Иммунопрофилактика, вакцинация, методы иммунокоррекции

Изучение основ иммунопрофилактики и иммунотерапии. Рассмотрение физиологических аспектов вакцинации. Виды и причины развития патологических процессов. Онтогенез иммунной системы. Нозологические формы заболеваний, болезни Грейвса, миастении гравис.

Рубрика Медицина
Вид курс лекций
Язык русский
Дата добавления 08.02.2015
Размер файла 53,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Количество B-клеток у новорожденных также близко к их содержанию у взрослых. Однако число антителопродуцирующих клеток значительно снижено. Так, в пуповинной крови новорожденных отсутствуют продуценты IgG на фоне пониженного содержания IgM- и IgA-продуцирующих клеток. К концу первого месяца жизни новорожденного количество IgM-положительных клеток достигает уровня, характерного для взрослых, хотя количество IgG- и IgA-продуцирующих клеток остается пониженным. Недостаток собственных иммуноглобулинов у новорожденных компенсируется антителами матери, поступающими в организм младенца через плаценту.

Таким образом, принципиальным моментом является тот факт, что в эмбриональном периоде закономерно не происходит синтеза иммуноглобулинов, а гуморальная защита осуществляется только за счет IgG матери. Однако иногда рождаются новорожденные со следами других иммуноглобулинов, что может свидетельствовать о возможной инфицированности плода или о раннем созревании иммунной системы.

Критические периоды в развитии иммунной системы

Во внутриутробном периоде можно выделить критический этап развития органов иммунной системы с 8 до 12 недели, когда происходит дифференцировка органов и клеток иммунной системы.

Дети с первых дней жизни все больше и больше соприкасаются с внешней средой во всем ее разнообразии, а обменные процессы у них протекают с высокой активностью. В дыхательные пути поступает воздух, в котором могут быть посторонние частицы. Пищевые антигены, а вместе с ними и другие чужеродные вещества, и патогенные микроорганизмы воздействуют на слизистую оболочку органов пищеварения. Требуется защита и от появляющихся в самом организме и становящихся чужеродными продуктов жизнедеятельности. Естественно, что в детском организме очень рано формируются механизмы защиты от всего генетически чужеродного. В связи с этим после рождения человека выделяют несколько критических периодов в развитии иммунной системы.

Первым критическим периодом является период новорожденности, так как организм встречается с огромным количеством антигенов. При этом недостаток собственных иммуноглобулинов компенсируется антителами матери, поступающими в организм младенца.

Второй критический период от 3 до 6 месяцев, когда наблюдается ослабление пассивного иммунитета. В этот период дети проходят интенсивную вакцинацию.

Третий критический период - 2-ой год жизни. В это время значительно расширяются контакты ребенка, так как они начинают свободно перемещаться и употреблять более разнообразную пищу. Таким образом, количество лимфоидных узелков возрастает. Так, в небных миндалинах детей в возрасте до 3 лет число узелков, по сравнению с таковым у новорожденных, увеличивается в 29 раз, в глоточной миндалине - в 8 раз. В стенках тонкой кишки количество лимфоидных узелков за 2-3 года жизни ребенка возрастает в 14 раз, аппендикса - в 3 раза, мочевого пузыря - в 10 раз.

Четвертый критический период - 4-6 - й годы жизни. В этом возрасте система местного иммунитета у большинства детей завершает свое развитие.

Пятый критический период - подростковый возраст. Повышение секреции половых гормонов ведет к подавлению клеточного звена иммунитета и стимуляции гуморального иммунитета.

Начиная приблизительно с юношеского возраста, в лимфатических узлах наблюдается разрастание соединительной ткани, в узлах появляется жировая ткань, а количество паренхимы коркового и мозгового вещества уменьшается. По мере инволютивных изменений в лимфатических узлах исчезают или заметно уменьшаются в количестве лимфоидные узелки с центрами размножения.

Шестой критический период - старческий и пожилой возраст. С возрастом наблюдается подавление иммунитета, хотя абсолютное количество Т - и В- клеток не снижается, а изменяется их функциональная активность. Это приводит к типичным болезням пожилого возраста - неопластическим поражениям и аутоиммунным расстройствам.

В пожилом, старческом возрасте лимфоидные узелки исчезают вообще. В некоторых лимфатических узлах их лимфоидная паренхима остается в виде участков вблизи ворот узла или возле его капсулы. Из-за разрастания соединительной ткани наиболее мелкие лимфатические узлы становятся непроходимыми для лимфы и выключаются из лимфатического русла. Средние и крупные лимфатические узлы, если они лежат рядом, срастаются друг с другом и ко второй половине постнатального периода образуют крупные узлы лентовидной и сегментарной формы, которые на гистологических срезах имеют дольчатое строение. Таким образом, у людей в зрелом и особенно пожилом и старческом возрасте уменьшается количество лимфатических узлов в регионарных группах, в то же время встречается много узлов крупных размеров.

6. Иммунопатология 2-го типа. Механизмы цитолиза. Иммунные гемолитические анемии

Иммунопатологические реакции 2-го типа развиваются по цитотоксическому механизму. Его суть сводится образованию фиксированных иммунных комплексов (антиген-антитело) на поверхности клеток организма человека (чаще всего - на клетках крови). Фиксированные иммунные комплексы могут быть первичными - антиген является собственной молекулой клетки, или вторичными - антиген имеет чужеродное происхождение, но он может быть способен к неспецифической сорбции на мембране клеток. Такие фиксированные иммунные комплексы способны активировать факторы видового иммунитета, которые и являются собственно механизмом цитолиза - разрушения клеток.

К механизмам цитолиза при цитотоксических иммунопатологических реакциях относятся:

1) система комплемента, активируемая по классическому пути,

2) нейтрофильный и макрофагальный фагоцитоз,

3) контактный киллинг NK-лимфоцитов.

При массовом разрушении клеток возникают патологические признаки, связанные с резким снижением функции, выполняемых разрушающимися клетками. Так, по данному механизму развиваются аутоиммунные гемолитические анемии (разрушение эритроцитов), аутоиммунные тромбоцитопении (разрушение тромбоцитов), аутоиммунные нейтропении (разрушение нейтрофилов) и др. заболевания.

Причинами цитотоксического типа иммунопатологических реакций могут быть:

1) хронические и острые вирусные и бактериальные инфекции. В этом случае в циркулирующую кровь поступает значительное количество микробных антигенов, способных к неспецифической сорбции на поверхности клеток крови. Иммунный ответ в этом случае развивается в отношении микроорганизма - возбудителя инфекции, но поскольку иммунные комплексы фиксированы на клетках, то они становятся объектом разрушения;

2) переливание крови при несовпадении пары донор - реципиент по группе или резус-фактору;

3) изменения цитоплазматической мембраны клеток крови вследствие различных воздействий (включая физико-химические, травматические и биологические), приводящие к образованию неоантигенов, распознаваемых иммунной системой и приводящих к развитию иммунного ответа с разрушением соответствующих клеток;

4) поступление в организм химических веществ, включая лекарственные препараты, которые являясь гаптенами, способны после связывания с мембраной клеток приобретать антигенные свойства и инициировать иммунный ответ.

Наиболее частым проявлением цитотоксического механизма иммунопатологии является аутоиммунная гемолитическая анемия. Частота поражения эритроцитов связана с отсутствием у этих клеток способности к репарации и отсутствием устойчивости к действию комплемента, характерной для ядросодержащих клеток. Клинически эта группа заболеваний сопровождается снижением числа эритроцитов и гемоглобина в крови, признаками гипоксии, увеличением селезенки и печени и другими признаками.

Различают внесосудистый иммунный гемолиз и внутрисосудистый иммунный гемолиз. Эффекторами внесосудистого иммунного гемолиза являются макрофаги, внутрисосудистого - антитела. Макрофаги несут рецепторы к Fc-фрагменту IgG1 и IgG3, поэтому эритроциты, покрытые этими антителами, связываются с макрофагами и разрушаются. Частичный фагоцитоз эритроцитов приводит к появлению микросфероцитов - отличительного признака внесосудистого гемолиза. Поскольку макрофаги несут также рецептор к C3b, эритроциты, покрытые C3b, также подвергаются внесосудистому гемолизу. Наиболее выраженное разрушение эритроцитов наблюдается в том случае, когда на их мембранах одновременно присутствуют и IgG, и C3b.

Антитела, вызывающие внесосудистый гемолиз, называют тепловыми, поскольку они наиболее эффективно связываются с эритроцитарными антигенами при +37°С.

Эффекторами внутрисосудистого аутоиммунного гемолиза в большинстве случаев являются IgM. Участки связывания комплемента, расположенные на Fc-фрагментах молекулы IgM, находятся на небольшом расстоянии друг от друга, что облегчает фиксацию компонентов мембраноатакующего комлекса на поверхности эритроцитов. Формирование мембраноатакующего комплекса приводит к набуханию и разрушению эритроцитов. Антитела, вызывающие внутрисосудистый гемолиз, называют холодовыми, поскольку они наиболее эффективно связываются с эритроцитарными антигенами при 4°С. Присутствие холодовых антител приводит к тому, что в ответ на общее переохлаждение (или употребление холодной пищи или напитков) возникают два вида патологических реакций - акроцианоз и гемолиз. В редких случаях внутрисосудистый гемолиз вызывают IgG.

Основной метод диагностики аутоиммунных гемолитических анемий - проба Кумбса. В основе ее лежит способность антител, специфичных к IgG или компонентам комплемента (особенно к С3), агглютинировать эритроциты, покрытые IgG или С3. В редких случаях на поверхности эритроцитов не обнаруживают ни IgG, ни комплемента (иммунная гемолитическая анемия с отрицательной пробой Кумбса). В некоторых случаях бывает необходимо выявить антитела в сыворотке больного по ее реакции с нормальными эритроцитами. IgM-антитела (обычно - это холодовые антитела) выявляют на основании агглютинации эритроцитов взрослого или фетальных эритроцитов. IgG-антитела выявляют с помощью непрямой пробы Кумбса. Для этого сначала инкубируют сыворотку больного с нормальными эритроцитами, а затем выявляют антитела на них с помощью антиглобулиновой (анти-IgG) сыворотки, как и в прямой пробе Кумбса.

7. Болезни, обусловленные иммунными комплексами (3-й тип иммунопатологических реакций). Характеристика иммунокомплексного воспаления. Нозологические формы заболеваний

3-й тип иммунопатологических реакций развивается по иммунокомплексному механизму. В этом случае в мелких капиллярах происходит накопление циркулирующих иммунных комплексов - ЦИК.

Условиями развития иммунокомплексного механизма иммунопатологии являются:

1) наличие длительного (хронического) инфекционного процесса, предполагающего постоянное поступление антигенов в кровь,

2) преобладание антительных реакций, т.е. преимущество Т-хелперов 2-го типа, контролирующих развитие гуморального иммунного ответа,

3) относительную недостаточность факторов разрушения и элиминации ЦИК из кровеносного русла, а именно - системы комплемента (активация по классическому пути является важнейшим механизмом растворения иммунных комплексов), и фагоцитарной реакции нейтрофилов и макрофагов,

4) свойства ЦИК. Патогенные свойства ЦИК определяются совокупностью их физико-химических параметров, к которым в первую очередь относятся размеры, состав, концентрация, способность фиксировать комплемент, а также растворимость. Молекулярная масса ЦИК определяет их размер, который является важнейшим показателем патогенности, а также скорость элиминации из организма: крупные ЦИК быстро элиминируются и сравнительно малопатогенны; мелкие ЦИК плохо элиминируются, могут откладываться субэндотелиально, не способны активировать систему комплемента; ЦИК среднего размера обладают высокой комплементсвязывающей способностью и являются наиболее патогенными. Состав иммуноглобулинов влияет на размер ЦИК, их комплементсвязывающую активность, патофизиологические свойства, клиренс и т.п.

Иммунные комплексы при 3-м типе иммунопатологических реакций откладываются на сосудистой стенке или на базальных мембранах, включая почечные. Это отложение иммунных комплексов вызывает иммунокомплексное воспаление. Его суть сводится к активации классического пути системы комплемента с образованием анафилстоксинов - С3а, С5а, привлекающих к месту отложения иммунного комплекса макрофагов, нейтрофилов, тучных клеток, определяющих повреждение тканей. Кроме этого, внутрисосудистые отложения иммунных комплексов приводят агрегации тромбоцитов с формированием микротромбов, усиливающих накопление медиаторов воспаления, результатом которого становится деструкция сосудов и замещение их соединительной тканью.

Классическим примером иммунокомплексной патологии является системная красная волчанка (СКВ). При этом заболевании образующийся комплекс аутоантител с нуклеиновыми кислотами и гистонами оседает повсеместно на стенках малых сосудов и почечных клубочков, что приводит к поражению разных типов тканей в виде их деструкции, особенно опасных в тех случаях, когда комплекс локализуется в почках или мозге.

При СКВ наблюдается поражения разных органов и систем, включая поражение суставов в виде волчаночного артрита, поражение мышц (миозит), наличие лихорадки, поражение кожи и сосудов (эритема на лице в виде "бабочки"), поражения ногтей и кончиков пальцев в виде атрофии и рубцевания, поражения сердца (миокардит, перикардит, эндокардит), поражения почек (гломерулонефрит), поражения легких, системы кроветворения и проч.

Для специфической диагностики СКВ используют определение LE-клеток, антинуклеарных антител методом иммунофлюоресценции, обнаружение ревматоидного фактора. Обострение СКВ сопровождается ускорением СОЭ, повышением содержания гаммаглобулинов, С-реактивного белка, снижением гемолитической активности системы комплемента и др. изменениями.

8. Болезни, обусловленные 4-м типом иммунопатологических реакций. Иммунопатогенез. Нозологические формы заболеваний

4-й тип иммунопатологических реакций связан с реакцией гиперчувствительности замедленного типа - ГЗТ, т.е. с реакциями Т-хелперов 1-го типа и Т-эффекторов ГЗТ. При этом реакции IV типа проявляются не ранее, чем через 12 час. Прототипом данной формы реагирования является туберкулиновая проба, до сих пор используемая в клинике инфекционных заболеваний. Последовательность событий, приводящих к проявлению реакции гиперчувствительности замедленного типа, складывается из следующих этапов: 1. Первичное внедрение антигена в организм приводит к развитию клеточного иммунного ответа и накоплению Т-эффекторов ГЗТ.

2. При повторном проникновением антигена происходит его захват регионально локализованными тканевыми макрофагами, которые экспрессируют антиген в составе молекул МНС II и активируют Т-лимфоциты.

3. Предсуществующие антигенспецифические ТН1-клетки взаимодействуют с иммуногенным комплексом на поверхности макрофага - ключевое событие для последующего развития всей реакции гиперчувствительности IV-го типа. После прошедшего взаимодействия TH1-клетки начинают секрецию большого спектра цитокинов - целого набора фактора, подавляющего миграцию макрофагов (МИФ), хемокинов, гамма-интерферона, ФНО?, интерлейкина-3, ГМ-КСФ.

4. Секретируемые цитокины обеспечивают развитие воспаления. Все эти процессы, направленные на изоляцию патогена (или какого- либо иного антигена), завершаются за 24-48 часов формированием воспалительного очага.

ГЗТ является одной из форм иммунного ответа на ряд инфекционных агентов, включая возбудители туберкулеза, проказы, сифилиса и др. Однако, в ряде случаев ГЗТ развивается на аутоантигены. Наиболее характерным примером таких аутоиммунных заболеваний является ревматоидный артрит.

Ревматоидный артрит - системное воспалительное заболевание соединительной ткани с преимущественным поражением суставов по типу хронического прогрессирующего деструктивного полиартрита, реже - поражением серозных оболочек и поражением мелких суставов. В патогенезе ревматоидного артрита, кроме 4-го механизма иммунопатологии имеет значение иммунокомплексное воспаление.

Этиология и патогенез ревматоидного артрита в полной мере остаются неясными. Однако показано, что при этом заболевании появляются антитела против белков теплового шока. Известно, что белки теплового шока появляются на поврехности клеток синовиальной оболочки суставов при бактериальных инфекциях. Возможно, антитела, направленные против бактерий, перекрестно реагируют с белками теплового шока, вызывая повреждение клеток синовиальной оболочки. Кроме того, многие микробы вызывают выработку цитокинов провоспалительного ряда (интерлейкины - 1, 6, 8, факторы некроза опухолей), стимулирующих пролиферацию клеток синовиальной и продукцию макрофатами протеаз, повреждающих ее.

Изменение структуры собственных белков приводит к появлению аутоантител (например, ревматоидного фактора), которые усугубляют поражение синовиальной оболочки. Все эти процессы приводят к избыточной пролиферации синовиоцитов, разрушению хряща, разрушению кости и деформации суставов.

Помимо поражения суставов при ревматоидном артрите происходит поражение других органов и систем, включая васкулиты, перикардит, плеврит и др. Внесуставные проявления характерны для поздней стадии заболевания при его тяжелом течении и чаще наблюдаются у носителей антигена HLA-DR4.

Лабораторная диагностика ревматоидного артрита включает определение ревматоидного фактора, уровня иммуноглобулинов, активности Т-лимфоцитов и др. параметры.

Многие из аутоиммунных заболеваний вызываются специфическими аутореактивными Т-клетками как прямыми эффекторами разрушения клеток хозяина. Кроме того, Т-клетки необходимы и для поддержания продукции аутоантител. Примером цитотоксического действия Т-лимфоцитов является инсулинзависимый диабет (сахарный диабет 1-го типа), при котором бета-клетки панкреатических островков, селективно разрушаются специфическими CD8+-лимфоцитами.

9. 5-й тип иммунопатологических повреждений ткани. Иммунопатогенез болезни Грейвса, миастении гравис

Реакции данного типа - аутосенсибилизация, обусловленная антителами к антигенам клеточной поверхности. Функциональная активность многих клеток зависит от воздействия гормонов, которые связываются со специфическими рецепторами клеточной поверхности. В результате конфигурация рецептора или соседних молекул подвергается аллостерическим изменениям, что сопровождается их активацией и передачей гормонального сигнала. Эта ситуация аналогична процессу стимуляции лимфоцитов. В-лимфоциты, несущие иммуноглобулиновые поверхностные рецепторы, активируются как в результате связывания специфического антигена, так и антииммуноглобулинов, т.е. происходит процесс аутосенсибилизации.

Реакции гиперчувствительности типа 5-го обусловлены взаимодействием антител с антигенами клеточной поверхности - ключевыми компонентами клеточной поверхности, например, с рецептором гормона, что приводит к активации клетки. Пример такого состояния - гиперреактивность щитовидной железы при болезни Грейвса, вызванная антителами, стимулирующими тиреоидные клетки.

При миастении гравис происходит аутоиммунное поражение, сопровождающееся нарушением передачи нервного импульса в мышцы и мышечной слабостью вплоть до нарушения работы диафрагмы, что может привести к остановке дыхания. Заболевание связано с образованием аутоантител к ацетилхолиновому рецептору и конкурирующих с ацетилхолином. Особенность миастении заключается в вовлечении в процесс тимуса, характеризующимся его гипертрофией, развитием фолликулов в медуллярной зоне, реже - развитием тимомы.

10. Молекулярные основы апоптоза. Пусковые сигналы: индукторы и ингибиторы апоптоза. Эффекторы апоптоза. Роль апоптоза в развитии иммунопатологии

В организме здорового человека клеточный гомеостаз определяется балансом между гибелью и пролиферацией клеток. Апоптоз - программированная клеточная гибель, энергетически зависимый, генетически контролируемый процесс, который запускается специфическими сигналами и избавляет организм от ослабленных, ненужных или повреждённых клеток. Ежедневно, примерно около 5% клеток организма подвергаются апоптозу, а их место занимают новые клетки. В процессе апоптоза клетка исчезает бесследно в течение 15-120 минут.

Апоптоз - это биохимически специфический тип гибели клетки, который характеризуется активацией нелизосомных эндогенных эндонуклеаз, которые расщепляют ядерную ДНК на маленькие фрагменты. Морфологически апоптоз проявляется гибелью единичных, беспорядочно расположенных клеток, что сопровождается формированием округлых, окруженных мембраной телец ("апоптотические тельца"), которые тут же фагоцитируются окружающими клетками.

Это энергозависимый процесс, посредством которого удаляются нежелательные и дефектные клетки организма. Он играет большую роль в морфогенезе и является механизмом постоянного контроля размеров органов. При снижении апоптоза происходит накопление клеток, пример - опухолевый рост. При увеличении апоптоза наблюдается прогрессивное уменьшение количества клеток в ткани, пример - атрофия.

Таблица 1. Сравнительная характеристика некроза и апоптоза

Признак

Апоптоз

Некроз

Индукция

Активируется физиологическими или патологическими стимулами

Различная в зависимости от повреждающего фактора

Распространенность

Одиночная клетка

Группа клеток

Биохимические изменения

Энергозависимая фрагментация ДНК эндогенными эндонуклеазами. Лизосомы интактные.

Нарушение или прекращение ионного обмена. Из лизосом высвобождаются ферменты.

Распад ДНК

Внутриядерная конденсация с расщеплением на фрагменты

Диффузная локализация в некротизированной клетке

Целостность клеточной мембраны

Сохранена

Нарушена

Морфология

Сморщивание клеток и фрагментация с формированием апоптотических телец с уплотненным хроматином

Набухание и лизис клеток

Воспалительный ответ

Нет

Обычно есть

Удаление погибших клеток

Поглощение (фагоцитоз) соседними клетками

Поглощение (фагоцитоз) нейтрофилами и макрофагами

Морфологические проявления апоптоза

Сжатие клетки. Клетка уменьшается в размерах; цитоплазма уплотняется; органеллы, которые выглядят относительно нормальными, располагаются более компактно.

Конденсация хроматина. Хроматин конденсируется по периферии, под мембраной ядра, при этом образуются четко очерченные плотные массы различной формы и размеров. Ядро же может разрываться на два или несколько фрагментов.

Формирование в цитоплазме полостей и апоптотических телец. В апоптотической клетке первоначально формируются глубокие впячивания поверхности с образованием полостей, что приводит к фрагментации клетки и формированию окруженных мембраной апоптотических телец, состоящих из цитоплазмы и плотно расположенных органелл, с или без фрагментов ядра.

Фагоцитоз апоптотических клеток или телец осуществляется окружающими здоровыми клетками, или паренхиматозными, или макрофагами. Апоптотические тельца быстро разрушаются в лизосомах, а окружающие клетки либо мигрируют, либо делятся, чтобы заполнить освободившееся после гибели клетки пространство.

Фагоцитоз апоптотических телец макрофагами или другими клетками активируется рецепторами на этих клетках: они захватывают и поглощают апоптотические клетки. Один из таких рецепторов на макрофагах - рецептор витронектина, который является ?3-интегрином и активирует фагоцитоз апоптотических нейтрофилов.

Апоптоз принимает участие в следующих физиологических и патологических процессах:

1. Запрограммированном разрушении клеток во время эмбриогенеза.

2. Удалении некоторых клеток при пролиферации клеточной популяции.

3. Гибели отдельных клеток в опухолях, в основном при ее регрессии, но также и в активно растущей опухоли.

4. Гибели клеток иммунной системы, как В-, так и Т-лимфоцитов, после истощения запасов цитокинов, а также гибели аутореактивных Т-клеток при развитии в тимусе.

5. Гибели клеток, вызванных действием цитотоксических Т-клеток, например, при отторжении трансплантата и болезни "трансплантат против хозяина".

6. Повреждении клеток при некоторых вирусных заболеваниях, например, при вирусном гепатите, когда фрагменты апоптотических клеток обнаруживаются в печени, как тельца Каунсильмана.

7. Гибели клеток при действии различных повреждающих факторов, которые способны вызвать некроз, но действующих в небольших дозах, например, при действии высокой температуры, ионизирующего излучения, противоопухолевых препаратов.

Механизм апоптоза TNF-? и Fas-лиганд (CD178) запускают каскад биохимических реакций, финальным этапом которых является дефрагментация хромосом и гибель клетки. На поверхности клеток организма имеются специальные рецепторы для TNF-? и для Fas-лиганда. Связывание TNF-? и Fas-лигандов с рецепторами апоптоза активирует интрацеллюлярные "домены смерти", результатом которой становится каскадная перестройка протеаз ICE/CED-3 семейства. На взаимодействие TNF-? и Fas-лигандов с TNF-R и Fas/APO-1(CD95) и проведение апоптотического сигнала оказывают влияние Bcl и Bax белки. Результатом активации становится фософорилирование регуляторных белков, приводящее к последовательной активации митохондриальных каспаз, а также - ряда особых проонкогенов, кодирующих белки (Bcl-2, Bcl-XL, Ced-9, Bcl-w, и Mcl-1, Bax подобный белок, Bak, Bok, и др.). Совокупность биохимических превращений приводит к морфологическим изменениям клетки, т.е. к ее деградации.

Регуляция апоптоза:

- ингибиторы включают факторы роста, клеточный матрикс, половые стероиды, некоторые вирусные белки;

- активаторы включают недостаток факторов роста, потерю связи с матриксом, глюкокортикоиды, некоторые вирусы, свободные радикалы, ионизирующую радиацию.

При воздействии активаторов или отсутствии ингибиторов происходит активация эндогенных протеаз и эндонуклеаз. Это приводит к разрушению цитоскелета, фрагментации ДНК и нарушению функционирования митохондрий. Клетка сморщивается, но клеточная мембрана остается интактной, однако повреждение ее приводит к активации фагоцитоза. Погибшие клетки распадаются на небольшие, окруженные мембраной, фрагменты, которые обозначаются как апоптотические тельца. Воспалительная реакция на апоптотические клетки не возникает.

Значение апоптоза в развитии организма и патологических процессах апоптоз играет важную роль в развитии млекопитающих и в различных патологических процессах. Функционирование bcl-2 требуется для поддержания жизнеспособности лимфоцитов, меланоцитов, эпителия кишечника и клеток почек во время развития эмбриона. bcl-x необходим для ингибирования смерти клеток в эмбриогенезе, особенно в нервной системе. Bax необходим для апотоза тимоцитов и поддержания жизнеспособности сперматозоидов во время их развития. р53 является геном супрессии опухолей, поэтому в эмбриогенезе особой роли не играет, но обязательно необходим для супрессии опухолевого роста. Усиленный синтез белка, кодируемого bcl-2 геном, приводит к подавлению апоптоза и, соответственно, развитию опухолей; данный феномен обнаружен в клетках В-клеточной фолликулярной лимфомы.

Повышенный синтез Fas-лиганда может предупреждать отторжение трансплантата. Апоптоз является частью патологического процесса при инфицировании клетки аденовирусами, ВИЧ и вирусами гриппа. Ингибирование апоптоза наблюдается при персистировании инфекции, в латентном периоде, а при усиленной репликации аденовирусов, возможно герпесвирусов, вируса Эпштейн-Барра и ВИЧ наблюдается активация апоптоза, что способствует широкому распространению вируса.

Размещено на Allbest.ru

...

Подобные документы

  • Разработка новых иммунобиологических препаратов и обеспечение их безопасности. Предупреждение инфекционных заболеваний путем создания искусственного специфического иммунитета; вакцинопрофилактика и типы вакцин. Методы иммуностимуляции и иммунодепрессии.

    реферат [15,0 K], добавлен 21.01.2010

  • Понятие и виды иммунопрофилактики как лечебных мероприятий, способствующих подавлению возбудителей инфекционных заболеваний с помощью факторов гуморального и клеточного иммунитета или вызывающих его угнетение. Неспецифические факторы защиты организма.

    презентация [383,8 K], добавлен 12.10.2014

  • Иммунитет и анатомо-физиологические особенности лимфатической и иммунной систем у детей. Методы вакцинации, ее цели и виды. Анализ и оценка результатов профилактической деятельности фельдшера в процессе специфической профилактики инфекционных заболеваний.

    дипломная работа [343,2 K], добавлен 25.02.2016

  • Цель иммунизации. Открытие принципа искусственного создания вакцин. Иммунопрофилактика и ее виды. Статистические данные по заболеванию корью, краснухой и гепатитом в РК. Виды осложнений после вакцинации. Характеристика комбинированной пентавакцины.

    презентация [5,5 M], добавлен 25.02.2014

  • Обзор национальных стандартов вакцинации в педиатрической практике. Профилактика заболеваний с помощью вакцинации. Утвержденные меры предосторожности и противопоказания при вакцинации. Диагностирование и лечение осложнений, развивающихся после вакцинации.

    презентация [272,7 K], добавлен 05.12.2014

  • Вакцинация как мера профилактики инфекционных заболеваний. Побочные эффекты и осложнения. Понятие пассивного иммунитета. Движение антивакцинаторов, оспаривающих безопасность и эффективность прививок. Изучение мнения студентов о необходимости вакцинации.

    презентация [164,8 K], добавлен 04.06.2019

  • Понятие и история вакцинации. Сущность пассивной иммунизации и основные препараты, используемые при ее проведении. Риск возникновения осложнений при использовании иммунных сывороток. Препараты иммунотерапии при дифтерии, ботулизме, гриппе, полиомиелите.

    реферат [22,2 K], добавлен 29.04.2009

  • Вакцинация против туберкулеза в Республике Казахстан. Вакцинация новорожденных в родильном доме. Основные причины повторной вакцинации. Противопоказания к вакцинации и ревакцинации БЦЖ. Специфическая профилактика ВИЧ-инфицированных детей до 18 лет.

    презентация [1,4 M], добавлен 25.10.2011

  • Политика государства в сфере иммунопрофилактики инфекционных заболеваний. Регулирование добровольного согласия на профилактическую вакцинацию детей или отказа от них. Расширение перечня инфекционных заболеваний. Расследование поствакцинальных осложнений.

    контрольная работа [16,9 K], добавлен 13.08.2015

  • Обеспечение санитарно-эпидемиологического благополучия населения на всей территории Российской Федерации. Контроль за работой лечебно-профилактических организаций по вопросам иммунопрофилактики инфекционных заболеваний, национальный календарь прививок.

    контрольная работа [35,2 K], добавлен 18.11.2013

  • Разработка способа получения липид-сапонинового иммуностимулирующего комплекса и антиген-содержащих липид-сапониновых ТИ-комплексов. Повышение эффективности вакцинации путем конструирования адъювантных систем на основе ТИ-комплексов и иммуномодуляторов.

    курсовая работа [1,8 M], добавлен 18.04.2015

  • Болезни, вызванные недостаточностью иммунной системы. Болезни, обусловленные избыточным реагированием иммунной системы. Инфекции и опухоли иммунной системы. Классификация первичных иммунодефицитов по механизмам развития. Развитие болезни Брутона.

    презентация [967,5 K], добавлен 19.04.2013

  • Виды патологических состояний, развивающихся в вегетативной нервной системе, этиологические факторы этих заболеваний. Характер вегетативных симптомов при поражении спинного мозга. Хирургические методы лечения заболеваний вегетативной нервной системы.

    реферат [26,3 K], добавлен 16.06.2010

  • Изучение характеристик и специфики возбудителя туберкулёза. Раскрытие процесса инфицирования и развития заболевания, механизма формирования иммунитета в ходе вакцинации БЦЖ. Исследование особенностей иммунного ответа детского организма на вакцинацию.

    курсовая работа [101,0 K], добавлен 24.05.2015

  • Основные причины осложнений после вакцинации у детей. Нарушение правил и техники проведения прививок. Индивидуальные реакции, обусловленные вакциной. Нарушение условий транспортировки и хранения вакцины. Наиболее частые осложнения и методы их лечения.

    презентация [91,4 K], добавлен 20.09.2013

  • Признаки и причины снижения иммунитета. Органы иммунной системы. Вакцинация против коклюша, дифтерии, столбняка, полиомиелита. Идея организации Европейской недели иммунизации. Российский календарь профилактических прививок. Полная ликвидация инфекций.

    презентация [2,4 M], добавлен 25.04.2016

  • Значение иммунопрофилактики. Показания и противопоказания для проведения профилактики ослабления иммунитета. Тактика в отношении непривитых детей. Поствакцинальные осложнения, тактика ведения детей. Особенности организации работы прививочного кабинета.

    презентация [190,6 K], добавлен 21.09.2013

  • Сущность и принципы, а также нормативно-медицинские основы иммунопрофилактики. Понятие и назначение, характеристики и типы вакцин. Показания и противопоказания к проведению профилактических прививок. Основные поствакцинальные осложнения и борьба с ними.

    реферат [31,1 K], добавлен 16.06.2015

  • Причины аллергических заболеваний у детей. Профилактика аллергических заболеваний. Вакцинация детей с аллергией. Распространение астмы у детей и подростков в промышленно развитых странах. Особенности использования в лечении респираторных аллергозов.

    доклад [27,9 K], добавлен 17.02.2010

  • Эпидемиологические данные по развитию туберкулеза у ВИЧ-инфицированных лиц и динамике смертности населения России. Особенности механизма патогенеза обоих заболеваний, их клинические проявления, методы диагностики и лечения. Проведение вакцинации БЦЖ.

    контрольная работа [35,9 K], добавлен 16.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.