Ультразвук и его особенности

История возникновения ультразвука (УЗ) в мире. Использование ультразвука в ветеринарии. Современная ультразвуковая диагностика и ее распространение в медицине. Особенности Доплер-метода и лечения УЗ. Использование УЗ в фармакологии и косметологии.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 06.05.2015
Размер файла 30,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«Дальневосточный федеральный университет»

ШКОЛА РЕГИОНАЛЬНЫХ И МЕЖДУНАРОДНЫХ ИССЛЕДОВАНИЙ

Кафедра романо-германской филологии

РЕФЕРАТ

Тема: Ультразвук

Кравцова Юлия Валерьевна

г. Владивосток

2015 г.

1. Рождение ультразвука

В 1880 году французские физики, братья Пьер и Поль Кюри, заметили, что при сжатии и растяжении кристалла кварца с двух сторон на его гранях, перпендикулярных направлению сжатия, появляются электрические заряды. Это явление было названо пьезоэлектричеством (от греческого «пьезо» - «давлю»), а материалы с такими свойствами - пьезоэлектриками. Позже это явление объяснили анизотропией кристалла кварца - разные физические свойства вдоль разных граней.

Во время первой мировой войны французский исследователь Поль Ланжевен предложил использовать пьезоэлектрический эффект для обнаружения подводных лодок. Если пьезоэлектрик встречает на своем пути ультразвуковую волну от винта лодки, которая распространяется со скоростью 1460 км/с, то она сжимает его грани, и на них появляются электрические заряды. Сжимаясь и разжимаясь, кристалл как бы генерирует переменный электрический ток, который можно измерить чувствительными приборами. Если же к граням кристалла приложить переменное напряжение, он сам начнет колебаться, сжимаясь и разжимаясь с частотой переменного напряжения. Эти колебания кристалла передаются среде, граничащей с кристаллом (воздуху, воде, твердому телу). Так возникает ультразвуковая волна. ультразвук диагностика доплер фармакология

Ланжевен попробовал зарядить грани кварцевого кристалла электричеством от генератора переменного тока высокой частоты. При этом он заметил, что кристалл колеблется в такт изменению напряжения. (Рис. 001) Чтобы усилить эти колебания, ученый вложил между стальными листами-электродами не одну, а несколько пластинок и добился возникновения резонанса - резкого увеличения амплитуды колебаний. Эти исследования Ланжевена позволили создавать ультразвуковые излучатели различной частоты. Позже появились излучатели на основе титаната бария, а также других кристаллов и керамики, которые могут быть любой формы и размеров.

Ультразвук можно получить и другим способом. В 1847 году английский физик Джеймс Джоуль обнаружил, что при перемагничивании электрическим током железных и никелевых стержней они то уменьшаются, то увеличиваются в такт изменениям направления тока. (Рис. 002) При этом в окружающей среде возбуждаются волны, частота которых зависит от колебаний стержня. Это явление назвали магнитострикцией (от латинского «стриктус» - «сжатие»).

Ультразвук оказался просто находкой для решения технических, научных и медицинских задач. Например, ультразвуковые дефектоскопы, (Рис. 003) объединенные с компьютером, помогают контролировать качество сварных швов, бетонных опор и плит. Ультразвуковую аппаратуру также с успехом применяют для резки и сверления металлов, стекла и других материалов. Ультразвук можно использовать для измельчения вещества - например, для приготовления тонко размолотого цемента или асбеста, для получения однородных эмульсий, для очистки жидкости или газа от примесей. (Рис. 004) С помощью сфокусированного пучка ультразвуковых волн распыляют некоторые жидкости, например, ароматические вещества, лекарственные препараты. Получающийся «ультразвуковой туман», как правило, более качественный, чем аэрозольный. И сам этот метод экологически более безопасный, так как можно отказаться от фторсодержащих газов, которые используются в аэрозольных баллончиках.

2. Увидеть невидимое

Около полвека назад ультразвук стали использовать в ветеринарии для определения толщины подкожного жира у свиней. Этот прозаический метод подтолкнул исследователей к разработке новых излучателей и приемников ультразвука и дал возможность «рассмотреть» внутренние органы человека. Это гораздо более простая процедура, чем хирургическая операция, кроме того, она дает возможность увидеть органы человека в работе. Оказалось возможным даже изучать движение крови в сосудах, определять состояние костной ткани; и даже внутренних перегородок сердца - так, выпадение митрального клапана сердца было впервые обнаружено с помощью ультразвукового исследования.

В настоящее время ультразвуковая диагностика получила широкое распространение. В основном при распознавании патологических изменений органов и тканей используют ультразвук частотой от 500 кГц до 15 МГц. Звуковые волны такой частоты обладают способностью проходить через ткани организма, отражаясь от всех поверхностей, лежащих на границе тканей разного состава и плотности.

По физической сути можно выделить две разновидности ультразвукового исследования: ультразвуковая локация и ультразвуковое просвечивание. При ультразвуковой локации регистрируются импульсы ультразвука, отраженные от границы сред, имеющих различные акустические свойства. Перемещение датчика позволяет выявить размеры, форму и расположение исследуемого объекта. Ультразвуковое просвечивание основано на различном поглощении ультразвука разными тканями организма. При исследовании внутреннего органа в него направляют ультразвуковую волну определенной интенсивности и регистрируют интенсивность прошедшего сигнала датчиком, находящимся по другую сторону органа. По степени изменения интенсивности воспроизводится картина внутреннего строения сканируемого органа.

Принятый сигнал обрабатывается электронным устройством, результат выдается в виде кривой (эхограмма) или двухмерного изображения (т.н. сонограмма - ультразвуковая сканограмма).

В первом случае, (Рис. 005) т.е. при одномерном (т.н. А-методе), отраженный сигнал образует на экране осциллографа фигуру в виде пика на прямой линии. Высота пика соответствует акустической плотности среды, а расстояние между пиками - глубине расположения границы раздела между средами. А-метод широко применяется для распознавания болезней головного мозга (эхоэнцефалография), органов зрения (эхоофтальмография), сердца (эхокардиография).

Двухмерный (т.н. В-метод), - способ получения двухмерного изображения посредством сканирования - перемещения ультразвукового пучка по поверхности тела во время исследования. Сканирование обеспечивает регистрацию сигналов последовательно от разных точек объекта; изображение возникает на экране телевизионного монитора (Рис. 006) и может быть зафиксировано на фотобумаге или пленке; его можно подвергать математической обработке, (Рис. 007) измеряя, в частности, величину разных элементов объекта. Яркость каждой точки на экране находится в прямой зависимости от интенсивности эхо-сигнала. Изображение на телевизионном экране представлено, обычно, 16-ю оттенками серого цвета или цветной палитрой, (Рис. 008) отражающими акустическую структуру тканей. На аппаратах с серой шкалой конкременты (т.е. твердые, похожие на гальку массы, чаще всего образующиеся в желчном пузыре или в мочевыводящих путях) выглядят ярко-белыми, а образования, содержащие жидкость, например, кисты, - черными.

Современная аппаратура позволяет производить ультразвуковое сканирование с большой частотой кадров в 1 секунду, что обеспечивает прямое наблюдение за движениями органов (исследование в реальном времени). По таким сканограммам (Рис. 009) можно судить о расположении, форме и величине исследуемого органа, однородности (Рис. 010) или неоднородности его тканей. Это дает возможность выявлять диффузное уплотнение органа (например, при циррозе печени), находить в нем полости с жидкостью, а также опухолевые образования и плотные очаги. Так, если рентген обнаруживает опухоль, когда плотность её отличается от плотности здоровой ткани в 1,5 - 2 раза и она часто бывает уже неоперабельной, то ультразвук «чувствует» её значительно раньше. На эхограммах сердца вырисовываются его стенки, полости, клапаны, на сонограммах живота - структура печени, желчного пузыря, поджелудочной железы, селезенки, (Рис. 011) почек и т.д. По эхограммам можно распознать асцит, водянку желчного пузыря, желчные камни, панкреатит и опухоль поджелудочной железы, различные заболевания почек, опухоли, гематомы, кисты и абсцессы печени и др. С помощью ультразвукового исследования выявляют поражения щитовидной и слюнных желёз, небольшие количества жидкости в плевральной полости. Широкое распространение получило ультразвуковое сканирование органов малого таза (Рис. 012) для распознавания кист и опухолей яичников, опухолей мочевого пузыря, прямой кишки и предстательной железы, объема остаточной мочи в мочевом пузыре. По эхограмме определяют срок беременности, положение и массу плода, (Рис. 013) аномалии его развития, многоплодие, исключают внематочную беременность, а, (Рис. 014) начиная с 26 недель - устанавливают пол будущего ребенка. Для получения высококачественных «срезов» аорты и её крупных ветвей, нижней полой и воротной вен, артерий печени, желудка и почек с помощью ультразвуковой диагностики, не требуется, как при ангиографии, вводить в сосуды рентгеноконтрастное вещество и можно многократно повторять исследование, не опасаясь нанести вред больному. Изучая положение, форму, калибр и очертания кровеносных сосудов, можно выявлять их патологические изменения.

В последнее время особенно бурно развивается Доплер-метод, основанный на использовании как непрерывного, так и импульсного ультразвука. Он позволяет регистрировать изменения тока крови даже в небольших кровеносных сосудах, поэтому доплерография применяется и в акушерстве - с её помощью оценивают поток крови через пуповину, работу сердца и сосудов ребенка. Этот подход оказался ценным и для онкологии - ведь развивающаяся опухоль «обрастает» кровеносными сосудами, внутри неё происходят небольшие кровоизлияния, образуются участки омертвевшей ткани. Всё это вызывает изменения кровотока в сосудах и легко может быть обнаружено с помощью Доплер-метода.

Благодаря ультразвуковой технике стало возможным увидеть и то, что происходит внутри костной ткани. Скорость распространения ультразвука в костях дает информацию об их строении, содержании органических и минеральных веществ. Любые патологические изменения, старение, развитие опухолей немедленно отражаются на акустических свойствах кости. Например, при появлении опухолей внутри кости, скорость ультразвука увеличивается на 9 - 10%. Эффективность лечения таких опухолей с помощью гормонов, химиотерапии или облучения можно параллельно контролировать ультразвуковыми методами. Деминерализация костей или патологические изменения скелета могут быть выявлены на ранней стадии, когда ещё не поздно начинать лечение и диету, замедляющую развитие болезни.

Ультразвуковые методы исследования оказались полезны и для анализа человеческой крови. Дело в том, что мембраны красных кровяных клеток - эритроцитов - становятся более «хрупкими» при различных заболеваниях, инфекциях, приеме алкоголя. Этот факт давно используется в медицине. Раньше кровь смешивали в пробирке с антикоагулянтом, интенсивно встряхивая. Из разрушающихся клеток освобождался гемоглобин, который окрашивал плазму крови, обычно бесцветную, в красный цвет. По интенсивности этой окраски и можно судить о скорости и степени разрушения эритроцитов.

Оказалось, что гораздо проще разрушать эритроциты ультразвуком низкой интенсивности. В результате получаются так называемые эритрограммы. Этот метод дает более точную информацию о прочности мембран. В сочетании с компьютерным анализом он позволяет не только улучшить диагностику заболеваний крови, например, лейкоза, но и судить о других патологиях, не имеющих четкой клинической картины. Например, на начальных стадиях цирроз печени обычно не дает о себе знать, но токсические продукты, появляющиеся в крови из-за неправильной работы печени, разрушают мембраны эритроцитов, и эритрограмма резко изменяется. У онкологических пациентов прочность мембраны эритроцитов, наоборот, сильно увеличивается.

В последнее время в диагностике широко применяется и такой метод: каплю крови помещают в кювету, дном которой служит ультразвуковой излучатель. При включении ультразвука с частотой 500 кГц и определенной интенсивностью капля начинает светиться - возникает сонолюминесценция. Свечение это постепенно гаснет, и по скорости его затухания можно судить о состоянии организма, онкологических заболеваниях. Сонолюминесценция сильно повышается при беременности, поскольку меняется белковый состав крови.

Разработаны ультразвуковые датчики, которые предназначены для введения в организм. Например, с помощью такого датчика, введенного через прямую кишку, удается выявлять опухоли кишечника и устанавливать их размеры. Созданы специальные датчики для ультразвукового исследования непосредственно на операционном столе во время оперативного вмешательства, позволяющие определить число и местонахождение камней в почках и в желчных протоках. В клиническую практику внедряется методика пункций внутренних органов и патологических образований (опухолей, абсцессов и др.) под контролем ультразвукового сканирования.

Для ультразвукового исследования чаще всего не требуется специальной подготовки больных. Однако при необходимости очень тщательного изучения органов брюшной полости, особенно поджелудочной железы, прибегают к предварительному очищению кишечника с помощью клизм. Больной должен явиться в кабинет натощак. Исследования органов таза рекомендуется проводить при наполненном мочевом пузыре. Больного могут исследовать в разном положении тела: лёжа на спине, животе, на боку, а также - стоя и сидя. Кожу над исследуемой областью смазывают хорошо проводящим ультразвук вазелиновым маслом или специальным гелем. Используют различные положения ручного зонда (преобразователя). Меняя положение преобразователя, врач стремится получить возможно более полную информацию о состоянии органов.

Современная ультразвуковая аппаратура позволила расширить границы знаний о микромире. С её помощью можно получить контрастные и объемные изображения клеток и тонких срезов тканей. Существует специальный акустический микроскоп, в котором используются ультразвуковые волны высокой частоты. Таким микроскопом улавливаются самые тончайшие изменения «архитектуры» клеток и дают информацию о событиях внутри организма.

3. Вредно ли ультразвуковое исследование?

Применение ультразвукового метода диагностики безболезненно и практически безвредно, так как не вызывает реакций тканей. Поэтому противопоказаний для ультразвукового исследования не существует. Благодаря своей безвредности и простоте ультразвуковой метод имеет все преимущества при обследовании детей и беременных. Использование диагностического ультразвука в акушерской практике должно всегда быть основано на принципе - потенциальный риск допустИм только при получении очевидной полезной информации. Вопросы безопасности ультразвуковых исследований изучаются на уровне международной ассоциации ультразвуковой диагностики в акушерстве и гинекологии. На сегодняшний день принято считать, что никаких отрицательных воздействий ультразвук не оказывает. Есть несколько предположений о том, что теоретически ультразвук обладает рядом отрицательных биологических эффектов. Но это касается только относительно нового доплеровского исследования. В том числе и так называемого цветового доплера, применяемого для оценки скорости кровотока у плода. Подобное исследование делается только с согласия пациента и только по показаниям. До настоящего времени пока нет ни одного сообщения о возникновении отрицательных эффектов у человека в результате ультразвукового обследования.

4. Лечение ультразвуком

Много лет назад исследователи заметили, что пораненное ухо кролика быстрее заживает, если три раза по 5 минут обработать его ультразвуком с частотой, слегка превышающей порог чувствительности (т.е. > 20 кГц). В тканях при этом увеличивается обмен веществ, усиливается синтез белков и нуклеиновых кислот, повышается проницаемость клеточных мембран. Все эти изменения усиливают регенерацию.

В настоящее время лечение ультразвуковыми колебаниями получили очень большое распространение. Используется, в основном, ультразвук частотой от 22 - 44 кГц и от 800 кГц до 3 МГц. Глубина проникновения ультразвука в ткани при ультразвуковой терапии составляет от 20 до 50 мм, при этом ультразвук оказывает механическое, термическое, физико-химическое воздействие, под его влиянием активизируются обменные процессы и реакции иммунитета. Ультразвук используемых в терапии характеристик обладает выраженным обезболивающим, спазмолитическим, противовоспалительным, противоаллергическим и общетонизирующим действием, он стимулирует крово- и лимфообращение, как уже было сказано, процессы регенерации; улучшает трофику тканей. Благодаря этому ультразвуковая терапия нашла широкое применение в клинике внутренних болезней, в артрологии, дерматологии, отоларингологии и др.

Ультразвуковые процедуры дозируются по интенсивности используемого ультразвука и по продолжительности процедуры. Обычно применяют малые интенсивности ультразвука (0,05 - 0,4 Вт/см2 ), реже средние (0,5 - 0,8 Вт/см2 ). Ультразвуковую терапию можно проводить в непрерывном и импульсном режимах ультразвуковых колебаний. Чаще применяют непрерывный режим воздействия. При импульсном режиме уменьшаются тепловой эффект и общая интенсивность ультразвука. Импульсный режим рекомендуется при лечении острых заболеваний, а также для ультразвуковой терапии у детей и пожилых людей с сопутствующими заболеваниями сердечно-сосудистой системы. Ультразвук воздействует лишь на ограниченную часть тела площадью от 100 до 250 см2 (т.н. поле воздействия); это рефлексогенные зоны или область поражения (места проекции боли, сустав, глаз, мышца, рубец, область проекции внутренних органов, гайморовых (т.е. верхнечелюстных) полостей носа, по ходу нерва или сосуда, слизистая оболочка толстой кишки или влагалища).

В связи с тем, что ультразвуковые колебания отражаются даже от тончайших прослоек воздуха, к телу пациента их подводят, так же, как и при исследовании, через безвоздушные контактные среды - вазелиновое или растительное масло, лекарственные мази, воду. (Рис. 015) При ультразвуковой терапии излучатель, подключенный к генератору электрических колебаний ультразвуковой частоты, перемещают в продольном направлении и по кругу, плотно прижимая её к коже; скорость передвижения излучателя 1 - 2 см/с. В области максимально выраженных болевых точек полезно задержать излучатель на 5 - 10 секунд. Время процедуры составляет 1 - 5 минут и зависит от величины поля воздействия. На курс лечения назначают, обычно, от 5 до 12 процедур. По показаниям лечащего врача, ультразвуковую терапию можно повторить через 3 - 6 месяцев. Процедуры ультразвука проводят через 1 - 2 часа после еды в удобном для больного положении (сидя или лежа). В отличие от диагностики, ультразвуковое лечение не рекомендуется проводить в один день с рентгенологическим обследованием и радионуклидной сцинтиграфией. На протяжении курса ультразвукового лечения запрещается прием алкоголя и снотворных средств. Ультразвуковую терапию можно сочетать с медикаментозным лечением, лечебным питанием, электролечением, водными процедурами и лечебной гимнастикой.

Ультразвук, наряду с другими средствами, используется при лечении моче- и желчекаменной болезни. Такой неоперативный (т.е. без вмешательства) метод называется экстракорпоральная ударно-волновая литотрипсия. Суть его заключается в дроблении камней для последующего их выведения средствами самого организма - через мочу или желчь. При этом волны генерируются внешним источником энергии и передаются от него к месту проведения операции. Специальный прибор - литотриптор - позволяет точно выявить местоположение камня с помощью ультразвуковых волн и, с их же помощью производит дробление камней. В приборах старого образца пациенту должна быть проведена предварительная анестезия, а его тело погружено в ванну с водой. В приборах нового образца этого не требуется, и процесс дробления камней в организме человека значительно упрощается.

Немного подробностей

Описав лечение ультразвуком в общих чертах, перейдём к более подробному рассмотрению этой темы.

С точным прицелом

Как уже было сказано, проницаемость клеточных мембран повышается при любом воздействии ультразвука. Широко распространен метод воздействия на кожу, при котором, за счет повышения мембранной проницаемости, одновременно вводятся в организм нужные лекарственные вещества. Он называется ультрафонофорез или просто - фонофорез, т.е. ультразвуковое введение лекарств. С помощью фонофореза молекулы поступают не в межклеточную жидкость, а точно по назначению, в клетки. На долю клеток приходится около 90 % всего объема ткани. Поэтому при фонофорезе лишь одна десятая часть объёма ткани «ускользает» от лекарственного воздействия. Таким образом, например, в камеру глаза, заполненную влагой, вводят вещества, которые не могут туда проникнуть иным способом, - гепарин, дексазон.

Если же нужно, чтобы лекарство проникло во все части ткани - и в клетки, и в межклеточную жидкость, - например, при лечении опухолей, фонофорез используют в сочетании с электрофорезом.

Изменение проницаемости клеточных мембран под действием ультразвука вызывает временное ослабление чувствительности тканей, поскольку нервные импульсы гаснут при переходе от клетки к клетке. Это свойство используется для снятия ревматических болей. Благоприятно воздействует ультразвук и на поверхность ран - кроме снижения боли, уменьшается отёк, быстрее рубцуется ткань, а при заживлении операционных швов не образуется больших шрамов. Очевидно, что кроме усиления обмена веществ, при этом активизируются и имунные механизмы.

Специальными приборами ультразвук можно сфокусировать и точно направить на небольшой участок ткани - например, на опухоль. Под действием сфокусированного луча высокой интенсивности, местно, клетки нагреваются до температуры 42*C. Раковые клетки начинают гибнуть при повышении температуры, и рост опухоли замедляется.

И хирург, и анестезиолог

Одновременно с лазерной сегодня бурно развивается и ультразвуковая хирургия. (Рис. 016) Она имеет даже некоторые преимущества - хирург, работающий с ультразвуковым ножом-скальпелем, ощущает сопротивление ткани и без труда может контролировать глубину разреза. Уменьшается и кровотечение при операции, поскольку лезвие ультразвукового ножа, колеблясь, повышает температуру у кромки разреза и кровь быстро свертывается. Само по себе ультразвуковое воздействие, как уже было сказано, обезболивает оперируемую ткань.

Гораздо легче обстоит дело и со стерилизацией хирургических инструментов. Когда их опускают в дезинфицирующий раствор, одновременно включают ультразвук, и возникающие микропотоки жидкости хорошо очищают поверхность, а мембраны микробных клеток становятся проницаемыми для дезинфицирующего раствора. Если создать такие микропотоки в растворе антибиотиков, можно стерилизовать и обычные хирургические инструменты, и руки хирурга. Полная стерилизация занимает всего полторы минуты, а дезинфицирующих веществ требуется гораздо меньше. (Рис. 017)

Обработка ультразвуком используется при склеивании резаных ран, а также, при герметизации швов - она не дает развиваться микрофлоре между хирургическим клеем и больной тканью и ускоряет полимеризацию самого клея. Используется также ультразвуковая сварка мягких тканей с костью - на месте соединения при этом нет рубцов и шрамов.

Нередко успех операции зависит не только от искусства хирурга, а ещё и от того, удалось ли избежать послеоперационных осложнений. Глубокие раны заполняют раствором антибиотика и вводят в них крошечный ультразвуковой волновод диаметром 3 - 5 мм. Ультразвуковые колебания вызывают движение микропотоков жидкости, которые смывают с поверхности раны микробы, омертвевшие клетки, сгустки крови, так что рана становится практически стерильна. Кроме того, воздействие ультразвука на больной участок, как уже говорилось, усиливает обмен веществ, улучшает кровоснабжение и снимает отёк, что способствует быстрому заживлению. Такую «очистку» производят также при внутриполостных операциях.

Вредно ли ультразвуковое лечение?

Что происходит, когда ультразвук проходит через клетки и ткани живого организма? Известно, что при этом запускается цепь сложных физических и химических процессов. Внутриклеточные жидкости меняют электропроводность и кислотность, изменяется проницаемость клеточных мембран. Некоторое представление об этих событиях дает обработка крови ультразвуком. После такой обработки кровь приобретает новые свойства - активизируются защитные силы организма, повышается его сопротивляемость инфекциям, радиации, даже стрессу. Аналогичный эффект наблюдали при аутогемотерапии - вливании человеку небольшой порции его собственной крови. Взятую у человека порцию крови обрабатывали ультрафиолетом или сильно охлаждали, после чего вводили обратно в кровяное русло. В результате, организм, попадая в своеобразную стрессовую ситуацию, включал дополнительные механизмы регуляции иммунитета. Ультразвуковая обработка крови оказывает тот же эффект, но имеет те преимущества, что не нужно прокалывать кожу, травмировать кровеносные сосуды и нет риска заражения крови.

Эксперименты на животных показывают, что ультразвук не оказывает мутагенного или канцерогенного действия на клетки - время его воздействия и интенсивность настолько незначительны, что такой риск практически сводится к нулю. Так что все опасения относительно вредного влияния ультразвука не имеют под собой почву. И, тем не менее, врачи, основываясь на многолетнем опыте использования ультразвука, установили некоторые противопоказания для ультразвуковой терапии. Это - острые интоксикации, болезни крови, ишемическая болезнь сердца со стенокардией, тромбофлебит, склонность к кровотечениям, пониженное артериальное давление, органические заболевания Центральной Нервной Системы, выраженные невротические и эндокринные расстройства. После многолетних дискуссий, приняли, что при беременности ультразвуковое лечение назначать также не рекомендуется.

5. Дополнительная информация

Ультразвук - в помощь фармакологам

За последние 10 лет появилось огромное количество новых лекарственных препаратов, выпускаемых в виде аэрозолей. Они часто используются при респираторных заболеваниях, хронических аллергиях, для вакцинации. Аэрозольные частицы размером от 0,03 до 10 мкм применяют для ингаляции бронхов и легких, для обработки помещений. (Рис. 018) Их получают с помощью ультразвука. Если такие аэрозольные частицы зарядить в электрическом поле, то возникают еще более равномерно рассеивающиеся (т.н. высокодисперсные) аэрозоли. Обработав ультразвуком лекарственные растворы, получают эмульсии и суспензии, которые долго не расслаиваются и сохраняют фармакологические свойства. Лекарственное вещество в таких суспензиях и эмульсиях раздроблено до мельчайших частиц размером 0,1 - 0,5 мкм и приобретают качественно другие свойства. Например, эмульсия рыбьего жира, приготовленная с помощью ультразвука, лишена характерного запаха и вкуса, иногда неприятного для многих пациентов. (Рис. 019-Т) В клинике успешно применяются высокоактивные эмульсии мугроля, альбихтола, касторового и вазелинового масел, нафталанской нефти.

Большие возможности дает ультразвуковая обработка и при производстве лейкоцитарного интерферона. Препараты наиболее качественного интерферона получают из свежевыделенных лейкоцитов донорской крови. Оказалось, что облучение суспензии лейкоцитов ультразвуком (0,05 Вт/ см2 - 0,06 Вт/ см2 ) увеличивает выход интерферона на 20 - 30 %. (Возможно, этим и объясняется успех локального ультразвукового воздействия при физиотерапии - оно также стимулирует синтез интерферона в ткани).

Весьма перспективной оказалась и транспортировка липосом - жировых микрокапсул, заполненных лекарственными препаратами, в ткани, предварительно обработанные ультразвуком. В тканях, подогретых ультразвуком до 42 - 45*С, сами липосомы разрушаются, а лекарственное вещество попадает внутрь клеток сквозь мембраны, ставшие проницаемыми под действием ультразвука. Липосомный транспорт чрезвычайно важен при лечении некоторых острых воспалительных заболеваний, а также в химиотерапии опухолей, поскольку лекарства концентрируются только в определенной области, почти не затрагивая другие ткани.

6. Ультразвук и косметика

Давно известно, что при заболеваниях кожи изменяется её упругость и плотность. Прыщик, бляшка, отёк, увядание кожи отражаются на скорости поверхностных ультразвуковых волн, что используют для диагностики кожных заболеваний. Для этой цели служат специальные акустические кожные анализаторы. Не так давно были разработаны ультразвуковые приборы, позволяющие исследовать физиологическое состояние не только поверхности, но и каждого из слоев кожи, а также подкожной жировой ткани и ногтей. Изменения в соединительнотканном и мышечном слое проявляются задолго до появления морщин, складок и других признаков увядания. Их можно обнаружить с помощью ультразвука частотой 200 МГц. Такого рода исследования проводят известные косметические фирмы, предлагая покупателям много новых рецептов. Каждое из средств по уходу за кожей проходит тщательный и всесторонний контроль, изучаются возможные побочные эффекты, реакция организма на его применение. Эту трудоёмкую работу можно значительно облегчить с помощью ультразвуковых приборов, которые контролируют физиологическое состояние кожи. В результате ускоряются сроки апробации препаратов, снижаются затраты времени и средств.

Список литературы

1. Большой толковый медицинский словарь «Oxford»; Москва, «Вече», «АСТ»; 1998

2. «Популярная медицинская энциклопедия»; Москва, «Оникс», «Альянс-В»; 1998

3. Выборка из журналов «Наука и жизнь», 1996

4. «Малая медицинская энциклопедия», 1994

Размещено на Allbest.ru

...

Подобные документы

  • Изучение механического и физико-химического действия ультразвука на биологические объекты. Описания теплового эффекта, возникающего внутри ткани. Влияние ультразвука на органы и системы. Применение ультразвука в физиотерапии, диагностике, косметологии.

    презентация [1,2 M], добавлен 06.12.2014

  • Определение и характеристика ультразвука, его основные источники. Действие ультразвука на биологические объекты. Применение ультразвука в диагностике и терапии. Частотная граница между звуковыми и ультразвуковыми волнами. Ультразвуковой свисток Гальтона.

    презентация [7,1 M], добавлен 28.04.2016

  • Физическая природа и лечебные действия ультразвука. Основные направления его медико-биологического приложения. Опасность и побочные эффекты ультразвукового исследования. Сущность эхокардиографии. Постановка диагноза заболеваний внутренних органов.

    презентация [969,3 K], добавлен 10.02.2016

  • Ультразвук как упругие волны высокой частоты, его свойства и характеристики, степень воздействия на организм человека, история исследований. Применение ультразвука в диагностике и терапии, используемое в данном процессе оборудование и инструменты.

    презентация [301,9 K], добавлен 17.03.2011

  • Развитие новых технологий, инструментария и материалов в стоматологической индустрии. Оптические системы "Модельный ряд". Особенности работы с микроскопом. Условия эффективности стоматологического лечения. Использование ультразвука в эндодонтии.

    презентация [5,3 M], добавлен 13.11.2016

  • Способы получения и свойства ультразвука. Изображение внутренних органов человека с помощью ультразвуковых волн. Ультразвуковые генераторы (медицинский, школьный). Свойство отражения ультразвуковой волны в медицинской ультразвуковой диагностике.

    контрольная работа [344,2 K], добавлен 03.02.2011

  • Основание действия эхокардиографии на способности ультразвука отражаться при взаимодействии со средами разной оптической плотности. Основные блоки аппарата: излучатель и приемник ультразвука, блок интерпретации сигнала, средства ввода-вывода информации.

    презентация [1,6 M], добавлен 05.04.2015

  • Физические характеристики звука. Понятие ультразвука и принцип действия электромеханических излучателей. Медико-биологичесике приложения ультразвука. Методы диагностики и исследования: двумерная и доплеровская эхоскопия, визуализация на гармониках.

    презентация [940,4 K], добавлен 23.02.2013

  • Биологические и физические характеристики ультразвука. Механизмы физиологического и лечебного действия (механический, тепловой и физико-химический факторы). Аппаратура, методика и техника ультразвуковой терапии. Показания и противопоказания к лечению.

    реферат [19,2 K], добавлен 27.04.2009

  • Применение ультразвука с лечебной целью. Механическое, термическое, физическое воздействие ультразвука. Методы ультразвуковой терапии: контактный, ультрафонофорез, рефлексотерапия, интракорпоральный, эндоскопический. Аппараты для ультразвуковой терапии.

    презентация [638,9 K], добавлен 05.02.2015

  • Понятие переменного тока, его роль и применение в медицине в лечебных целях. Использование метода дарсонвализации при заболеваниях сердца и сосудов, в стоматологии, гинекологии, косметологии. Показания к применению ультратонотерапии и индуктотермии.

    реферат [23,5 K], добавлен 15.04.2011

  • Статистические данные заболеваемости остеопорозом. Опорно-двигательный аппарат человека: остеология, классификация костей. Исследование синовиальной жидкости. Артрография и трепанобиопсия. Радионуклидная диагностика. Биологическое действие ультразвука.

    курсовая работа [5,9 M], добавлен 16.12.2012

  • Исторические особенности гашиша. Мифология конопли. Использование ее в производстве. Применение марихуаны в медицине для лечения различных болезней. Культура наркотических веществ. Исследование клинической эффективности растения. Развитие фармакологии.

    презентация [369,3 K], добавлен 08.12.2016

  • Применение ионизирующих излучений в сельском хозяйстве, ветеринарии и животноводстве. Использование ионизирующих излучений для диагностики и лечения животных. Использование нейтронов наряду с другими тяжелыми заряженными частицами для лечения опухолей.

    контрольная работа [168,6 K], добавлен 30.01.2009

  • Механизм развития угрей – заболевания сальных желез. Факторы, провоцирующие угревую сыпь. Лекарственные препараты, применяемые для лечения акне. Метод механического пилинга. Сущность процедуры ионофореза. Воздействие на кожные покровы ультразвука.

    презентация [585,5 K], добавлен 30.11.2016

  • Змеиный яд, его физические и химические свойства, особенности применения в медицине. Получение пантов из пятнистого оленя. Основные свойства мускуса и амбры, специфика и сферы его применения. Использование пиявок и бодяги в медицине и косметологии.

    курсовая работа [2,8 M], добавлен 22.01.2013

  • Применение радиоактивного излучения в медицине и промышленности. История открытия радиоактивности французским физиком А. Беккерелем. Использование радиации для диагностики и лечения различных заболеваний. Сущность и особенности радиационной стерилизации.

    презентация [883,2 K], добавлен 28.10.2014

  • Краткая история развития и становления фармакологии как науки. Ботаническое описание, географическое распространение, фармакологические свойства и фармакологическое действие папоротника. Применение папоротников в народной и традиционной медицине.

    курсовая работа [96,4 K], добавлен 11.05.2012

  • Ультразвуковые волны и особенности их распространения. Методы их получения. Методики лечения ультразвуком. Технические методы построения УЗ генераторов. Обобщенная структурная схема терапевтического УЗ-излучателя. Технические характеристики аппаратов.

    дипломная работа [608,6 K], добавлен 06.08.2013

  • Медико-биологическое действие ультразвука. Разработка структурной схемы аппарата УЗ стоматологического для снятия зубного камня. Технические характеристики ультразвукового аппарата. Расчет себестоимости и цены. Метеорологические условия помещения.

    дипломная работа [222,2 K], добавлен 26.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.