Физика в медицине
Функции клеточных мембран. Механическая работа сердца. Психофизический закон Вебера-Фухнера. Способы измерения вязкости крови. Воздействие инфра- и ультразвука на человека. Физические основы электрокардиографии. Механизм рентгеновского излучения.
Рубрика | Медицина |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 23.03.2015 |
Размер файла | 647,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
1. Клеточная мембрана: определение, функции мембран, физические свойства
Клеточная мембрана - это ультратонкая пленка на поверхности клетки или клеточной органеллы, состоящая из бимолекулярного слоя липидов с встроенными белками и полисахаридами.
Функции мембран:
· Барьерная -- обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
· Транспортная -- через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов. Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза. При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа. Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).
· матричная-- обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
· механическая-- обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных-- межклеточное вещество.
· энергетическая-- при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
· рецепторная-- некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы). Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
· ферментативная-- мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
· осуществление генерации и проведения биопотенциалов. С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
· маркировка клетки-- на мембране есть антигены, действующие как маркеры-- «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.
Некоторые белковые молекулы свободно диффундируют в плоскости липидного слоя; в обычном состоянии части белковых молекул, выходящие по разные стороны клеточной мембраны, не изменяют своего положения.
Особая морфология клеточных мембран определяет их электрические характеристики, среди которых наиболее важными являются емкость и проводимость.
Емкостные свойства в основном определяются фосфолипидным бислоем, который непроницаем для гидратированных ионов и в то же время достаточно тонок (около 5 нм), чтобы обеспечивать эффективное разделение и накопление зарядов, и электростатическое взаимодействие катионов и анионов. Кроме того, емкостные свойства клеточных мембран являются одной из причин, определяющих временные характеристики электрических процессов, протекающих на клеточных мембранах.
Проводимость (g) -- величина, обратная электрическому сопротивлению и равная отношению величины общего трансмембранного тока для данного иона к величине, обусловившей его трансмембранной разности потенциалов.
Через фосфолипидный бислой могут диффундировать различные вещества, причем степень проницаемости (Р), т. е. способность клеточной мембраны пропускать эти вещества, зависит от разности концентраций диффундирующего вещества по обе стороны мембраны, его растворимости в липидах и свойств клеточной мембраны. Скорость диффузии для заряженных ионов в условиях постоянного поля в мембране определяется подвижностью ионов, толщиной мембраны, распределением ионов в мембране. Для неэлектролитов проницаемость мембраны не влияет на ее проводимость, поскольку неэлектролиты не несут зарядов, т. е. не могут переносить электрический ток.
Проводимость мембраны является мерой ее ионной проницаемости. Увеличение проводимости свидетельствует об увеличении количества ионов, проходящих через мембрану.
Важное свойство биологических мембран - текучесть. Все клеточные мембраны представляют собой подвижные текучие структуры: большая часть составляющих их молекул липидов и белков способна достаточно быстро перемещаться в плоскости мембраны
2. Жидко-кристаллическая модель мембраны. Функции мембранных белков, липидов, углеводов. Латеральная диффузия и флип-флоп переход липидов. Искусственные мембраны. Липосомы
Моделью организации на сегодняшний день признана жидкостно-кристаллическая модель. Впервые ее предложили Сингер и Николсон в 1972 г. Согласно этой модели основу любой мембраны составляет двойной фосфолипидный слой. Молекулы фосфолипидов ориентированы так, что их гидрофильные головки выходят наружу и образуют внешнюю и внутреннюю поверхности мембраны, а их гидрофобные хвосты направлены к середине бимолекулярного слоя. Белки как бы плавают в липидном слое. Поверхностные белки располагаются на внешней и внутренней поверхностях мембраны, удерживаясь преимущественно за счет электростатическими силами. Интегральные белки могут пронизывать двойной слой насквозь. Такие белки являются главным компонентом, ответственным за избирательную проницаемость кл. мембраны.
Кроме фосфолипидов и белков в биологических мембранах содержатся и другие хим. соединения (холестерин, гликолипиды, гликопротеиды).
Функции мембранных белков. Некоторые мембранные белки участвуют в транспорте малых молекул через мембрану клетки, изменяя ее проницаемость. Мембранные транспортные белки можно подразделить на белки-каналы и белки-переносчики. Белки-каналы содержат внутренние заполненные водой поры, которые позволяют ионам (через ионные каналы) или молекулы воды перемещаться через мембрану. Многие ионные каналы специализируются на транспорте только одного иона; так калиевые и натриевые каналы часто различают эти сходные ионы и пропускают только один из них. Белки-переносчики связывают каждую переносимую молекулу или ион и могут осуществлять активный транспорт с использованием энергии АТФ. Также белки играют важную роль в сигнальных системах клеток, при иммунном ответе и в кл. цикле.
Функции мембранных углеводов. Углеводная часть гликолипидов и гликопротеинов плазматической мембраны всегда находится на наружной поверхности мембраны, контактируя с межклеточным веществом. Полисахариды наряду с белками выполняют роль антигенов при развитии кл. иммунитета. Участвуют в транспорте гликопротеинов, направляя их к месту назначения в клетке или на ее поверхности.
Главная функция мембранных липидов состоит в том, что они формируют бислойный матрикс, с которым взаимодействуют белки.
Латеральная диффузия - это хаотическое тепловое перемещение молекул липидов и белков в плоскости мембраны. При латеральной диффузии рядом расположенные молекулы липидов скачком меняются местами и вследствие таких последовательных перескоков из одного места в другое молекула перемещается вдоль поверхности мембраны. Среднее квадратичное перемещение молекул при диффузии за время t можно оценивать по формуле Эйнштейна: Sкв = 2кор(Dt), где D - коэф. лат. диффузии молекулы.
Латеральная диффузия интегральных белков в мембране ограничена, это связано с их большими размерами, взаимодействием с др. мембр. белками. Белки мембран не совершают перемещений с одной стороны мембраны на другую ("флип-флоп" перескоки), подобно фосфолипидам.
Перемещение молекул по поверхности мембраны клетки за время t определено экспериментально методом флуоресцентных меток - флуоресцирующих молекулярных групп. Оказалось что среднее квадратичное перемещение фосфолипидной молекулы за секунду по поверхности мембраны эритроцита соответствует расстоянию 5 мкм, что сравнимо с размерами клеток. Аналогичная величина для белковых молекул составила 0,2 мкм за сек.
Рассчитанные по формуле Эйнштейна коэффициенты лат. диффузии для липидов 6*10 (в -12 ст) кВ.м/с, для белков - порядка 10 (в - 14 ст) кВ.м/с.
Частота перескоков молекулы с одного места на другое вследствие лат. диффузии может быть найдена по формуле: v = 2кор(3D/f), где f - площадь, занимаемая одной молекулой на мембране.
Искусственная мембрана обычно представляет собой жесткую селективно-проницаемую перегородку, разделяющую массообменный аппарат на две рабочие зоны, в которых поддерживаются различные давления и составы разделяемой смеси. Мембраны могут быть выполнены в виде плоских листов, труб, капилляров и полых волокон. Мембраны выстраиваются в мембранные системы. Наиболее распространенные искусственные мембраны -- полимерные мембраны. При определённых условиях, преимущественно могут быть использованы керамические мембраны. Некоторые мембраны работают в широком диапазоне мембранных операций, таких, как микрофильтрация, ультрафильтрация, обратный осмос, первапорация, сепарация газа, диализ или хроматография. Способ применения зависит от типа функциональности включеной в мембрану, которые могут быть основаны на изоляции по размеру, химическом родстве или электростатике.
Липосомы. или фосфолипидные везикулы (пузырьки), получают обычно при набухании сухих фосфолипидов в воде или при впрыскивании раствора липидов в воду. При этом происходит самосборка бимолекулярной липидной мембраны. При этом все неполярные гидрофобные хвосты находятся внутри мембраны и ни один из них не соприкасается с полярными молекулами воды, однако чаще получаются сферические многоламеллярные липосомы, состоящие из нескольких бимолекулярных слоев - многослойные липосомы.
Отдельные бимолекулярные слои многослойной липосомы отделены водной средой. Толщина липидных слоев составляет, в зависимости от природы липидов 6,5 - 7,5 нм, а расстояние между ними - 1,5 - 2 нм. Диаметр многослойных липосом колеблется от 60 нм до 400 нм и более. Однослойные липосомы можно получить различными методами, например из суспензии многослойных липосом, если обрапотать их ультразвуком. Диаметр однослойных липосом составляет 25 - 30 нм. Липосомы представляют собой в некотором роде прообраз клетки. Они служат моделью для исследований различных свойств кл. мембран. Липосомы нашли непосредственное применение и в медицине (фоффолипидная микрокапсула для доставки лекарства в определенные органы и ткани). Липосомы не токсичны, полностью усваиваются организмом.
3. Транспорт неэлектролитов через клеточные мембраны. Простая диффузия. Уравнение Фика. Облегченная диффузия: механизмы транспорта (подвижные, фиксированные переносчики), отличие от простой диффузии
Транспорт неэлектролитов (сахаров, аминокислот и нуклеотиды, вода) через клеточные мембраны осуществляется с помощью поры, образованные транспортным белками или липидами погруженными в мембрану.
Простая диффузия - самопроизвольное перемещение вещества из мест с большей концентрацией в места с меньшей концентрацией вещества вследствие хаотического теплового движения молекул. Диффузия вещества через липидный бислой вызывается градиентом концентрации в мембране
Уравнение Фика:
Jm= - D dC/ dx
Jm - плотность потока вещества.
dC/dx- градиент концентрации
D- коэффицент диффузии
«-»- диффузия направлена из места с большей концентрации к месту с меньшей концентрации
Стр 214- Антонов.
Плотность потока по Фику
Jm = -DdC/dx = -D(Cm2 - Cm1)/1 = D(Cm1 - Cm2)/L
Cm - концентрация вещ-ва около каждой поверхности
L- толщина мембраны.
В биологических мембранах был обнаружен еще один вид диффузии - облегченная диффузия. Облегченная диффузия происходит при участии молекул-переносчиков. Облегченная диффузия происходит от мест с большей концентрацией переносимого вещества к местам меньшей концентрацией. По-видимому, облегченной диффузией объясняется также перенос через биологические мембраны аминокислот, сахаров и других биологически важных веществ.
Отличия облегченной диффузии от простой:
1) перенос вещества с участием переносчика происходит значительно быстрее;
2) облегченная диффузия обладает свойством насыщения: при увеличении концентрации с одной стороны мембраны плотность потока вещества возрастает лишь до некоторого предела, когда все молекулы переносчика уже заняты;
3) при облегченной диффузии наблюдается конкуренция переносимых веществ в тех случаях, когда переносчиком переносятся разные вещества; при этом одни вещества переносятся лучше, чем другие, и добавление одних веществ затрудняет транспорт других;
4) есть вещества, блокирующие облегченную диффузию - они образуют прочный комплекс с молекулами переносчика.
Разновидностью облегченной диффузии является транспорт с помощью неподвижных молекул-переносчиков, фиксированных определенным образом поперек мембраны. При этом молекула переносимого вещества передается от одной молекулы переносчика к другой, как по эстафете.
4. Транспорт ионов через клеточные мембраны. Электрохимический потенциал. Уравнение Тиорелла. Уравнение Нерста-Планка. Смысл уравнения
Живые системы на всех уровнях организации - открытые системы, поэтому транспорт веществ через биологические мембраны - необходимое условие жизни. Большое значение для описания транспорта веществ имеет понятие электрохимического потенциала.
Химическим потенциалом данного вещества называется величина, численно равная энергии Гиббса, приходящаяся на 1 моль этого в-ва.
Математически химический потенциал определяется как частная производная от энергии Гиббса G по количеству k-го вещества, при постоянстве температуры Т, давления Р и количеств всех других веществ m1:
м (мю) = (dG/dmk)Р,Т,m1
Для разбавленного раствора:
м = м0 +RTlnC,
где м0 - стандартный химический потенциал, численно равный химическому потенциалу данного вещества при его концентрации 1 моль/л в растворе.
Электрохимический потенциал(мю с черточкой) - величина, численно равная энергии Гиббса G на 1 моль данного вещества, помещенного в электрическое поле.
Для разбавленных растворов
м (мю с черточкой) = м0 + RTlnC + zFф(фи),
где F = 96500 Кл/моль - число Фарадея, z - заряд иона электролита.
Транспорт веществ через биологические мембраны можно разделить на 2 основных типа: пассивный и активный.
Пассивный транспорт - это перенос вещества из мест с большим значением электрохимического потенциала к местам с его меньшим значением. Пассивный транспорт идет с уменьшением энергии Гиббса, и поэтому данный процесс может идти самопроизвольно без затраты энергии. Виды: осмос, фильтрация, диффузия (простая и облегченная).
Активный транспорт- это перенос вещестрва из мест с меньшим значение электрохимического потенциала в места с большим значением. Сопровождается ростом энергии Гибса, не может идти самопроизвольно, а только с затратами АТФ.
Плотность потока вещества jm при пассивном транспорте подчиняется уравнению Теорелла:
Jm = -UCdм(мю с черт.)/dx,
где U - подвижность частиц, С - концентрация. Знак минус показывает, что перенос происходит в сторону убывания электрохим. потенциала.
Плотность потока вещества - это величина, численно равная количеству вещества, перенесенного за единицу времени через единицу площади поверхности, перпендикулярной направлению переноса:
jm = m/S*t (моль/кВ.м*с)
Подставив выражение для электрохимического потенциала, получим для разбавленных растворов при м0 = const уравнение Нернста-Планка:
jm = -URTdC/dx - UczFdф(фи)/dx.
Уравнение Нернста-Планка описывает процесс пассивного транспорта ионов в поле электрохимического потенциала. Поток заряженных ионов пропорционален градиенту электрохимического потенциала в направлении оси x и зависит от подвижности и концентрации Cионов:
Где F-число Фарадея, Z- валентность иона, T- абсолютная температура, R-газовая постоянная, - электрический потенциал на мембране.
Итак, могут быть две причины переноса вещества при пассивном транспорте: градиент концентрации dC/dx и градиент электрического потенциала dф/dx.
Знаки минусов перед градиентами показывают, что градиент концентрации вызывает перенос вещества от мест с большей концентрацией к местам с его меньшей концентрацией, а градиент электрического потенциала вызывает перенос положительных зарядов от мест с большим к местам с меньшим потенциалом.
5. Ионные каналы. Определение. Молекулярная конструкция. Селективный фильтр. Механизм транспорта иона через ионный канал
Ионные каналы -- порообразующие белки (одиночные либо целые комплексы), поддерживающие разность потенциалов, которая существует между внешней и внутренней сторонами клеточной мембраны всех живых клеток. Относятся к транспортным белкам. С их помощью ионы перемещаются согласно их электрохимическим градиентам сквозь мембрану.
ИК состоят из белков сложной структуры. Белки ИК имеют определённую конфирмацию, образующую трансмембранную пору, и "вшиты" в липидный слой мембраны. Канальный белковый комплекс может состоять либо из одной белковой молекулы, либо из нескольких белковых субъединиц, одинаковых или разных по строению. Эти субъединицы могут кодироваться разными генами, синтезироваться на рибосомах По-отдельности и затем собираться в виде целостного канала. Домены - это отдельные компактно оформленные части канального белка или субъединиц. Сегменты - это части белкка-каналоформера, свёрнутые спирально и прошивающие мембрану. Практически все ИК имеют в составе своих субъединиц регуляторные домены, способные связываться с различными управляющими веществами (регуляторными молекулами) и за счёт этого менять состояние или свойства канала. В потенциал - активируемых ИК один из трансмембранных сегментов содержит специальный набор аминокислот с положительными зарядами и работает как сенсор электрического потенциала мембраны. ИК в своём составе могут иметь также вспомогательные субъединицы, выполняющие модуляторные, структурные или стабилизирующие функции. Один класс таких субъединиц - внутриклеточные, расположенные полностью в цитоплазме, а второй - мембранные, т.к. они имеют трансмембранные домены, прошивающие мембрану.
Свойства ионных каналов:
1) Селективность- это избирательная повышенная проницаемость ИК для определённых ионов. Для других ионов проницаемость понижена. Такая избирательность определяется селективным фильтром - самым узким местом канальной поры. Фильтр, кроме узких размеров, может иметь также локальный электрический заряд. Например, катионселективные каналы обычно имеют в области своего селективного фильтра отрицательно заряженные остатки аминокислот в составе белковой молекулы, которые притягивают положительные катионы и отталкивают отрицательные анионы, не пропуская их через пору.
2) Управляемая проницаемость-- это способность открываться или закрываться при определённых управляющих воздействиях на канал.
3) Инактивация -- это способность ионного канала через некоторое время после своего открытия автоматически понижать свою проницаемость даже в том случае, когда открывший их активирующий фактор продолжает действовать.
4) Блокировка-- это способность ионного канала под действием веществ - блокаторов фиксировать какое-то одно своё состояние и не реагировать на обычные управляющие воздействия. Блокировку вызывают вещества - блокаторы, которые могут называться антагонистами, блокаторами или литиками.
5) Пластичность-- это способность ионного канала изменять свои свойства, свои характеристики. Наиболее распространённый механизм, обеспечивающий пластичность-- это фосфорилирование аминокислот канальных белков с внутренней стороны мембраны ферментами-протеинкиназами.
Работа ионных каналов:
Лиганд - зависимые ионные каналы
Эти каналы открываются, когда медиатор, связываясь с их наружными рецепторными участками, меняет их конфирмацию. Открываясь, они впускают ионы, изменяя этим мембранный потенциал. Лиганд - зависимые каналы почти нечувствительны к изменению мембранного потенциала. Они генерируют электрический потенциал, сила которого зависит от количества медиатора, поступающего в синаптическую щель и времени, которое он там находится.
Потенциал - зависимые ионные каналы
Эти каналы отвечают за распространение потенциала действия, они открываются и закрываются в ответ на изменение мембранного потенциала. Например, натриевые каналы. Если мембранный потенциал поддерживается на уровне потенциала покоя, натриевые каналы закрыты и натриевый ток отсутствует. Если мембранный потенциал сдвигается в положительную сторону, то натриевые каналы откроются, и в клетку начнут входить ионы натрия по градиенту концентрации. Через 0,5 мс после установления нового значения мембранного потенциала, этот натриевый ток достигнет максимума. А еще через несколько миллисекунд падает почти до нуля. Это значит, что каналы через некоторое время закрываются вследствие ин активации, даже если клеточная мембрана остается деполяризованной. Но закрывшись, они отличаются от состояния, в котором находились до открытия, теперь они не могут открываться в ответ на деполяризацию мембраны, то есть они инактивированны. В таком состоянии они останутся до тех пор, пока мембранный потенциал не вернется к исходному значению и не пройдет восстановительный период, занимающий несколько миллисекунд.
6. Активный транспорт ионов. Мембранный насос. Определение. Молекулярная конструкция натриево-калиевого насоса
Активный транспорт - это перенос вещества из мест с меньшим значением электрохимического потенциала в места с его большим значением. Активный транспорт в мембране сопровождается ростом энергии Гиббса, он не может идти самопроизвольно, а только в сопровождении с процессом гидролиза АТФ, т.е за счет затраты энергии, запасенной в макроэргических связях АТФ. Активный транспорт веществ через биологические мембраны имеет огромное значение. За счет активного транспорта в организме создаются градиенты концентраций, градиенты электрических потенциалов, градиенты давления и т.д., поддерживающие жизненный процессы.
Мембранный насос-- объёмный насос, рабочий орган которого-- гибкая пластина (диафрагма, мембрана), закреплённая по краям; пластина изгибается под действием рычажного механизма (механический привод) или в результате изменения давления воздуха (пневматический привод) или жидкости (гидравлический привод), выполняя функцию, эквивалентную функции поршня в поршневом насосе.
Среди примеров активного транспорта против градиента концентрации лучше всего изучен натрий-калиевый насос. Во время его работы происходит перенос трех положительных ионов Na+ из клетки на каждые два положительных иона К в клетку. Эта работа сопровождается накоплением на мембране разности электрических потенциалов. При этом расщепляется АТФ, давая энергию. В течение многих лет молекулярная основа натрий-калиевого насоса оставалась неясной. В настоящее время установлено, что Na/K-транспортный белок представляет собой АТФазу. На внутренней поверхности мембраны она расщепляет АТФ на АДФ и фосфат. На транспортировку трех ионов натрия из клетки и одновременно двух ионов калия в клетку используется энергия одной молекулы АТФ, т. е. суммарно за один цикл из клетки удаляется один положительный заряд. Таким образом, Na/К-насос является электрогенным (создает электрический ток через мембрану), что приводит к увеличению электроотрицательности мембранного потенциала приблизительно на 10 мВ. Транспортный белок выполняет эту операцию с высокой скоростью: от 150 до 600 ионов натрия в секунду. Аминокислотная последовательность транспортного белка известна, однако еще не ясен механизм этого сложного обменного транспорта. Данный процесс описывают с использованием энергетических профилей переноса белками ионов натрия или калия (рис. 1.5,-6). По характеру изменения этих профилей, связанных с постоянными изменениями конформации транспортного белка (процесс, требующий затраты энергии), можно судить о стехиометрии обмена: два иона калия обмениваются на три иона натрия.
Помимо Na/K-насоса плазматическая мембрана содержит по крайней мере еще один насос--кальциевый; это насос откачивает ионы кальция (Са2+) из клетки и участвует в поддержании их внутриклеточной концентрации на крайне низком уровне. Кальциевый насос присутствует с очень высокой плотностью в саркоплазматическом ретикулуме мышечных клеток, которые накапливают ионы кальция в результате расщепления молекул АТФ
7. Мембранный потенциал, определение, величина. Способы измерения МП. Условия возникновения МП. Роль пассивных и активных сил
Мембранный потенциал - это разность электрических потенциалов между наружной и внутренней поверхностью биологической мембраны, обусловленное неодинаковой концентрацией ионов, главным образом Na, K.
МП (потенциал покоя) регистрируется между наружной и внутренней сторонами живой клетки. Его наличие обусловлено неравномерным распределением ионов. Внутренняя сторона мембраны заряжена отрицательно по отношению к внешней. Величина МП различна в разных клетках: нервная клетка - 60-80 мВ, поперечно-полосатые мышечные волокна - 80-90 мВ, сердечная мышца - 90-95 мВ. При неизменном функциональном состоянии клетки величина потенциала покоя не изменяется; поддержание постоянной его величины обеспечивается нормальным протеканием клеточного метаболизма. Под влиянием различных факторов величина МП может меняться.
Исследования МП нашло широкое применение в медико-биологических лабораториях, в клинической практике при диагностике различных заболеваний ЦНС, ССС и мышечной системы. При отведении суммарных биоэл. потенциалов от нервных стволов мышц, головного мозга, сердца и др. органов применяют поверхностные макроэлектроды. В некоторых случаях используют внутриполостные электроды или вводимые непосредственно в ткань. Для регистрации измерения МП отдельных клеток чаще всего пользуются внутриклеточным и точечно внеклеточных микроэлектродом. Электроды соединяют с усилителем постоянного или переменного тока. Усилитель может быть связан с устройством автоматизированной обработки биоэлектрических сигналов. Механизм возникновения связан с наличием определенных физ.-хим. градиентов между отдельными тканями организма, между жидкостью, окружающей клетку и ее цитоплазмой, между отдельными клеточными элементами. Возникновение в живых клетках обусловлено неравномерной концентрацией ионов на внутренней и наружной поверхности мембраны и ее различной проницаемостью для них.
8. Уравнение Нерста. Потенциал Нерста, его природа. Стационарный мембранный потенциал. Уравнение Гольдмана-Ходжкина
Потенциал действия - электрический импульс, возникающий между внутренней и наружной сторонами мембраны и обусловленный изменениями ионной проницаемости мембраны.
Фазы Пд.
1) Фаза деполяризации-
Фаза деполяризации. При действии деполяризующего раздражителя на клетку, например, электрического тока, начальная частичная деполяризация клеточной мембраны происходит без изменения ее проницаемости для ионов. Когда деполяризация достигает примерно 50% пороговой величины (50% порогового потенциала), возрастает проницаемость мембраны клетки для Na+, причем в первый момент сравнительно медленно. Естественно, что скорость входа Na+ в клетку при этом невелика. В этот период, как и во время всей первой фазы (деполяризации), движущей силой, обеспечивающей вход Na+ в клетку, являются концентрационный и электрический градиенты.
Напомним, что клетка внутри заряжена отрицательно (разноименные заряды притягиваются друг к другу), а концентрация Na+ вне клетки в 10 -- 12 раз больше, чем внутри клетки. Условием, обеспечивающим вход Na+ в клетку, является увеличение проницаемости клеточной мембраны, которая определяется состоянием воротного механизма Na-каналов (в некоторых клетках, в частности в кардиомио-цитах, в волокнах гладкой мышцы, важную роль в возникновении ПД играют управляемые каналы для Са2+). Длительность пребывания электроуправляемого канала в открытом состоянии зависит от величины мембранного потенциала. Суммарный ток ионов в любой момент определяется числом открытых каналов клеточной мембраны. Часть ионного канала, обращенная во внеклеточное пространство, отличается от части канала, обращенной внутрь клеточной среды (П. Г. Костюк).
Воротный механизм Na-каналов расположен на внешней и внутренней сторонах клеточной мембраны, воротный механизм К-каналов -- на внутренней (К+ движется из клетки наружу). В каналах для Na+ имеются активационные m-ворота, которые расположены с внешней стороны клеточной мембраны (Na+ движется внутрь клетки во время ее возбуждения), и инактивационные /г-ворота, расположенные с внутренней стороны клеточной мембраны. В условиях покоя активационные w-ворота закрыты, инактивационные /г-ворота преимущественно (около 80%) открыты; закрыты также калиевые активационные ворота, инактивационных ворот для К+ нет. Некоторые авторы w-ворота называют быстрыми, /г-ворота медленными, поскольку они в процессе возбуждения клетки реагируют позже, нежели m-ворота. Однако более поздняя реакция /г-ворот связана с изменением заряда клетки, как и m-ворот, которые открываются в процессе деполяризации клеточной мембраны. Закрываются /г-ворота в фазу инверсии, когда заряд внутри клетки становится положительным, что и является причиной их закрытия. При этом нарастание пика ПД прекращается. Поэтому m-ворота лучше назвать ранними, а А-ворота -- поздними.
Когда деполяризация клетки достигает критической величины (Екр, критический уровень деполяризации -- КУД), которая обычно составляет -50 мВ (возможны и другие величины), проницаемость мембраны для Na+ резко возрастает: открывается большое число потенциалзависимых /я-ворот Na-каналов и Na+ лавиной устремляется в клетку. Через один открытый Na-канал за 1 мс проходит до 6000 ионов. В результате интенсивного тока Na+ внутрь клетки процесс деполяризации проходит очень быстро. Развивающаяся деполяризация клеточной мембраны вызывает дополнительное увеличение ее проницаемости и, естественно, проводимости Na+: открываются все новые и новые активационные w-ворота Na-каналов, что придает току Na+ в клетку характер регенеративного процесса. В итоге ПП исчезает, становится равным нулю. Фаза деполяризации на этом заканчивается.
2) Фаза реполяризации.
В этой фазе проницаемость клеточной мембраны для ионов К+ все еще высока, ионы К+ продолжают быстро выходить из клетки согласно концентрационному градиенту. Клетка снова внутри имеет отрицательный заряд, а снаружи - положительный, поэтому электрический градиент препятствует выходу К* из клетки, что снижает его проводимость, хотя он продолжает выходить. Это объясняется тем, что действие концентрационного градиента выражено значительно сильнее действия электрического градиента. Таким образом, вся нисходящая часть пика ПД обусловлена выходом иона К+ из клетки. Нередко в конце ПД наблюдается замедление реполяризации, что объясняется уменьшением проницаемости клеточной мембраны для ионов К+ и замедлением выхода их из клетки вследствие закрытия ворот К-каналов. Другая причина замедления тока ионов К+ связана с возрастанием положительного потенциала наружной поверхности клетки и формированием противоположно направленного электрического градиента. Главную роль в возникновении ПД играет ион Na+, входящий в клетку при повышении проницаемости клеточной мембраны и обеспечивающий всю восходящую часть пика ПД. При замене иона Nа+ в среде на другой ион, например холин, или в случае блокировки Na-каналов тетродотоксином, ПД в нервной клетке не возникает. Однако проницаемость мембраны для иона К+ тоже играет важную роль. Если повышение проницаемости для иона К+ предотвратить тетраэтиламмонием, то мембрана после ее деполяризации реполяризуется гораздо медленнее, только за счет медленных неуправляемых каналов (каналы утечки ионов), через которые К+ будет выходить из клетки. Роль ионов Са2+ в возникновении ПД в нервных клетках незначительна, в некоторых нейронах она существенна, например в дендритах клеток Пуркинье мозжечка.
9. Ионный механизм возникновения потенциала действия
В основе потенциала действия лежат последовательно развивающиеся во времени изменения ионной проницаемости клеточной мембраны. При действии на клетку раздражителя проницаемость мембраны для ионов Na+ (рис. 1) резко повышается за счет активации (открывания) натриевых каналов. При этом ионы Na+по концентрационному.
Рис. 1
При этом ионы Na+ по концентрационному градиенту интенсивно перемещаются из вне - во внутриклеточное пространство. Вхождению ионов Na+в клетку способствует и электростатическое взаимодействие. В итоге проницаемость мембраны для Na+ становится в 20 раз больше проницаемости для ионов К+.
Поскольку поток Na+ в клетку начинает превышать калиевый ток из клетки, то происходит постепенное снижение потенциала покоя, приводящее к реверсии - изменению знака мембранного потенциала. При этом внутренняя поверхность мембраны становится положительной по отношению к ее внешней поверхности. Указанные изменения мембранного потенциала соответствуют восходящей фазе потенциала действия (фазе деполяризации).
Мембрана характеризуется повышенной проницаемостью для ионов Na+лишь очень короткое время 0.2 - 0.5 мс. После этого проницаемость мембраны для ионов Na+вновь понижается, а для К+возрастает. В результате поток Na+внутрь клетки резко ослабляется, а ток К+из клетки усиливается (рис. 2.).
В течение потенциала действия в клетку поступает значительное количество Na+, а ионы К+ покидают клетку. Восстановление клеточного ионного баланса осуществляется благодаря работе Na+,К+- АТ Фазного насоса, активность которого возрастает при повышении внутренней концентрации ионов Na+ и увеличении внешней концентрации ионов К+. Благодаря работе ионного насоса и изменению проницаемости мембраны для Na+и К+ первоначальная их концентрация во внутри - и внеклеточном пространстве постепенно восстанавливается.
Рис. 2
Итогом этих процессов и является реполяризация мембраны: внутреннее содержимое клетки вновь приобретает отрицательный заряд по отношению к внешней поверхности мембраны.
10. Механический сердечный цикл. Сердце как 6-ти камерный насос. Ударный минутный оббьем крови. Работа, мощность сердца
Механическая работа сердца. Сердечный цикл.
Механическая работа сердца связана с сокращением его миокарда. Работа правого желудочка в три раза меньше работы левого желудочка. Сердце с механической точки зрения представляет собой насос ритмического действия, чему способствует клапанный аппарат. Ритмические сокращения и расслабления сердца обеспечивают непрерывный ток крови. Сокращение сердечной мышцы называется систолой, его расслабление - диастолой. При каждой систоле желудочков происходит выталкивание крови из сердца в аорту и легочный ствол. В обычных условиях систола и диастола четко согласованы во времени. Период, включающий одно сокращение и последующее расслабление сердца, составляет сердечный цикл. Его продолжительность у взрослого человека равна 0,8 секунды при частоте сокращений 70 - 75 раз в минуту. Началом каждого цикла является систола предсердий. Она длится 0,1 сек. По окончании систолы предсердий наступает их диастола, а также систола желудочков. Систола желудочков длится 0,3 сек. В момент систолы в желудочках повышается давление крови, оно достигает в правом желудочке 25 мм рт. ст., а в левом - 130 мм рт. ст. По окончании систолы желудочков начинается фаза общего расслабления, длящаяся 0,4 сек. В целом период расслабления предсердий равен 0,7 сек., а желудочков - 0,5 сек. Физиологическое значение периода расслабления состоит в том, что за это время в миокарде происходят обменные процессы между клетками и кровью, т. е. происходит восстановление работоспособности сердечной мышцы.
Основные показатели работы сердца
Систолический (ударный) объем - объем крови, выталкивающийся из сердца за одну систолу. Он в среднем в покое у взрослого человека равен 150 мл (по 75 мл для каждого желудочка). Умножив систолический объем на число сокращений в минуту, можно узнать минутный объем. Он составляет в среднем 4,5 - 5,0 литров. Систолический и минутный объемы непостоянны, они резко меняются в зависимости от физической и эмоциональной нагрузки.
Работа сердца
Ас=Алж+Апж
Апж=0,2Алж
Ас=1,2Алж
Алж=Р*Vуд+ (mv2 /2)
m=плотность на объем ударный
Ас=1,2Vуд(Р+ Плотность* v2 /2)
Работа сердца при 1 сокращении примерно равна 1дж
Мощность сердца N=Ac
11. Механизм преобразования импульсного выброса крови из сердца в непрерывный кровоток в артериальных сосудах. Теория пульсирующей камеры. Пульс, пульсовая волна. Периферическое сердце
В связи с тем, что кровь выбрасывается сердцем отдельными порциями, кровоток в артериях имеет пульсирующий характер, поэтому линейная и объемная скорости непрерывно меняются: они максимальны в аорте и легочной артерии в момент систолы желудочков и уменьшаются во время диастолы. В капиллярах и венах кровоток постоянен, т. е. линейная скорость его постоянна. В превращении пульсирующего кровотока в постоянный имеют значение свойства артериальной стенки. Непрерывный ток крови по всей сосудистой системе обусловливают выраженные упругие свойства аорты и крупных артерий. В сердечно-сосудистой системе часть кинетической энергии, развиваемой сердцем во время систолы, затрачивается на растяжение аорты и отходящих от нее крупных артерий.
Последние образуют эластическую, или компрессионную, камеру, в которую поступает значительный объем крови, растягивающий ее; при этом кинетическая энергия, развитая сердцем, переходит в энергию эластического напряжения артериальных стенок. Когда систола заканчивается, растянутые стенки артерий стремятся спасаться и проталкивают кровь в капилляры, поддерживая кровоток во время диастолы.
Артериальным пульсом называют ритмические колебания стенки артерии, обусловленные повышением давления в период систолы.
Пульсовая волна, или колебательные изменения диаметра или объема артериальных сосудов, обусловлена волной повышения давления, возникающей в аорте в момент изгнания крови из желудочков. В это время давление в аорте резко повышается и стенка ее растягивается. Волна повышенного давления и вызванные этим растяжением колебания сосудистой стенки с определенной скоростью распространяются от аорты до артериол и капилляров, где пульсовая волна гаснет.
Периферическое сердце
При различных сокращениях мышечные волокна воздействуют на расположенные параллельно с ними кровеносные сосуды, и в виде многочисленных своеобразных внутримышечных микронасосов присасывают артериальную, кровь на входе в мышцу, облегчая тем самым нагнетательную работу сердца, проталкивают эту кровь по внутримышечным сосудам и нагнетают на выходе из скелетной мышцы венозную кровь к сердцу с энергией, превышающей максимальное артериальное давление в 2--3 раза. Если сердце, как мы хорошо знаем, нагнетает артериальную кровь с давлением 120 мм рт. ст., то скелетная мышца способна нагнетать венозную кровь с силой в 200, 250 и даже 300 мм рт. ст., возвращая ее к сердцу для его наполнения.
Полностью изолированная из организма мышца, будучи заключенной на искусственный круг кровообращения, способна при сокращении самостоятельно передвигать кровь по этому кругу по образу и подобию сердца. Поэтому ее можно назвать «периферическим сердцем» (ПС). Чрезвычайно важно, что эти многочисленные «периферические сердца» -- а их по количеству скелетных мышц у человека более 1000 -- работают самостоятельно как присасывающе-нагнетательные микронасосы не только при различных видах сокращений: ритмических, аритмических, тонических, тетанических, ауксотонических и др., но и при растяжении. Иначе можно сказать, что они не имеют «холостого хода».
12. Гемодинамика в одиночном сосуде. Уравнение Паузеля. Гидравлическое сопротивление. Законы общесистемной гемодинамики
Гемодинамика -- движение крови по сосудам, возникающее вследствие разности гидростатического давления в различных участках кровеносной системы (кровь движется из области высокого давления в область низкого).
Одиночный сосуд рассматриваем как трубку кругового сечения, протяженную по сравнению со своими поперечными размерами. Под эластичностью стенок понимается возможность изменения сечения сосудов под действием давления.
Пуайзель опытным путем установил, что средняя скорость ламинарного течения жидкости по неширокой горизонтальной круглой трубе постоянного сечения прямо пропорциональна разности давлений Р1 и Р2 при входе и выходи из трубы, квадрату радиуса трубы и обратно пропорциональна длине трубы l и вязкости n.
Vср = (R (в кВ) / 8n)*(P1 - P2)/l
Гидравлическое сопротивление, сопротивление движению жидкостей (и газов) по трубам, каналам и т.д., обусловленное их вязкостью.
w = 8nl/пи r (в 4 ст)
Величину w называют гидравлическим сопротивлением. Оно обратно пропорционально четвертой степени радиуса и поэтому значительно возрастает с уменьшением радиуса трубы.
Силой, создающей давление в сосудистой системе, является сердце. У человека среднего возраста при каждом сокращении сердца в сосудистую систему выталкивается 60--70 мл крови (систолический объем) или 4--5 л/мин (минутный объем). Движущей силой крови служат разность давлений, возникающая в начале и конце трубки.
Почти во всех отделах сосудистой системы кровоток носит ламинарный характер -- кровь движется отдельными слоями параллельно оси сосуда. При этом слой, прилежащий к стенке сосуда, остается практически неподвижным, по этому слою скользит второй, а по нему, в свою очередь, третий и т. д. Форменные элементы крови составляют центральный, осевой поток, плазма движется ближе к стенке сосуда. Следовательно, чем меньше диаметр сосуда, тем ближе располагаются центральные слои к стенке и больше тормозится скорость их движения из--за вязкого взаимодействия со стенкой. В целом это означает, что в мелких сосудах скорость кровотока ниже, чем в крупных. В правильности этого положения легко убедиться, сопоставив скорости кровотока в разных участках сосудистого русла. В аорте она составляет 50--70 см/с, в артериях -- от 40 до 10, артериолах -- 10--0,1, капиллярах -- меньше 0.1, венулах -- меньше 0,3, венах -- 0,3--5,0, полой вене -- 5--20 см/с.
Наряду с ламинарным в сосудистой системе существует турбулентное движение с характерным завихрением крови. Частицы крови перемещаются не только , параллельно оси сосуда, как при ламинарном кровотоке, но и перпендикулярно ей. Результатом такого сложного перемещения является значительное увеличение внутреннего трения жидкости. В этом случае объемная скорость тока крови будет уже не пропорциональной градиенту давления, а примерно равной квадратному корню из него. Турбулентное движение обычно возникает в местах разветвлений и сужений артерий, в участках крутых изгибов сосудов.
Кровь представляет собой взвесь форменных элементов в коллоидно--солевом растворе, она обладает определенной вязкостью, не являющейся величиной постоянной. При протекании крови через капилляр, диаметр которого меньше 1 мм, вязкость уменьшается. Последующее уменьшение диаметра капилляра еще более уменьшает вязкость протекающей крови. Этот гемодинамический парадокс объясняется тем, что во время движения крови эритроциты сосредоточиваются в центре потока. Пристеночный же слой состоит из чистой плазмы с гораздо меньшей вязкостью, по которому легко скользят форменные элементы. В итоге улучшаются условия тока крови и происходит снижение перепадов давления, что, в общем, компенсирует увеличение вязкости крови и снижение скорости ее тока в мелких артериях. Переход от ламинарного движения крови к турбулентному сопровождается значительным ростом сопротивления течению крови.
Соотношение между характером течения жидкости в жестких трубках и давлением обычно определяют по формуле Пуазейля. Используя эту формулу, можно вычислить сопротивление R току крови в зависимости от ее вязкости Ю, длины l и радиуса r сосуда:
R=8lЮ/рr2
Сосудистую систему в целом можно представить в виде последовательно и параллельно соединенных трубок разной длины и диаметра. В случае последовательного соединения общее сопротивление составляет сумму сопротивлений отдельных сосудов:
R = R1+ R2 + … + Rn.
При параллельном соединении величину сопротивления вычисляют по другой формуле:
1/R = 1/R1 + 1/R2 + ... + + 1/Rn.
Учитывая сложность геометрии сосудов целого организма, ее непостоянство, зависящее от открытия и закрытия шунтов, коллатералей, степени сокращения гладких мышц, эластичности стенок, изменения вязкости крови и других причин, в реальных условиях рассчитать величину сосудистого сопротивления трудно. Поэтому его принято определять как частное от деления кровяного давления Р на минутный объем крови Q:
R = P/Q.
Для всей сосудистой системы организма в целом эта формула применима лишь при том условии, если в конце системы, т. е. в полых венах вблизи места их впадения в сердце, давление будет близким к нулю. Соответственно при необходимости вычисления сопротивления отдельного участка сосудистой системы формула приобретает вид
R=Р1--Р2/Q
Значения P1 и P2 отражают давление в начале и конце определяемого участка.
Основная кинетическая энергия, необходимая для движения крови, сообщается ей сердцем во время систолы. Одна часть этой энергии расходуется на проталкивание крови, другая -- превращается в потенциальную энергию растягиваемой во время систолы эластичной стенки аорты, крупных и средних артерий. Их свойства зависят от наличия эластических и коллагеновых волокон, растяжимость которых примерно в шесть раз выше, чем, например, резиновых нитей той же толщины. Во время диастолы энергия стенки аорты и сосудов переходит в кинетическую энергию движения крови.
Кроме эластичности и растяжимости, т. е. пассивных свойств, сосуды обладают еще способностью активно реагировать на изменение в них кровяного давления. При повышении давления гладкие мышцы стенок сокращаются и диаметр сосуда уменьшается. Таким образом, пульсирующий ток крови, создаваемый функцией сердца, благодаря особенностям аорты и крупных сосудов выравнивается и становится относительно непрерывным.
Основными показателями гемодинамики являются объемная скорость, скорость кругооборота крови, давление в разных областях сосудистой системы.
Объемная скорость движения крови характеризует ее количество (в миллилитрах), протекающее через поперечное сечение сосуда за единицу времени (1 мин). Объемная скорость кровотока прямо пропорциональна перепаду давления в начале и конце сосуда и обратно пропорциональна его сопротивлению току крови. В организме отток крови от сердца соответствует ее притоку к нему. Это означает, что объем крови, протекающей за единицу времени через всю артериальную и всю венозную систему большого и малого круга кровообращения, одинаков.
Линейная скорость движения крови (v) характеризует скорость перемещения ее частиц вдоль сосуда при ламинарном потоке. Она выражается в сантиметрах в секунду и определяется как отношение объемной скорости кровотока Q к площади поперечного сечения сосуда рr2:
v=Q/рr2
Полученная таким образом величина является сугубо средним показателем, так как, согласно законам ламинарного движения, скорость перемещения крови в центре сосуда является максимальной и падает в слоях, прилежащих к сосудистой стенке.
Линейная скорость кровотока различна и в отдельных участках сосудистого русла по ходу сосудистого дерева. Она зависит от общей суммы площади просветов сосудов этого калибра в рассматриваемом участке. Наименьшим поперечным сечением характеризуется аорта, в связи с чем и скорость движения крови в ней самая большая -- 50--70 см/с. Наибольшей суммарной площадью поперечного сечения обладают капилляры, у млекопитающих она приблизительно в 600--800 раз больше площади поперечного сечения аорты. Соответственно и скорость крови здесь около 0,05 см/с. В артериях она составляет 20--40 см/с, в артериолах -- 0,5 см/с. В силу того, что при слиянии вен их суммарный просвет уменьшается, линейная скорость кровотока снова возрастает, достигая в полой вене 20 см/с (рис. 9.30).
Кровь выталкивается отдельными порциями, поэтому кровоток в аорте и артериях пульсирует. При этом его линейная скорость возрастает в фазе систолы и снижается во время диастолы. В капиллярной сети в силу особенностей строения предшествующих ей артерий пульсовые толчки исчезают и линейная скорость кровотока приобретает постоянный характер.
...Подобные документы
Физические основы применения лазерной техники в медицине. Типы лазеров, принципы действия. Механизм взаимодействия лазерного излучения с биотканями. Перспективные лазерные методы в медицине и биологии. Серийно выпускаемая медицинская лазерная аппаратура.
реферат [8,0 M], добавлен 30.08.2009Биполярные отведения электрокардиографии (по Эйнтховену). Расположение грудных электродов для ЭКГ. Прекордиальная картография. Формирование электрической оси сердца, экстрасистолия. Механизм возникновения зубца Р и Т, сегментов P-Q и ST, комплекса QRS.
презентация [2,7 M], добавлен 08.01.2014Понятие метрологии и стандартизации, история и основные этапы развития, нормативные документы и правовые основы. Значение электрокардиографии в современной медицине, механизм ее реализации. Обоснование и проведение оптимизации поверки электрокардиографа.
дипломная работа [137,3 K], добавлен 15.02.2014Источник энергии, необходимый для движения крови по сосудам. Основная функция сердца. Месторасположение сердца в грудной полости. Средние размеры сердца взрослого человека. Работа левого и правого желудочков, митрального и аортального клапанов.
презентация [4,7 M], добавлен 25.12.2011Физиологические основы электрокардиографии. Верхушечный толчок сердца. Основные методы исследования тонов сердца, схема основных точек их выслушивания. Основные компоненты нормальной и ненормальной электрокардиограммы (зубцы, интервалы, сегменты).
презентация [3,8 M], добавлен 08.01.2014Открытие Х-лучей Вильгельмом Рентгеном, история и значение данного процесса в истории. Устройство рентгеновской трубки и взаимосвязь ее главных элементов, принципы работы. Свойства рентгеновского излучения, его биологическое воздействие, роль в медицине.
презентация [3,5 M], добавлен 21.11.2013История открытия рентгена. Механизм его получения при помощи катодной трубки. Биологическое воздействие рентгеновского излучения. Его применение в медицине и науке. Электронно-лучевой томограф. Влияние артефактов на качество изображения при сканировании.
презентация [3,5 M], добавлен 29.03.2016Формулы расчета сердечного выброса или ударного объема крови. Факторы, повышающие минутный объем крови. Механическая деятельность сердца и принцип поликардиографии. Общие показатели механической деятельности сердца. Типы регуляторных эффектов на сердце.
презентация [3,0 M], добавлен 13.12.2013Физические характеристики звука. Понятие ультразвука и принцип действия электромеханических излучателей. Медико-биологичесике приложения ультразвука. Методы диагностики и исследования: двумерная и доплеровская эхоскопия, визуализация на гармониках.
презентация [940,4 K], добавлен 23.02.2013Исследование сердечно-сосудистой системы, системы органов дыхания и пищеварения. Патология клеточных мембран кардиомиоцитов и гладкомышечных клеток стенок сосудов. Лечение ишемической болезни сердца и стенокардии напряжения III функционального класса.
история болезни [49,2 K], добавлен 11.05.2019Организация мембран. Транспорт веществ через мембраны. Центральный механизм регуляции орагнов дыхания. Нефрон - структурно-функциональная единица почки. Функциональные связи гипоталамуса с гипофизом. Проблема локализации функций в коре большого мозга.
контрольная работа [39,4 K], добавлен 03.02.2008Общие функции крови: транспортная, гомеостатическая и регуляторная. Общее количество крови по отношению к массе тела у новорожденных и взрослых людей. Понятие гематокрита; физико-химические свойства крови. Белковые фракции плазмы крови и их значение.
презентация [3,6 M], добавлен 08.01.2014Определение и характеристика ультразвука, его основные источники. Действие ультразвука на биологические объекты. Применение ультразвука в диагностике и терапии. Частотная граница между звуковыми и ультразвуковыми волнами. Ультразвуковой свисток Гальтона.
презентация [7,1 M], добавлен 28.04.2016Основные методы магнитотерапии. Физические основы первичного действия магнитны полей. Действие магнитных полей на систему крови. Улучшение клинического и тромбогенного потенциала крови. Воздействие электрических и магнитных полей низких частот.
презентация [12,6 K], добавлен 26.07.2015Особенности состава и свойств крови у детей. Состав периферической крови в первые дни после рождения. Симптомы малокровия и его профилактика. Роль воспитателя. Анатомические особенности органов кровообращения. Работа сердца. Тренировка детского сердца.
контрольная работа [17,4 K], добавлен 19.03.2014Строение сердца, его расположение в грудной полости. Механизм работы сердца, движение крови по сосудам. Артерии большого круга кровообращения. Ветви восходящей и нисходящей аорты. Вены большого круга кровообращения. Кровяное давление, значение пульса.
контрольная работа [27,3 K], добавлен 16.03.2010Изучение механического и физико-химического действия ультразвука на биологические объекты. Описания теплового эффекта, возникающего внутри ткани. Влияние ультразвука на органы и системы. Применение ультразвука в физиотерапии, диагностике, косметологии.
презентация [1,2 M], добавлен 06.12.2014Работа и функции сердца, артериальных, венозных и лимфатических сосудов. Виды артерий и вен, их строение и способность к регенерации. Гистофизиология сердца, лимфатическая система и ее основная функция. Характеристика состава крови, этапы кроветворения.
реферат [26,8 K], добавлен 18.01.2010Ультразвук как упругие волны высокой частоты, его свойства и характеристики, степень воздействия на организм человека, история исследований. Применение ультразвука в диагностике и терапии, используемое в данном процессе оборудование и инструменты.
презентация [301,9 K], добавлен 17.03.2011Воздействие на морфологический состав крови с помощью переливания цельной крови, её компонентов, а также кровезаменителей. Проведение первого переливания крови от человека к человеку. Законы склеивания эритроцитов одного человека сывороткой другого.
презентация [1,6 M], добавлен 27.11.2014