Белковый обмен у детей

Роль белков в организме ребенка, их биологическая ценность и выполняемые функции в организме. Аминокислоты, необходимые детям: лизин, метионин, валин, лейцин и др. Белок как основной материал для построения тканей человека. Нарушения белкового обмена.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 22.05.2015
Размер файла 27,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство здравоохранения Украины

Запорожский государственный медицинский университет

Кафедра пропедевтики детских болезней

Реферат

На тему: «Белковый обмен у детей»

Выполнил: студент 3-го курса

Сайко Роман Эдуардович

Запорожье 2014

План

1. Роль белков в организме ребенка

2. Белковый обмен у детей

3. Нарушения белкового обмена

Использованная литература

1. Роль белков в организме ребенка

Белок - это длинная цепочка из аминокислот, соединённых пептидной связью, и именно она является носителем нашего врождённого генетического кода, что и можно назвать основной и очень важной ролью данного вещества в организме человека.

Однако это далеко не единственное назначение аминокислотной цепи, и существует множество других, выполнение которых предполагает сохранение целостности тканей и их защиту от воздействия внешних агрессивных факторов. Белок - это транспортировщик энергетических и питательных веществ в организме. Без него невозможно было бы протекание обменных процессов и усвоение многих поступающих из продуктов компонентов.

Вдобавок к этому белок является связующим веществом и защитной оболочкой между клетками, а также вокруг них, оберегая ткани и органы от воздействия вредных микробов, помогая выстраивать и активизировать иммунный отклик организма на внешние раздражители.

Без белка невозможно было бы восстановление клеток и образование новых, а также адекватная реакция всех органов и систем на воспалительные процессы и заражение болезнетворными бактериями.

Белок является одним из основных и жизненно важных продуктов.

В организме человека запасов белка нет. Поэтому для нормального роста организма необходим белок, который невозможно заменить ни жирами ни углеводами

Биологическая ценность белков определяется аминокислотным составом и способностью этих белков к гидролизу под влиянием ферментов пищеварительного тракта. Для детей незаменимыми являются следующие 9 аминокислот:

- триптофан

- лизин

- метионин

- треонин

- гистидин

- фенилаланин

- валин

- лейцин

- изолейцин

А для детей первых месяцев жизни еще:

- цистеин

40% потребности в аминокислотах должны покрываться за счет незаменимых аминокислот. Особое значение для детского организма имеет соотношение некоторых аминокислот. В период роста наиболее благоприятным является соотношение: триптофан : лизин : (метионин+цистеин) = 1 : 3 : 3

Дети нуждаются больше, чем взрослые, в белке животного происхождения. От 100% в грудном возрасте до 75-55% в последующие периоды. Потребность в пищевом белке на 1 кг. веса тела с возрастом постепенно снижается от 3-3,5 г. в раннем детском возрасте до 1-2 г. в подростковом. Как недостаточное, так и избыточное потребление белка в питании детей неблагоприятно сказывается на их росте и психомоторном развитии.

Белки выполняют в организме различные функции:

1) пластические функции - распад белка с высвобождением аминокислот, в том числе незаменимых;

2) белки - составная часть различных ферментов, гормонов, антител;

3) белки участвуют в поддержании кислотно-щелочного состояния;

4) белки - источник энергии, при распаде 1 г белка образуется 4 ккал;

5) белки осуществляют транспорт метаболитов.

Свойства пищевых белков, учитываемые при нормировании питания

1. Биодоступность (всасываемость) рассчитывается по формуле:

(N поступивший - N выделенный с калом) ч ч100 / N поступивший.

2. Чистая утилизация (NPU, %) рассчитывается по формуле:

N пищи - (N стула + N мочи) ч100 / N пищи.

3. Коэффициент эффективности белка - прибавка в массе тела на 1 г съеденного белка в эксперименте.

4. Аминокислотный скор рассчитывается по формуле:

(Данная аминокислота в данном белке в мг ч ч100) / Данная аминокислота в эталонном белке в мг

Идеальный белок - женское молоко с утилизацией 94 % и скор 100, и целое яйцо с утилизацией 87 % и скор 100.

Фракции белка также более низкие, синтез альбумина составляет 0,4 г/кг/сутки, у новорожденного процентное содержание альбумина относительно выше, чем у матери. На первом году жизни происходит снижение содержания альбумина. Динамика содержания г-глобулина аналогична таковой альбумина. В течение первого полугодия жизни особенно низкие показатели г-глобулина, что связано с его распадом, синтез собственных глобулинов происходит медленно. Соотношение глобулиновых фракций б-1 - 1, б-2 - 2, в- 3, г- 4 части. При острых воспалительных заболеваниях изменения белковой формулы крови характеризуются увеличением б-глобулинов при нормальном содержании г-глобулинов и уменьшенном количестве альбуминов.

Белки являются строительным, пластическим материалом и источником энергии при белковой недостаточности, нарушаются процессы обеспечения энергией. Дополнительные поступления белка необходимы при малой хирургии, при скелетной травме, при сепсисе, при ожогах, при лихорадочных состояних. Снижение поступления белков необходимо при прикованности к постели, сидячием образе жизни (сидит в кресле), постельном режиме больного. Поступление количества белков ориентировано на ликвидацию дифизита углеводов и жиров при обеспечении необходимыми сопутствующими микронутриеттами, такими как калийфосфаты, витамины группы В (особенно тиамин и рибофиавин), антиоксидатны.

2. Белковый обмен у детей

Обмен веществ у детей значительно отличается от обмена веществ взрослого человека. Еще Гиппократ отметил, что "...растущий организм имеет наибольшее количество природной теплоты и поэтому больше всего требует пищи". И действительно, организму ребенка в условиях интенсивного роста для нормальной жизнедеятельности требуется относительно больше пластических веществ и энергии, образование которых происходит в результате обмена органических соединений, поступающих с пищей. Следовательно, энергетические и окислительные процессы в детском организме идут более напряженно, о чем свидетельствуют показатели основного обмена, величина которого зависит от возраста и конституции человека, интенсивности роста и метаболизма тканей, а также других факторов. У детей во все возрастные периоды, особенно в первые годы жизни, основной обмен намного выше, чем у взрослых. Значительное количество энергии закономерно расходуется на процессы ассимиляции и роста. Необходимо также отметить обусловленное возрастом несовершенство регуляции обменных процессов как со стороны ЦНС и желез внутренней секреции, так и со стороны нейрогуморальных механизмов. Все это определяет нестабильность и сравнительно легко наступающие особенности обмена веществ у детей. Наряду с указанными общими особенностями в детском возрасте отмечается также своеобразие каждого из основных видов обмена - белкового, углеводного, жирового. Знание их дает возможность правильно ориентироваться в вопросах питания детей первых месяцев и лет жизни, а также патологии, обусловленной нарушениями обменных процессов, в основе которой нередко лежат генетически детерминированные заболевания.

Белки являются основным пластическим материалом для построения тканей человека, участвуют в синтезе ряда гормонов, ферментов, иммунных тел, в поддержании равновесия кислот и оснований. В связи с энергичным ростом, формированием новых клеток и тканей потребность в белках у детей гораздо выше, чем у взрослого человека, и тем значительнее, чем моложе ребенок. Самые высокие показатели усвояемости белка и ретенции азота наблюдаются у детей до 1 года (5,0 - 5,5 г на 1 кг массы тела в сутки, тогда как у детей старше 12 лет - 2,0 - 2,5 г/кг в сутки) и особенно в первые 3 мес жизни, т. е. в период самого интенсивного нарастания массы тела. При вскармливании грудным молоком суточная потребность в белках составляет 2,0 - 2,5 г/кг, при искусственном вскармливании - 3,0 - 4,0 г/кг, оставаясь такой же в течение всего дошкольного периода (у школьников 2 - 2,5 г/кг). За счет белков должно покрываться 10-15% калорий суточного рациона. Энергично идущие пластические процессы объясняют тот факт, что азотистый баланс у детей младшего возраста положительный, в то время как у старших детей и взрослых имеется азотистое равновесие.

Для правильного роста и развития ребенка имеет значение не только количество, но и качество вводимого с пищей белка. Образовавшиеся из него в процессе пищеварения аминокислоты, всасываясь в кровь, должны усваиваться. Именно из них синтезируется затем белок тканей детского организма, свойства синтезируемого белка контролируются генами. Кроме того, в состав тканевых белков входит ряд аминокислот, которые не могут быть синтезированы и поступают в организм в готовом виде. Это так называемые незаменимые аминокислоты, обладающие высокой биологической ценностью. К ним относятся лизин, метионин, триптофан, фенилаланин, валин, лейцин, изолейцин и треонин. По мнению многих авторов, для детей грудного возраста незаменимой аминокислотой является также гистидин, так как синтез его у ребенка не покрывает нужд растущего организма. Особенно высока потребность в лизине, треонине, валине. Однако следует подчеркнуть, что для синтеза белка необходимо наличие всех незаменимых аминокислот, правильное их соотношение и должная корреляция с другими пищевыми ингредиентами. Этим требованиям лучше всего отвечает женское молоко. В нем преобладают легкоусвояемые мелкодисперсные белки, имеется наиболее оптимальное соотношение основных ингредиентов и незаменимых аминокислот. Все перечисленное выше не исчерпывает возрастных особенностей азотистого обмена. Неиспользованные аминокислоты подвергаются в печени дезаминированию, в результате чего образуются конечные продукты азотистого обмена (аммиак, мочевина, мочевая кислота и др.), подлежащие удалению с мочой.

Повышенное содержание азота, особенно мочевой кислоты эндогенного происхождения, отмечается в моче новорожденных, что на 3-4-й день жизни может приводить к развитию мочекислого инфаркта (закупорка собирательных трубочек почек солями мочевой кислоты) с появлением мутной мочи красноватого цвета за счет уратов и аморфных мочекислых солей. В последующие дни по мере увеличения количества мочи соли постепенно вымываются. В целом же процентное содержание азота в моче у детей младшего возраста значительно меньше, чем у взрослых, главным образом за счет мочевины, и нарастает с возрастом. Малое содержание мочевины в моче отражает как интенсивность пластических процессов, так и несовершенство белкового обмена (недостаточная синтезирующая функция печени). Последнее наряду с другими возрастными особенностями обмена и функциональной незрелостью почек обусловливает относительное преобладание в моче детей раннего возраста мочевой кислоты, аммиака, аминокислот.

По-видимому, своеобразие интермедиарного обмена наряду с другими факторами является причиной креатинурии у детей первых 5 - 6 лет жизни (предполагают, что креатин у них не превращается в креатинин). Регуляция процессов белкового обмена очень сложна. Усиливают ассимиляцию белков гормоны гипофиза, щитовидной железы, инсулин, андрогены (тестостерон). Анаболическое действие оказывают также витамины (тиамин, никотиновая кислота, рибофлавин, биотин, пантотеновая кислота). Катаболическим эффектом обладают тиреотропный и адренокортикотропный гормоны, глюкокортикоиды, тирозин в больших дозах. Недостаточное поступление белка в организм, так же как и эндогенное белковое голодание или же потеря протеинов организмом, приводят к снижению или остановке пластических процессов в тканях, нарушению белкового обмена, отрицательному азотистому балансу. В результате приостанавливается рост, развивается дистрофия, полигиповитаминоз, появляется дискоординация функций гормональной и ферментативной систем, отмечаются изменения в ЦНС, печени, почках и других органах. Возможно развитие "голодных" отеков.

Задержавшийся азот используется организмом для построения тканей. Отсюда понятна большая потребность ребенка в белке. Она тем больше, чем моложе ребенок и чем интенсивнее происходит процесс роста. Размеры потребности в белке в известной мере зависят от его качества. При вскармливании молоком матери потребность ребенка в белке покрывается при получении им 2--2,5 г белка на 1 кг веса. Ребенок того же возраста, находящийся на искусственном вскармливании, нуждается в большем количестве белка, так как белок коровьего молока хуже переваривается и всасывается кишечником ребенка.

Достаточное количество воды и солей также способствует лучшему использованию белка. При сгорании 1 г белка выделяется 4,1 калории. За счет белков покрывается около 15% суточной калорийной потребности. Следует, однако, иметь в виду, что рациональное питание определяется не только количеством, но и качеством пищи. Необходимо, чтобы вводимые белки содержали все нужные для построения тканей аминокислоты, т. е. триптофан, лизни, тирозин и др., не синтезирующиеся в организме. У грудных детей это лучше всего достигается при вскармливании женским молоком.

Кроме животного белка -- мяса, молока, яиц, рыбы, творога, ребенок должен получать также белки продуктов растительного происхождения. При этом очень важно сохранять правильное соотношение этих продуктов. Растительный белок должен составлять не больше половины всего суточного количества белка. белок аминокислота ребенок организм

Конечные продукты азотистого обмена выделяются с мочой в виде мочевины, аммиака, мочевой кислоты, креатина и аминокислот. Соотношение этих веществ в моче не постоянно. Оно имеет свои возрастные закономерности. Так, с возрастом выделение мочевины увеличивается, а количество мочевой кислоты (на 1 кг веса) относительно уменьшается. Это свидетельствует о возрастном уменьшении интенсивности процессов роста.

3. Нарушения белкового обмена

Поскольку белки занимают центральное положение в осуществлении процессов жизнедеятельности организма, то и нарушения белкового обмена в различных вариантах являются компонентами патогенеза всех без исключения патологических процессов. Для получения полного представления о нарушениях белкового обмена, исходят из понятия об азотистом равновесии. У нормального взрослого человека количество азотистых веществ, выводимых из организма, равняется тому, которое он получает с пищей. В растущем организме, при беременности, при введении или избыточной выработке гормонов анаболического действия, при откармливании после истощающих заболеваний азота выводится меньше, чем поступает, т. е. анаболические процессы преобладают над катаболическими (положительный азотистый баланс). Отрицательный азотистый баланс имеет место при потере белков или большом расходе их организмом. Это может быть при голодании, потере белков через почки (протеинурия), кожу (ожоги), кишки (понос), при тиреотоксикозе, инфекционной лихорадке.

Нарушения белкового обмена возможны на всех этапах, начиная с всасывания и кончая выведением из организма конечных продуктов обмена. В такой последовательности эти нарушения будут рассмотрены ниже.

I. Нарушения всасывания и синтеза белков

Поскольку в организме практически нет депо белков, а источником аминокислот для их синтеза служат в основном компоненты пищи, то, естественно, при нарушении переваривания и всасывания белков развивается алиментарная белковая недостаточность. Наблюдается она при воспалительных и дистрофических изменениях различных отделов кишок, сопровождающихся нарушением их секреторной и моторной функций, при голодании, несбалансированном по аминокислотному составу пищи.

Однако для нормального синтеза белков необходимо не только достаточное количество аминокислот, но и правильное и активное функционирование системы этого синтеза и кодирующих его генетических структур. Нарушение продукции белка может быть приобретенным и наследственным. Оно выражается в изменении количества синтезированных молекул или появлении молекул с измененной структурой.

Увеличение или уменьшение количества синтезируемого белка чаще всего связано с изменением регуляторных влияний со стороны ряда гормонов, нервов и иммунной системы. Кроме того, к нарушению протеосинтеза может приводить конденсация хроматина при различных патологических процессах в клетках, нерегулируемая скорость списывания матричной РНК при нарушении функционирования гена - регулятора или оператора (в опухолевых клетках), а также дефекты в структуре рибосом, возникающие, например, под влиянием стрептомицина.

Синтез белков с измененной структурой обычно бывает следствием ошибок в геноме. Это может проявляться нарушением аминокислотного состава белковой молекулы (например, молекула гемоглобина при серповидно-клеточной анемии), укорочением молекул (когда транскрипция информации с ДНК-матрицы идет только до дефекта в ней), а также синтезом аномально длинных белков, если мутация произошла в "стоп-сигнале" гена и терминирующий кодон исчез. Примером этого может служить появление удлиненных альфа-цепей гемоглобина. Продукция белков с измененной структурой может быть также следствием нарушения одного из звеньев белоксинтезирующей системы - аппарата трансляции либо посттрансляционной модификации молекул. С увеличением частоты ошибок трансляции в процессе жизни связывают старение организма.

II. Нарушения обмена аминокислот

Нарушение трансаминирования и окислительного дезаминирования. Процессы трансаминирования и дезаминирования имеют универсальное значение для всех живых организмов и всех аминокислот: трансаминирование приводит к образованию аминокислот, дезаминирование - к их разрушению.

Сущность реакции трансаминирования заключается в обратимом переносе аминогруппы от аминокислоты на а-кетокислоту без промежуточного образования свободного аммиака. Реакция катализируется специфическими ферментами: аминотрансферазами или трансаминазами, кофакторами которых являются фосфорилированные формы пиридоксина (пиридоксальфосфат и пиридок-саминофосфат).

Нарушения реакции трансаминирования могут возникать по нескольким причинам: это прежде всего недостаточность пиридоксина (беременность, подавление сульфаниламидными препаратами кишечной флоры, частично синтезирующей витамин, торможение синтеза пиридоксальфосфата во время лечения фтивазидом). Снижение активности трансаминаз происходит также при ограничении синтеза белков (голодание, тяжелые заболевания печени). Если в отдельных органах возникает некроз (инфаркт миокарда или легких, панкреатит, гепатит и др.), то вследствие разрушения клеток тканевые трансаминазы поступают в кровь и повышение их активности в крови при данной патологии является одним из диагностических тестов. В изменении скорости трансаминирования существенная роль принадлежит нарушению соотношения между субстратами реакции, а также гормонам, особенно гликокортикоидам и гормону щитовидной железы, оказывающим стимулирующее влияние на этот процесс.

Угнетение окислительного дезаминирования, приводящее к накоплению неиспользованных аминокислот, может вызвать повышение концентрации аминокислот в крови - гипераминоацидемию. Следствием этого является усиленная экскреция аминокислот почками (аминоацидурия) и изменение соотношения отдельных аминокислот в крови, создающие неблагоприятные условия для синтеза белковых структур. Нарушение дезаминирования возникает при недостатке компонентов, прямо или косвенно участвующих в этой реакции (недостаток пиридоксина, рибофлавина, никотиновой кислоты; гипоксия; белковая недостаточность при голодании).

Нарушения декарбоксилирования. Являясь очень важным, хотя и не универсальным, направлением белкового обмена, декарбоксилирование протекает с образованием CO2 и биогенных аминов. Декарбоксилированию подвергаются только некоторые аминокислоты: гистидин - с образованием гистамина, тирозин - тирамина, 1-глутаминовая кислота - г-аминомасляной кислоты, 5-гидрокситриптофан - серотонина, производные тирозина (3,4-диоксифенилаланин) и цистина (1-цистеиновая кислота) - соответственно 3,4-диоксифенилэтиламина (дофамин) и таурина.

Биогенные амины, как известно, обладают специфической биологической активностью и увеличение их количества может вызвать ряд патологических явлений в организме. Причиной такого увеличения может быть не только усиление декарбоксилирования соответствующих аминокислот, но и угнетение окисления аминов и нарушение их связывания белками. Так, например, при гипоксических состояниях, ишемии и деструкции тканей (травмы, облучение и др.) ослабляются окислительные процессы, что способствует усилению декарбоксилирования. Появление большого количества биогенных аминов в тканях (особенно гистамина и серотонина) может вызвать значительное нарушение местного кровообращения, повышение проницаемости сосудов и повреждение нервного аппарата.

Наследственные нарушения обмена некоторых аминокислот. Прохождение аминокислот через определенные метаболические пути детерминируется наличием и активностью соответствующих ферментов. Наследственное нарушение синтеза ферментов приводит к тому, что соответствующая аминокислота не включается в метаболизм, а накапливается в организме и появляется в биологических средах: моче, кале, поте, цереброспинальной жидкости. Клиническая картина такого заболевания определяется, во-первых, появлением слишком большого количества вещества, которое должно было метаболизироваться при участии заблокированного фермента, а во-вторых, дефицитом вещества, которое должно было образоваться.

Нарушения обмена фенилаланина. Фенилаланин в норме необратимо окисляется в тирозин. Если же в печени нарушается синтез необходимого для этого фермента фенилаланингидроксилазы, то окисление фенилаланина идет по пути образования фенилпировиноградной и фенилмолочной кислот - развивается фенилкетонурия. Однако этот путь обладает малой пропускной способностью и поэтому фенилаланин накапливается в большом количестве в крови, тканях и цереброспинальной жидкости, что в первые же месяцы жизни ведет к тяжелому поражению центральной нервной системы и неизлечимому слабоумию. Из-за недостаточного синтеза тирозина снижается образование меланина, что обусловливает посветление кожи и волос. Кроме того, при увеличенной выработке фенилпировиноградной кислоты тормозится активность фермента (дофамингидроксилазы), необходимого для образования катехоламинов (адреналина, норадреналина). Поэтому тяжесть наследственного заболевания определяется комплексом всех этих нарушений.

Установить болезнь можно с помощью следующей пробы: при добавлении к свежей моче нескольких капель 5% раствора трихлоруксусного железа появляется оливково-зеленая окраска. Больные погибают в детстве, если не проводится специальное лечение, которое заключается в постоянном, но осторожном (контроль за аминокислотным составом крови) ограничении поступления фенилаланина с пищей.

Нарушения обмена тирозина. Обмен тирозина осуществляется несколькими путями. При недостаточном превращении образовавшейся из тирозина парагидроксифенилпировиноградной кислоты в гомогентизиновую первая, а также тирозин выделяются с мочой. Это нарушение носит название тирозиноза. Если же задержка окисления тирозина происходит в момент превращения гомогентизиновой кислоты в малеилацетоуксусную, развивается алкаптонурия. Фермент, окисляющий гомогентизиновую кислоту (оксидаза гомогентизиновой кислоты), образуется в печени. В норме он настолько быстро разрывает ее гидрохиноновое кольцо, что кислота "не успевает" появиться в крови, а если и появляется, то быстро выводится почками. При наследственном дефекте этого фермента гомогентизиновая кислота в большом количестве обнаруживается в крови и моче. Моча при стоянии на воздухе, а также при добавлении к ней щелочи становится черной. Это объясняется окислением гомогентизиновой кислоты кислородом воздуха и образованием в ней алкаптона ("захватывающий щелочь"). Гомогентизиновая кислота из крови проникает в ткани - хрящевую, сухожилия, связки, внутренний слой стенки аорты, вследствие чего появляются темные пятна в области ушей, носа, щек, на склерах. Иногда развиваются тяжелые изменения в суставах.

Тирозин, кроме того, является исходным продуктом для образования красящего вещества кожи и волос - меланина. Если превращение тирозина в меланин уменьшено из-за наследственной недостаточности тирозиназы), возникает альбинизм.

Наконец, тирозин является предшественником тироксина. При недостаточном синтезе фермента, катализирующего процесс йодирования тирозина свободным йодом, нарушается образование гормонов щитовидной железы.

Нарушения обмена триптофана. Основной путь метаболизма триптофана приводит к синтезу амида никотиновой кислоты, который играет очень важную роль в жизнедеятельности организма, являясь простетической группой ряда окислительных ферментов - никотинамидадениндинук-леотида (НАД) и его восстановленной формы никотинамидаденин-динуклеотидфосфата (НАДФ). Поэтому при недостаточности никотиновой кислоты и ее амида нарушаются многие обменные реакции, а при значительном дефиците этих веществ развивается пеллагра.

Нарушение обмена триптофана может проявиться также в изменении количества образующегося из него серотонина.

III. Нарушения конечных этапов белкового обмена

Патофизиология конечных этапов белкового обмена включает в себя патологию процессов образования азотистых продуктов (мочевина, аммиак, мочевая кислота) и выведения их из организма. Основным показателем нарушения образования и выделения мочевины и других азотистых продуктов обмена является изменение содержания и состава остаточного (небелкового) азота в крови (норма - 20 - 30 мг%). Остаточный азот на 50% состоит из азота мочевины, около 25% его приходится на долю аминокислот, остальная часть - на другие азотистые продукты. Немочевинная часть его получила название резидуального азота. Увеличение остаточного азота в крови - гиперазотемия - может быть следствием нарушения образования мочевины в печени (продукционная, или печеночная, гиперазотемия) и нарушения выделительной функции почек (ретенционная, или почечная, гиперазотемия).

Нарушения образования мочевины наблюдаются при ряде заболеваний (дистрофические изменения в печени, гипоксия), а также могут быть наследственно обусловленным дефектом. Наследственные нарушения мочевинообразования проявляются при недостаточном синтезе аргинин-сукцинатлиазы (аргининсукцинатурия), карбамоилфосфатсинтетазы и орнитинкарбамоилтрансферазы (аммонийемия) и аргининсукцинат-синтетазы (цитруллинурия).

Наиболее частым следствием нарушения синтеза мочевины является накопление аммиака в крови. Количество его может увеличиваться при резко выраженном нарушении выделительной функции почек. Токсическое действие аммиака обусловлено прежде всего его влиянием на центральную нервную систему. Оно может быть прямым и опосредованным. Последнее заключается в усиленном обезвреживании аммиака вследствие связывания его глутаминовой кислотой. Выключение вследствие этого глутаминовой кислоты из обмена проявляется ускорением переаминирования аминокислот с а-кетоглутаровой кислотой, которая тем самым отвлекается от участия в цикле трикарбоновых кислот (цикл Кребса). Торможение цикла Кребса приводит к задержке утилизации ацетил-СоА, который, превращаясь в кетоновые тела, способствует развитию коматозного состояния.

Нарушения образования и выделения мочевой кислоты. Мочевая кислота - это конечный продукт обмена пуриновых оснований, входящих в структуру нуклеиновых кислот. Нарушения образования и выделения мочевой кислоты могут наблюдаться при заболеваниях почек, при лейкозах. Однако наиболее ярко эти нарушения проявляются при подагре.

Подагра была известна еще в древнем мире и описана Гиппократом. Изучение заболевания началось в 1860 г., когда Гаррод, сам страдавший подагрой, дал ее классическое описание и обнаружил в крови у больных увеличение содержания мочевой кислоты (гиперурикемия). К подагре существует предрасположение в виде доминантно наследуемого повышения уровня мочевой кислоты в крови и, возможно, изменения факторов, поддерживающих мочевую кислоту в растворенном состоянии. Факторами риска возникновения подагры могут быть избыточное поступление пуринов в организм (употребление в пищу большого количества мяса, особенно с вином и пивом); избыточное поступление в организм молибдена, который входит в состав ксантиноксидазы, переводящей ксантин в гипоксантин, который затем превращается в мочевую кислоту; пол (чаще болеют мужчины); пожилой возраст, для которого характерна возрастная гиперурикемия.

Механизм повышения уровня мочевой кислоты в крови у больных не совсем ясен. Определенная роль в этом отводится как нарушению выделения мочекислых соединений почками, так и усиленному образованию их из глицерина и других предшественников.

Гиперурикемия может сопровождаться отложением солей мочевой кислоты в суставах и хрящах, где в силу слабого кровоснабжения всегда имеется тенденция к закислению среды, что способствует выпадению солей в осадок (особенно при дефекте факторов, поддерживающих их в растворенном состоянии). Отложение солей вызывает острое подагрическое воспаление, сопровождающееся болью, лихорадкой, а также аллергическими проявлениями и заканчивающееся образованием подагрических узлов и деформацией суставов.

IV. Нарушения белкового состава крови

Изменения в количественном и качественном соотношении белков крови наблюдаются почти при всех патологических состояниях, которые поражают организм в целом, а также при врожденных аномалиях синтеза белков. Нарушение содержания белков плазмы крови может выражаться изменением общего количества белков (гипопротеинемия, гиперпротеинемия) или соотношения между отдельными белковыми фракциями (диспротеинемия) при нормальном общем содержании белков.

Гипопротеинемия возникает главным образом за счет снижения количества альбуминов и может быть приобретенной (при голодании, заболеваниях печени, нарушении всасывания белков) и наследственной. К гипопротеинемии может привести также выход белков из кровеносного русла (кровопотеря, плазмопотеря, экссудация, транссудация) и потеря белков с мочой (протеинурия).

Гиперпротеинемия чаще бывает относительной (сгущение крови). Абсолютная гиперпротеинемия обычно связана с гиперглобулинемией, как правило, с увеличением уровня у-глобулинов (как компенсаторная реакция при пониженном содержании альбуминов в крови, усилении синтеза антител).

Диспротеинемии имеют как приобретенный, так и наследственный характер. Условно они делятся на дисглобулинемии, дисгаммаглобулинемии и дисиммунноглобулинемии. При последних белковый состав крови является лишь отражением общей перестройки в иммунной системе, включающей и клеточную реакцию.

Примерами наиболее часто встречающихся диспротеинемии могут служить увеличение содержания б2-глобулинов, уменьшение б- и в-липопротеидов при нарушениях функций печени, изменение количества и структуры фибриногена. Последнее имеет большое практическое значение.

Изменения г-глобулинов могут быть количественными и качественными. Количественно измененные г-глобулины называются парапротеинами. Они относятся к иммуноглобулинам и являются обычно продуктами единичных клонов антителопродуцирующих клеток. Увеличение их количества в крови называется моноклональными гипергаммаглобулинемиями и наблюдается обычно при пролиферации соответствующих клонов, чаще всего обусловленной опухолевой природой патологического процесса (миеломная болезнь, макроглобулинемия Вальденстрема). Разновидностью парапротеинов являются также криоглобулины - патологические протеины с особенностями иммуноглобулинов, которые преципитируют при охлаждении.

Использованная литература

1. http://www.eurolab.ua/symptoms/disorders/172.

2. http://cribs.me/propedevtika/osobennosti-belkovogo-obmena-u-detei.

3. http://www.list7i.ru/?mod=boards&id=334.

4. http://colref.ru/besplatno/fffzgxwxr/

Размещено на Allbest.ru

...

Подобные документы

  • Роль печени и почек в обмене белков. Нормы белков в питании. Участие аминокислот в процессах биосинтеза и катаболизма. Тканевой обмен нуклеотидов. Синтез и катаболизм ДНК и РНК. Регуляция процессов азотистого обмена. Патология азотистого обмена.

    курсовая работа [58,0 K], добавлен 06.12.2008

  • Особое место белкового обмена в многообразных превращениях веществ во всех живых организмах. Нарушения биосинтеза и распада белков в органах и тканях. Наследственные дефекты биосинтеза белков. Нарушения выделения и конечных этапов метаболизма аминокислот.

    реферат [123,1 K], добавлен 22.01.2010

  • Обмен веществ как основополагающий механизм работы организма; особенности обмена энергии у детей. Изучение проблемы нарушения метаболизма в период наиболее интенсивного роста организма ребенка. Питательная, транспортная и защитная функции белков.

    презентация [1,7 M], добавлен 13.05.2015

  • Понятие пищи как единственного источника энергии в организме, влияние ее состава на здоровье и самочувствие человека. Сущность процессов ассимиляции и диссимиляции в организме, их и значение. Характеристика обмена белков, жиров и углеводов у детей.

    контрольная работа [30,0 K], добавлен 20.02.2009

  • Химия белков, их участие в процессах, обеспечивающих жизнедеятельность организма. Структура, классификации биологические функции белков. Простые и сложные белки (протеины и протеиды). Причины нарушений белкового обмена при онтогенезе и болезнях.

    презентация [5,4 M], добавлен 26.10.2014

  • Белки как главная составная часть органов и тканей организма. Роль белка в организме. Продукты с высоким содержанием белка. Проблема белкового дефицита в современном мире. Синдром квашиоркора - вид тяжелой дистрофии на фоне недостатка белков в рационе.

    презентация [410,6 K], добавлен 30.03.2016

  • Энергетическая роль, этапы и патологии белкового обмена веществ. Гипопротеинемия, ее причины и последствия. Гиперазотемия, виды и механизмы ее развития. Определение изменений азотсодержащих веществ в моче. Белковый минимум и коэффициент изнашивания.

    презентация [7,4 M], добавлен 18.05.2014

  • Классификация процессов метаболизма: ассимиляция и диссимиляция. Схема обмена веществ. Энергетический и пластический обмен. Автотрофы и гетеротрофы. Функции белков в организме. Насыщенные и ненасыщенные жирные кислоты. Регуляция обмена углеводов.

    презентация [1,8 M], добавлен 29.01.2015

  • Пищевая и биологическая ценность белков животного и растительного происхождения, факторы, влияющие на их усвояемость. Источники, классификация и рекомендуемые нормы витаминов в питании различных групп населения. Характеристика диет при заболевании почек.

    контрольная работа [29,5 K], добавлен 31.03.2015

  • Понятие белков, их сущность и особенности, строение и функции в организме. Нуклеиновые кислоты – ДНК и РНК, их строение и значение. Сущность и роль в организме процессов транскрипции и трансляции. Практическое применение в медицине молекулярной генетики.

    реферат [16,9 K], добавлен 22.02.2009

  • Общая характеристика полезных свойств правильного рационального питания. Химические элементы, входящие в состав пищевых веществ. Биологическая ценность белков и углеводов для организма человека, их состав и классификация. Состав и полезные свойства жиров.

    реферат [20,6 K], добавлен 09.07.2010

  • Процесс обмена белков, аминокислот и отдельных аминокислот. Биогенные амины, их роль и значение. Окисление биогенных аминов (моноаминоксидазы). Роль гистамина в развитии воспаления и аллергических реакций. Антигистаминные препараты, их задачи и функции.

    презентация [1,4 M], добавлен 13.04.2015

  • Поддержание кислотно-щелочного равновесия. Дефицит меди в организме человека и развитие микроцитарной анемии и лейкопении. Железодефицитная гипохромная микроцитарная анемия. Нарушения обмена магния. Значительное уменьшение содержания в организме магния.

    реферат [22,3 K], добавлен 27.09.2011

  • Общие физико-химические закономерности развития водно-электролитных изменений. Методы исследования водных пространств в организме и осмотического давления. Клинические проявления дефицита воды. Особенности нарушения водно-электролитного обмена у детей.

    реферат [20,9 K], добавлен 22.01.2010

  • Валеология - наука о здоровом человеке. Система питания - фактор окружающей среды. Белок - основа системы питания. Биологическая ценность белков. Степень усвоения и термическая обработка белков пищи. Функция "зеркала", характерная системе.

    реферат [102,4 K], добавлен 20.09.2003

  • Ознакомление с понятием, сущностью и процессами метаболизма. Рассмотрение особенностей создания молекул аминокислот, углеводов, липидов и нуклеиновых кислот. Образование всех клеток и тканей, выделение энергии в процессе обмена веществ в организме.

    презентация [507,1 K], добавлен 02.06.2015

  • Мышечная система человека, ее значение в жизнедеятельности организма. Белок как основной строительный материал человеческого организма. Функций мышц человека, их виды. Пища как источник энергии для организмов. Содержание белков в продуктах питания.

    реферат [1,2 M], добавлен 14.03.2011

  • Определение дефицита воды, натрия и калия в организме. Показания для парентерального питания в детском возрасте. Характеристика веществ, необходимых для покрытия потребности в калориях детям в послеоперационном периоде: жиры, аминокислоты, углеводы.

    реферат [17,5 K], добавлен 17.02.2010

  • Определение термина "патология", ее задачи и отрасли. Понятие и процесс обмена веществ, его этапы: анаболизм и катаболизм. Причины и виды нарушения обмена веществ. Структура и свойства белковых тел, методы их определения, скорость самообновления белков.

    реферат [16,0 K], добавлен 27.01.2009

  • Индивидуальное здоровье, его сущность, проявление. Классические теории и концепции питания. Роль и функции белков, жиров и углеводов в организме человека. Оздоровительное действие физических упражнений. Этапы формирования физического здоровья ребенка.

    шпаргалка [34,0 K], добавлен 10.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.