отличить друг от друга одинаковые по интенсивности и по высоте звуки, издаваемые разными источниками.

Если взять одну и ту же ноту с одной и той же силой на скрипке, на рояле, на трубе, в каждом случае получается свой характерный звук. Ни по высоте, ни по силе эти звуки не отличаются друг от друга, но они разнятся своим оттенком, своей окраской, или, как говорят, своим тембром.

Обертоны и придают звукам тембровую окраску.

Количество и относительная сила входящих в состав того или иного звука обертонов зависят в основном от величины и формы резонаторов, участвующих в образовании данного звука. Именно поэтому мы различаем по тембру звуки, издаваемые различными музыкальными инструментами, и голоса людей.

Громкость звука. В то время как сила звука является его физическим свойством, громкостью звука обозначают интенсивность слухового ощущения. Будучи, как и всякое ощущение, отражением внешней реальности, в данном случае отражением объективной силы звука, громкость нарастает с увеличением силы звука и, наоборот, убывает с ее уменьшением. Однако здесь нужно учесть некоторые важные особенности, характеризующие соотношение силы и громкости звуков. Во-первых, громкость, как и всякое другое ощущение, нарастает и падает значительно слабее, чем интенсивность раздражителя, т.е. в данном случае слабее, чем интенсивность звука. Так, например, установлено, что увеличение интенсивности звука на 10 дБ, т.е. в 10 раз, сопровождается увеличением громкости лишь в 2 раза. Во-вторых, чувствительность нашего слуха к звукам разной высоты неодинакова, вследствие чего звуки одинаковой интенсивности, но разной высоты ощущаются нами с разной громкостью. Наконец, в-третьих, необходимо отметить, что ощущение громкости зависит от состояния слухового анализатора и от общего состояния нервной системы. Звуки, которые в нормальных условиях воспринимаются как средние по громкости, при повышенной возбудимости нервной системы могут стать чрезвычайно громкими.

Человек обладает способностью непосредственно оценивать громкость звуков. Примером практического измерения громкости являются известные музыкальные обозначения (латинскими буквами): пиано-пианиссимо (ррр), пианиссимо (рр), пиано (р), меццо-пиано (mр), меццо-форте (mf), форте (f), фортиссимо (ff) и форте-фортиссимо (fff).

Каждая последующая ступень оценивается приблизительно в два раза громче, чем предыдущая. Большинство людей могут довольно точно определять удвоение громкости звука и уменьшение громкости в два раза. Исследование этой способности используется для характеристики состояния функции коркового отдела слухового анализатора.

Распространение звука в среде

Дифракция звука. Выше было указано, что звуковая волна, возникшая в определенном месте, распространяется с определенной скоростью во все стороны. Однако свободному распространению звуков обычно мешает целый ряд препятствий, в том числе голова самого человека, воспринимающего звуки. Так возникает дифракция звука, т. е. огибание им препятствий. Низкие звуки, обладающие большей длиной волны, лучше огибают препятствия, чем высокие, поэтому если за стеной или за домом играет оркестр, то звуки низких труб лучше слышны, чем звуки флейт. То же самое происходит, когда оркестр заворачивает за угол: сначала исчезают звуки флейт и кларнетов, а последними -- звуки басовых труб и барабана.

Реверберация. В закрытом помещении происходит многократное отражение звуковых волн стенами. Это явление называют реверберацией.

Сильная реверберация сообщает излишнюю гулкость помещению. Поэтому для уменьшения отражения звуков стены обивают материей, вешают занавеси, на пол стелют ковры, что способствует частичному поглощению звуков.

Однако при чрезмерном уменьшении реверберации акустические качества помещения ухудшаются: звуки быстро гаснут, становятся как бы бледными, тусклыми. Особым устройством источника звука или приданием особой формы помещению, в котором распространяется звук, последний может быть сделан направленным. Примером такого направления звука является применение рупоров, переговорных трубок, устройство эстрадных "раковин" и т.д.

Резонанс. Если в поле звучания какого-либо источника звука попадает другой способный звучать предмет, то он может стать вторичным излучателем звука, или резонатором; это явление называют резонансом. Резонанс бывает особенно резко выраженным, или, как говорят, острым, когда резонатор настроен одинаково (в унисон) с первичным источником звука, т.е. когда период собственных колебаний резонатора и период колебаний звучащего тела одинаковы. Так, например, если открыть крышку рояля, нажать педаль и пропеть над струнами какой-либо тон, то начнет звучать струна, настроенная на тот же самый тон.

Звуки речи

Из всех звуков окружающего мира наибольшее значение для человека имеют звуки речи. С акустической точки зрения речь представляет собой поток различных звуков, прерывающийся паузами разной длительности. Особенности звуков речи определяются различием их акустических свойств: высоты, силы, тембра и длительности.

Звуки речи делятся на две основные группы -- гласные и согласные. Гласные являются тоновыми звуками, согласные -- преимущественно шумовыми.

Гласные звуки. Различие между отдельными гласными определяется характерными для каждого гласного формантами. Форманты представляют собой отдельные усиленные области частот, составляющих сложный спектр звуков речи.

Так, например, гласный звук а независимо от своего основного тона, т.е. независимо от того, на какой высоте голоса он произнесен, имеет характерную для этого звука форманту, охватывающую область от 1000 до 1400 Гц.

Из приведенной ниже таблицы 2 видно, что гласные у, ы, о характеризуются низкими формантами (от 200 до 800), а гласные э, и -- высокими (от 1500 до 4200), для гласного же а характерны форманты средней частоты (от 1000 до 1400), так что звуки у, ы, о можно условно считать "низкими", в то время как и, э являются "высокими" звуками.

Из этой же таблицы видно, что гласные ы, э имеют, кроме основных формант, добавочные формантные области, отличающиеся от основных меньшей интенсивностью.

Таблица 2

Форматный состав гласных звуков

Звуки

Форманты

основная (Гц)

добавочная (Гц)

У

ы

о

а

э

и

200-600

200-600

400-800

1000-1400

1500 - 2300

2800-4200

1500-2300

600-1000

Согласные звуки также обладают определенными акустическими характеристиками, но значительно более сложными. Звуковой анализ звонких согласных, например б, в, з, ж и др., показывает наряду с периодическими колебаниями, соответствующими тону голосовых связок, наличие в составе этих звуков непериодических колебаний высокой частоты, не гармоничных по отношению к основному тону. Что касается глухих согласных, например п, ш, ц и др., то в их состав входят только непериодические колебания разной частоты. Согласные л, м, н обладают почти правильной периодичностью. Для р характерны биения звука с частотой около 20 колебаний в секунду (соответственно частоте вибраций языка) и форманта в области от 200 то 1500 Гц. Согласный ш имеет высокую форманту в области от 1200 до 6300 Гц, а согласный с -- еще более высокую характеристическую область -- от 4200 до 8600 Гц. Нужно отметить, что звуковой спектр согласных настолько сложен, что вопрос о физической природе этих звуков не может считаться окончательно разрешенным.

Если в силу каких-либо причин устраняются или ослабляются форманты, характеризующие речевые звуки, то речь становится неразборчивой, даже если она обладает достаточной громкостью. Такое устранение и ослабление формант служит причиной неразборчивости речи при несовершенной радиопередаче и при пользовании низкокачественной звукоусиливающей аппаратурой.

Снижение разборчивости речи за счет устранения высоких формант отмечается также при некоторых формах тугоухости, когда нарушается восприятие высоких тонов.

Звукопроводящая и звуковоспринимающая функции слухового анализатора

Различные части слухового анализатора, или органа слуха, выполняют две различные по характеру функции:

1) звукопроведение, т.е. доставку звуковых колебаний к рецептору (окончаниям слухового нерва);

2) звуковосприятие, т.е. реакцию нервной ткани на звуковое раздражение. слух ухо речь зрение

Функция звукопроведения заключается в передаче составными элементами наружного, среднего и отчасти внутреннего уха физических колебаний из внешней среды к рецепторному аппарату внутреннего уха, т.е. к волосковым клеткам кортиева органа.

Функция звуковосприятия состоит в превращении физической энергии звуковых колебаний в энергию нервного импульса, т.е. в процесс физиологического возбуждения волосковых клеток кортиева органа. Это возбуждение передается затем по волокнам слухового нерва в корковый конец слухового анализатора. Таким образом, звуковосприятие представляет собой сложную функцию трех отделов слухового анализатора и включает не только возбуждение периферического конца, но и передачу возникшего нервного импульса в кору головного мозга, а также превращение этого импульса в слуховое ощущение.

Соответственно двум функциям в слуховом анализаторе различают звукопроводящий и звуковоспринимающий аппараты.

а) Звукопроведение

В проведении звуковых колебаний принимают участие ушная раковина, наружный слуховой проход, барабанная перепонка, слуховые косточки, кольцевая связка овального окна, мембрана круглого окна (вторичная барабанная перепонка), жидкость лабиринта (перилимфа), основная мембрана.

У человека роль ушной раковины сравнительно невелика. Она, как рупор, лишь собирает звуковые волны. Однако и в этом отношении ее роль незначительна. Поэтому, когда человек прислушивается к тихим звукам, он приставляет к уху ладонь, благодаря чему поверхность ушной раковины значительно увеличивается.

Звуковые волны, проникнув в слуховой проход, приводят в содружественное колебание барабанную перепонку, которая передает звуковые колебания через цепь слуховых косточек в овальное окно и далее перилимфе внутреннего уха (рис. 3).

Рис. 3.Звукопроведение

Барабанная перепонка и слуховые косточки не просто передают звуковые колебания, поступающие в наружный слуховой проход, а трансформируют их, т.е. превращают воздушные колебания с большой амплитудой и малым давлением в колебания жидкости лабиринта с малой амплитудой и большим давлением.

Эта трансформация достигается благодаря следующим условиям: 1) поверхность барабанной перепонки в 15--20 раз больше площади овального окна; 2) молоточек и наковальня образуют неравноплечий рычаг, так что экскурсии, совершаемые подножной пластинкой стремени, примерно в полтора раза меньше экскурсий рукоятки молоточка.

Общий эффект трансформирующего действия барабанной перепонки и рычажной системы слуховых косточек выражается в увеличении силы звука на 25--30 дБ. Нарушение этого механизма при повреждениях барабанной перепонки и заболеваниях среднего уха ведет к соответствующему снижению слуха, т.е. на 25--30 дБ.

Для нормального функционирования барабанной перепонки и цепи слуховых косточек необходимо, чтобы давление воздуха по обе стороны от барабанной перепонки, т.е. в наружном слуховом проходе и в барабанной полости, было одинаковым.

Это выравнивание давления происходит благодаря вентиляционной функции слуховой трубы, которая соединяет барабанную полость с носоглоткой. При каждом глотательном движении воздух из носоглотки поступает в барабанную полость, и, таким образом, давление воздуха в барабанной полости все время поддерживается на уровне атмосферного, т.е. на том же уровне, что и в наружном слуховом проходе.

К звукопроводящему аппарату относятся также мышцы среднего уха, которые выполняют следующие функции: 1) поддержание нормального тонуса барабанной перепонки и цепи слуховых косточек; 2) защиту внутреннего уха от чрезмерных звуковых раздражений; 3) аккомодацию, т.е. приспособление звукопроводящего аппарата к звукам различной силы и высоты.

При сокращении мышцы, натягивающей барабанную перепонку, слуховая чувствительность повышается, что дает основания считать эту мышцу "настораживающей". Стременная мышца играет противоположную роль -- она при своем сокращении ограничивает движения стремени и тем самым как бы приглушает слишком сильные звуки.

Описанный выше механизм передачи звуковых колебаний из внешней среды к внутреннему уху через наружный слуховой проход, барабанную перепонку и цепь слуховых косточек представляет собой воздушное звукопроведение. Но звук может доставляться к внутреннему уху и минуя значительную часть этого пути, а именно непосредственно через кости черепа -- костное звукопроведение. Под влиянием колебаний внешней среды возникают колебательные движения костей черепа, в том числе и костного лабиринта. Эти колебательные движения передаются на жидкость лабиринта (перилимфу). Такая же передача имеет место при непосредственном соприкосновении звучащего тела, например ножки камертона, с костями черепа, а также под воздействием звуков высокой частоты с малой амплитудой колебаний. В наличии костного проведения звуковых колебаний можно убедиться посредством простых опытов: 1) при плотном затыкании обоих ушей пальцами, т.е. при полном прекращении доступа воздушных колебаний через наружные слуховые проходы, восприятие звуков значительно ухудшается, но все же происходит; 2) если ножку звучащего камертона приставить к темени или к сосцевидному отростку, то звучание камертона будет отчетливо слышно и при заткнутых ушах. Костное звукопроведение имеет особое значение в патологии уха. Благодаря этому механизму обеспечивается восприятие звуков, хотя и в резко ослабленном виде, в тех случаях, когда полностью прекращается передача звуковых колебаний через наружное и среднее ухо. Костное звукопроведение осуществляется, в частности, при полной закупорке наружного слухового прохода (например, при серной пробке), а также при заболеваниях, приводящих к неподвижности цепи слуховых косточек (например, при отосклерозе). Как уже сказано, колебания барабанной перепонки передаются через цепь косточек на овальное окно и вызывают перемещения перилимфы, которые распространяются по лестнице преддверия на барабанную лестницу. Эти перемещения жидкости возможны благодаря наличию мембраны круглого окна (вторичной барабанной перепонки), которая при каждом движении пластинки стремени внутрь и соответствующем толчке перилимфы выпячивается в сторону барабанной полости. В результате перемещений перилимфы возникают колебания основной мембраны и расположенного на ней кортиева органа.

б) Звуковосприятие

При колебании основной мембраны происходит также и перемещение слуховых клеток кортиева органа, сопровождающееся возникновением в них процесса возбуждения, или нервного импульса. Этот момент и является началом слухового восприятия. До этого момента в наружном, среднем и отчасти внутреннем ухе происходит лишь передача физических колебаний, возникших в окружающей среде. При раздражении волосковых клеток кортиева органа происходит превращение физической энергии звуковых колебаний в физиологический процесс нервного возбуждения. В этом превращении и состоит функция кортиева органа как периферического отдела слухового анализатора.

Слуховой орган человека воспринимает звуки различной высоты, т. е. различной частоты колебаний. Область слухового восприятия ограничена звуками, частота которых расположена между 16 колебаниями в секунду -- нижней границей и 2000 колебаний в секунду -- верхней границей.

Звуки с частотой ниже 16 колебаний в секунду относятся к инфразвукам, выше 20 000 -- к ультразвукам. Некоторые животные обладают способностью воспринимать значительно более высокие звуки. В последнее время получены данные, свидетельствующие о возможности восприятия человеком ультразвуковых колебаний с частотой до 250 000 Гц и выше посредством костной проводимости.

В пределах области слухового восприятия наше ухо способно различать звуки по высоте, силе и тембру. Для объяснения этой способности было высказано несколько теорий. Наиболее распространенной является резонансная теория, предложенная Г.А. Гельмгольцем в 1863году. Согласно его теории, различение звуков по высоте осуществляется посредством следующего механизма. Волокна основной мембраны благодаря различной длине и неодинаковому натяжению имеют, подобно струнам музыкальных инструментов, свои собственные тоны, и каждое волокно (или группа волокон) приходит в содружественное колебание, или резонирует, только на соответствующий тон. Согласно резонансной теории слуха, на высокие звуки отвечают короткие волокна основной мембраны в основном завитке улитки, а на низкие звуки -- длинные волокна в верхнем завитке. Звуки средней высоты приводят в содружественное колебание волокна основной мембраны среднего завитка.

По этой же теории разные по силе звуки вызывают различной силы размахи волокон основной мембраны, а различение тембра основано на способности периферического конца звукового анализатора разлагать сложные звуки на простые тоны.

Для пояснения резонансной теории обычно приводится следующий опыт. Если поднять крышку рояля и произнести на какой-нибудь высоте звук о, то в рояле довольно отчетливо повторится этот звук. Гласный о состоит, как указывалось, из основного тона и целого ряда обертонов. Оказывается, что в содружественное колебание приходят именно те струны, которые по своей высоте соответствуют высоте основного тона и обертонов гласного о. Согласно резонансной теории, нечто аналогичное должно происходить и в улитке.

Необходимо отметить, что ряд фактов из области физиологии слуха не укладывается в механизм звукопередачи и звуковосприятия, как он трактуется с точки зрения резонансной теории. Наибольшие трудности возникают перед этой теорией при объяснении различения всей совокупности звуков по высоте и по силе, если учесть то обстоятельство, что волокна основной мембраны связаны друг с другом и не способны к изолированным колебаниям.

...

Подобные документы

  • Условия нормального становления речи. Строение органа слуха и его взаимосвязь с мозговыми анализаторами. Степени нарушений функции слуха. Механизм зрительного восприятия. Роль болезней мозга и аномалий развития верхних дыхательных путей в развитии речи.

    презентация [6,9 M], добавлен 22.10.2013

  • Рассмотрение понятия и структуры органа зрения. Изучение строения зрительного анализатора, глазного яблока, роговицы, склеры, сосудистой оболочки. Кровоснабжение и иннервация тканей. Анатомия хрусталика и зрительного нерва. Веки, слезные органы.

    презентация [11,0 M], добавлен 08.09.2015

  • Понятие об органах чувств. Развитие органа зрения. Строение глазного яблока, роговицы, склеры, радужки, хрусталика, цилиарного тела. Нейроны сетчатки и клетки глии. Прямые и косые мышцы глазного яблока. Строение вспомогательного аппарата, слезная железа.

    презентация [1,3 M], добавлен 12.09.2013

  • Возрастные физиологические изменения в организме. Заболевания органов слуха и зрения. Снижение остроты слуха и зрения с возрастом. Меры профилактики в домашних условиях. Сущность близорукости и дальнозоркости. Правила ухода за слуховым проходом.

    реферат [22,4 K], добавлен 25.03.2012

  • Орган зрения и его роль в жизни человека. Общий принцип строения анализатора с анатомо-функциональной точки зрения. Глазное яблоко и ее строение. Фиброзная, сосудистая и внутренняя оболочка глазного яблока. Проводящие пути зрительного анализатора.

    контрольная работа [35,9 K], добавлен 25.06.2011

  • Классификации травм органа зрения. Механические травмы глаза: повреждения глазницы, тупые травмы, ранения век, конъюнктивы и глазного яблока. Химические, термические и лучевые ожоги органа зрения. Отдельные виды травматизма. Первая врачебная помощь.

    презентация [209,7 K], добавлен 19.02.2017

  • Из всех чувств человека зрение всегда признавалось наилучшим даром природы. Глаз человека - это прибор для приема и переработки световой информации. Анатомическое и физиологическое строение органа зрения. Наиболее распространенные заболевания глаз.

    реферат [1,2 M], добавлен 09.07.2008

  • Строение и функции оптического аппарата глаза. Аккомодация, рефракция, её аномалии. Структура и функции сетчатки. Нервные пути и связи в зрительной системе. Врождённая и приобретенная патология органов зрения. Обучение и воспитание слабовидящих детей.

    контрольная работа [886,0 K], добавлен 20.11.2011

  • Признаки и причины возникновения глухоты у ребенка - полного отсутствия слуха или такой формы его понижения, при которой разговорная речь воспринимается частично, с помощью слуховых аппаратов. Наследственные и ненаследственные патологии органов зрения.

    реферат [28,6 K], добавлен 26.08.2011

  • Общая характеристика организма собаки, особенности его анатомии и физиологии, функции отдельных органов. Описание основных систем организма: системы костей, мышечной, кожной и нервной. Особенности органов зрения, вкуса, слуха осязания и обоняния.

    реферат [17,2 K], добавлен 09.11.2010

  • Строение и функции органа слуха. Костный и перепончатый лабиринты. Различение высоты звука. Развитие и возрастные особенности преддверно-улиткового органа. Определение ведущего уха. Современные слуховые аппараты. Наружное, среднее и внутреннее ухо.

    презентация [595,0 K], добавлен 03.03.2014

  • Виды повреждений органа зрения в зависимости от условий их возникновения. Офтальмологическая помощь и особенности контузии глазного яблока, проникающего ранения роговицы, контузии века и его гематом, отечности ткани сетчатки и других повреждений глаз.

    реферат [18,2 K], добавлен 05.06.2010

  • Рассмотрение строения и функций органа слуха (наружного, среднего и внутреннего уха). Описание особенностей звукового анализатора, а также проводящего пути вестибулярного анализатора. Изучение строения и основных функций органа равновесия человека.

    презентация [9,9 M], добавлен 12.05.2015

  • Строение глаза. Фиброзная, сосудистая и сетчатая оболочки глазного яблока и их функции. Слепое и желтое пятна сетчатки. Описание хрусталика. Структура стекловидного тела. Выделение водянистая влага. Возможные заболевания органа зрения и его профилактика.

    презентация [596,6 K], добавлен 22.10.2016

  • Клиническая анатомия уха. Наружное ухо. Среднее ухо. Внутреннее ухо или лабиринт. Физиология уха. Слуховой анализатор. Барабанная перепонка. Слуховая труба. Методика исследования уха. Отоскопия. Продувание слуховых труб при помощи катетера.

    реферат [32,1 K], добавлен 31.12.2003

  • Расположение и функции внешнего, среднего и внутреннего уха. Строение костного лабиринта. Основные уровни организации слухового анализатора. Последствия поражения кортиевого органа, слухового нерва, мозжечка, медиального коленчатого тела, пучка Грациоле.

    презентация [753,9 K], добавлен 11.11.2010

  • Исследование остроты слуха у детей и взрослых. Функция слухового анализатора. Критерии частоты и силы (громкости) тонов. Периферический отдел слуховой сенсорной системы человека. Звукопроведение, звуковосприятие, слуховая чувствительность и адаптация.

    реферат [19,6 K], добавлен 27.08.2013

  • Понятие об анализаторах и их роль в познании окружающего мира. Строение и функции органа слуха человека. Структура звукопроводящего аппарата уха. Центральная слуховая система, переработка информации в центрах. Методы исследования слухового анализатора.

    курсовая работа [1,5 M], добавлен 23.02.2012

  • Строение органа зрения. Вспомогательные органы, сосуды и нервы глаза. Показатели остроты зрения, ее определение с использованием таблицы Головина-Сивцева. Исследование состояния зрительного анализатора школьников. Факторы, влияющие на ухудшение зрения.

    курсовая работа [411,4 K], добавлен 25.01.2013

  • Обобщение видов ранения органов зрения. Клиническая картина, осложнения и методы лечения ранения век, глазницы, глазного яблока. Непроникающие ранения роговицы и склеры. Проникающее ранение с выпадением радужки и цилиарного тела. Контузии органа зрения.

    презентация [685,2 K], добавлен 06.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.