Медицинские ферментные препараты

Понятие, сущность и значение ферментов, описание эффективности их действия. Характеристика и отличительные черты продуцентов ферментных препаратов. Схема концентрирования ферментных растворов методом вакуум-выпаривания, специфика контроля производства.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 21.06.2015
Размер файла 917,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Восточно-Сибирский государственный университет технологий и управления»

(ФГБОУ ВПО ВСГУТУ)

Институт пищевой инженерии и биотехнологии

Кафедра «Биотехнология»

Реферат

по дисциплине: «Основы фармакологии»

на тему: «Медицинские ферментные препараты»

Выполнил: ст-т гр. Б271

Дьяченко М.С.

Проверил: Бубеев А.Т

Улан-Удэ, 2014

Содержание

Введение

1. Общая информация о ферментах и их свойствах

2. Продуценты ферментных препаратов

3. Технология

Заключение

Список использованной литературы

Введение

Производство ферментных препаратов занимает одно из ведущих мест в современной биотехнологии и относится к отраслям, объём продукции, которых постоянно растёт, а сфера применения неуклонно расширяется. Такое быстрое развитие связано с тем, что ферменты являются высокоактивными, нетоксичными биокатализаторами белкового происхождения, которые широко распространены в природе, без них невозможны осуществление многих биохимических процессов и жизнь в целом.

Познание роли ферментов для всего живого на Земле послужило основой для становления и развития технологии ферментных препаратов как науки и для создания промышленного производства наиболее широко используемых ферментных препаратов. Применение этих препаратов помогло существенно изменить, интенсифицировать и усовершенствовать многие существующие технологии или даже создать принципиально новые высокоэффективные процессы. Применение ферментных препаратов различной степени очистки позволило не только улучшить показатели и выходы в различных биотехнологических процессах, но позволило усовершенствовать кормопроизводство, повысить усвояемость кормов, сделать более целенаправленным и эффективным действие синтетических моющих средств, улучшить качество косметических препаратов, создать целый арсенал специфических, чувствительных и точных аналитических методов, наладить производство лекарственных и профилактических средств для медицинской промышленности и т. д.

Большим и неоспоримым достоинством ферментов перед химическими катализаторами является то, что они действуют при нормальном давлении, при температурах от 20 до 70 °С и рН в диапазоне от 4 до 9 и имеют в большинстве случаев исключительно высокую субстратную специфичность, что позволяет в сложной смеси биополимеров направленно воздействовать только на определенные соединения. Все это свидетельствует о том, что производство ферментных препаратов является одним из перспективных направлений в биотехнологии, которое будет и далее интенсивно развиваться и расширяться.

Традиционно ферментативные препараты получают либо при поверхностном, либо при глубинном способе культивирования продуцента. Глубинный способ ведения процесса имеет ряд существенных преимуществ перед поверхностным культивированием, т. к. позволяет существенно автоматизировать процесс, в ряде случаев значительно сократить объёмы отходов, проводить процесс непрерывно, сократить в 2 - 4 раза площади цехов, а также позволяет использовать анаэробных продуцентов

1. Общая информация о ферментах и их свойствах

Ферменты (от лат. fermentum -- брожение, закваска), специфические белки, присутствующие во всех живых клетках и играющие роль биологических катализаторов. Через их посредство реализуется генетическая информация и осуществляются все процессы обмена веществ и энергии в живых организмах. Ферменты бывают простыми или сложными белками, в состав которых наряду с белковым компонентом (апоферментом) входит небелковая часть -- кофермент. Эффективность действия ферментов определяется значительным снижением энергии активации катализируемой реакции в результате образования промежуточных фермент-субстратных комплексов. Присоединение субстратов происходит в активных центрах, которые обладают сходством только с определенными субстратами, чем достигается высокая специфичность (избирательность) действия ферментов. Одна из особенностей ферментов -- способность к направленному и регулируемому действию. За счёт этого контролируется согласованность всех звеньев обмена веществ. Эта способность определяется пространственность структурной молекулы ферментов. Она реализуется через изменение скорости действия ферментов и зависит от концентрации соответствующих субстратов и кофакторов, рH среды, температуры, а также от присутствия специфических активаторов и ингибиторов (например, адениловых нуклеотидов, карбонильных, сульфгидрильных соединений и др.). Некоторые ферменты помимо активных центров имеют дополнительные, т.н. аллостерические регуляторные центры. Биосинтез ферментов находится под контролем генов. Различают конститутивные ферменты, постоянно присутствующие в клетках, и индуцируемые ферменты, биосинтез которых активируется под влиянием соответствующих субстратов. Некоторые функционально взаимосвязанные ферменты образуют в клетке структурно организованные полиферментные комплексы. Многие ферменты и ферментные комплексы прочно связаны с мембранами клетки или её органоидов (митохондрий, лизосом, микросом и т.д.) и участвуют в активном транспорте веществ через мембраны.

Известно более 20000 различных ферментов, из которых многие выделены из живых клеток и получены в индивидуальном состоянии. Первый кристаллический фермент (уреаза) выделен американским биохимиком Д. Самнером в 1926 г. Для ряда ферментов изучена последовательность аминокислот и выяснено расположение полипептидных цепей в трёхмерном пространстве. В лабораторных условиях осуществлен искусственный химический синтез фермента рибонуклеазы. Ферменты используют для количественного определения и получения различных веществ, для модификации молекул нуклеиновых кислот методами генной инженерии, диагностики и лечения ряда заболеваний, а также в ряде технологических процессов, применяемых в лёгкой, пищевой и фармацевтической промышленностях.

2. Продуценты ферментных препаратов

В качестве продуцентов ферментов используются культуры представителей различных таксономических групп - бактерий, актиномицетов, микроскопических и высших базидиальных грибов.

К микроорганизмам - продуцентам ферментов - предъявляются следующие требования: наличие высокой ферментативной активности; преимущественный синтез фермента или группы ферментов, превра-щающих определенный субстрат; генетическая стабильность по признаку синтеза фермента или ферментов; достаточно высокая скорость рос-та; способность расти на средах с доступными и недорогими источниками питания.

Культиви-рование продуцентов ферментов проводятся в условиях стерильности (глубинный процесс) или максимально возможного приближения к ним (твердофазный процесс).

Ферментная промышленность выпускает большой ассортимент препаратов микробного происхождения, продуцентами которых являются представители различных таксономических групп Большая часть валового количества ферментов, особенно гидролитических, производят на основе культивирования бацилл (прежде всего B. subtilis), микроскопических грибов pодов Aspergillus, Penicillium, Trichoderma, а также актиномицетов pодов Acyinomices, Streptomices. Чаще всего используют мезофильные штаммы аэробных микроорганизмов.

Преобладающим способом культивирования является глубинный, основанный на выращивании продуцентов в стерильных жидких средах с принудительной аэрацией (для аэробных форм) и перемешиванием среды, при автоматическом регулировании параметров процесса, таких как температура, рН среды, ее редокс-потенциал, концентрация растворенного кислорода и пр.

Наряду с глубинным применяется твердофазный способ культивирования, когда культуры продуцентов выращивают на увлажненных и простерилизованных твердых средах, таких как отруби, свекловичный жом, измельченное целлюлозосодержащее сырье, солодовые ростки и др. Твердофазное культивирование сложнее регулировать, чем глубинный процесс. Преимуществом твердофазного процесса является то, что условия культивирования максимально приближены к естественным, в которых полностью реализуется биопотенциал микроорганизмов.

Твердофазная культура хорошо аэрируется. В конце ферментации получают культуру в форме, удобной для выделения ферментных препаратов.

Глубинное культивирование используется как для аэробных, так и для анаэробных продуцентов, твердофазное - только для аэробных, именно для микроскопических и высших базидальных грибов.

Культура микроорганизмов, выращенная поверхностным способом, и культуральная жидкость после глубинного культивирования содержат большое количество балластных веществ. Выделение и очистка ферментов - трудоёмкий и дорогостоящий процесс поэтому, если ферментный препарат можно использовать в виде неочищенной культуры микроорганизмов, его очистку не проводят. В таких отраслях, как спиртовая и кожевенная, целесообразнее использовать именно неочищенную культуру микроорганизма; то же самое можно сказать и об использовании культур микроорганизмов в сельском хозяйстве при приготовлении комбикормов и при непосредственной обработке кормов на фермах.

3. Технология

Принципиальная схема получения ферментных препаратов глубинным способом

Обобщённая схема производства ферментных препаратов при глубинном способе культивирования производственной культуры продуцента. Условно можно выделить три этапа: подготовительный этап (стерилизация оборудования, приготовление среды для культивирования, её стерилизация, подготовка культуры продуцента, инокулирование среды, очистка воздуха), этап получения производственной культуры (ферментация) и получение ферментных препаратов с заданными характеристиками.

При сравнении производств ферментативных препаратов, получаемых глубинным способ культивирования, можно отметить, что схемы отличаются в основном на первом и завершающем этапах. Это связано с использованием различных продуцентов и требуемыми качествами ферментативных препаратов. Также можно отметить различные пути использования нерастворимых остатков после этапа производственного культивирования. Он может использоваться для получения биошрота, поступать на культивирование в качестве инокулята или, после соответствующей обработки, входить в состав среды.

Глубинное культивирование микроорганизмов

Этот способ имеет ряд очевидных преимуществ перед поверхностным, так как позволяет значительно сократить производственные площади, исключить тяжелый непроизводительный ручной труд, улучшить гигиену труда, упрощает механизацию и автоматизацию производства, делает возможным переход на непрерывный способ культивирования. При глубинном способе культивирования более рационально используются питательные вещества сред, что дает возможность значительно сократить отходы производства в виде нерастворимых осадков твердой питательной среды, получать препараты ферментов с меньшим содержанием примесей и большей удельной активностью.

Глубинное культивирование проводят в вертикальных емкостях различного размера, называемых ферментаторами. Основное требование к ферментатору - возможность проведения процесса культивирования продуцента в асептических условиях при интенсивном аэрировании среды. В процессе культивирования приходится иметь дело со сложной трехфазной системой жидкость - твердая взвесь - газ. В такой системе затруднены массообменные процессы, и поэтому усложняется аппаратурное оформление всей стадии выращивания.

Существующие промышленные ферментаторы по способу подвода энергии на аэрирование и перемешивание можно подразделить на три группы: аппараты с механическим перемешиванием и барботажем (комбинированные); с эжекционной системой аэрирования (подвод энергии к жидкой фазе) и барботажные (подвод энергии к газовой фазе). Для ферментной промышленности наибольший интерес представляет первая группа аппаратов, предназначенная для асептических процессов. Эти аппараты в основном имеют цилиндрическую форму и отличаются по объему, конструкции отбойников, перемешивающих устройств, уплотнений вращающегося вала и теплообменным устройствам. Максимальный объем ферментаторов с механическим перемешиванием и пеногашением составляет 2000 м3. Фирма «Хемап» располагает внедрёнными разработками герметичных ферментаторов вместимостью до 360 - 400 м3. Из отечественных аппаратов наиболее широко используются герметизированные ферментаторы вместимостью 50 м3 и вместимостью 100 м3 с механическим перемешиванием и барботажем воздуха. Кроме этих двух ферментаторов на многих ферментных предприятиях работают аппараты вместимостью 63 м3 производства ГДР.

Аппараты рассчитаны для работы под избыточным давлением 0,25 МПа и стерилизации при температуре 130 - 140 °С. Во избежание инфицирования культуры предусмотрены торцовые уплотнения вала перемешивающего устройства с паровой защитой. Торцовые уплотнения позволяют практически полностью предотвратить утечку среды или попадание воздуха в полость аппарата в месте выхода из него вала, что очень важно для обеспечения асептических условий процесса.

Важным фактором с точки зрения асептики процесса культивирования продуцента является правильная обвязка ферментатора. Под обвязкой подразумевают подвод всех коммуникаций с учетом возможности стерилизации острым паром участков, которые могут явиться источником заражения.

Анализ монтажных схем показывает, что они обычно состоят из типовых элементов. Рассмотрим одну из монтажных схем с нижним спуском среды, применяемых в самых различных микробиологических производствах. Ее характерной особенностью является установление термических затворов 3 и 5 для предупреждения проникновения посторонней микрофлоры в аппарат по коммуникациям через неплотности в уплотнениях «седло - клапан» запорной арматуры. В материальные трубопроводы, непосредственно соединенные с внутренней полостью аппарата, постоянно подается пар, а образующаяся пароконденсатная смесь отводится в канализацию или специальное устройство (при наличии открытых трубных окончаний). Как показывает опыт микробиологических производств, такие термические затворы обеспечивают весьма эффективную защиту аппаратов и коммуникаций от инфицирования.

В монтажных схемах должен предусматриваться свободный доступ пара во все точки стерилизуемых внутренних полостей аппаратов, трубопроводов и запорной арматуры, что обеспечивает достижение и поддержание требуемой температуры стерилизации. Однако на практике часто одно и то же монтажное оформление коммуникаций и запорной арматуры различного диаметра не обеспечивает равного стерилизующего эффекта. Например, в запорной арматуре и штуцерах малого диаметра требуемой степени стерильности достичь труднее. Ещё большие трудности возникают при термической стерилизации открытых трубных окончаний (пробник 4, штуцер для введения посевного материала 1 трубопровод для удаления отработавшего технологического воздуха 2 ). Открытые трубные окончания коммуникаций и узлов монтажных схем не позволяют создать в них давление, необходимое для эффективной стерилизации. Использование резиновых шлангов для подключения бутылей и колб с посевным материалом, пробоотборников и ёмкостей с жидкими добавками ещё больше затрудняет процесс стерилизации.

К открытым трубным окончаниям относятся и так называемые штуцеры для продувки коллекторного трубопровода для стерильной питательной среды, соединяющего установку непрерывной стерилизации питательной среды (или аппарат периодического действия) с ферментаторами. Такая схема коммуникации предусматривает подачу острого пара в линию в течение времени, гарантирующего стерилизуемость коллекторов питательной среды.

В процессе культивирования ведётся постоянный контроль за уровнем пены, накоплением ферментов, состоянием биомассы продуцента, рН среды, потреблением некоторых составляющих среды и т. д. По окончании культивирования культуральная жидкость подаётся либо непосредственно в производство, где она используется (спиртовое, пивоваренное, производство глюкозы и т. д.), либо на отделение жидкой фазы от биомассы и твёрдых нерастворимых частиц среды с целью использования фильтрата культуральной жидкости. В некоторых случаях биомасса продуцента поступает на получение ферментных препаратов различной степени очистки.

Последовательность процесса получения культуры микроорганизма является общей как для поверхностного, так и для глубинного способа культивирования. Она включает стадии приготовления посевного материала, приготовления питательной среды, её стерилизации, охлаждения, засева посевным материалом и выращивания. Однако в зависимости от способа культивирования аппаратурное оформление технологической схемы существенно различается.

Технологические схемы глубинного культивирования аэробных и анаэробных микроорганизмов почти не отличаются одна от другой, за исключением того, что в схемах культивирования анаэробных микроорганизмов исключается стадия подготовки воздуха и используются ферментаторы без аэрирующих и перемешивающих устройств.

Из циклона 1 с помощью трубоконвейера 2 они поступают в бункера 3 ,а из них по трубоконвейеру 4 - на автоматические весы 5 . Если требуется ввести в состав среды соли или какие-то иные компоненты в небольшом количестве, то они поступают в шнек 6 ,транспортирующий сыпучие материалы в норию 7 . Из нории компоненты среды поступают в смеситель 8 для приготовления производственной питательной среды. Сюда же поступают вода и жидкие компоненты через соответствующие дозирующие и мерные устройства.

Для растворения солей и клейстеризации крахмала среду подогревают. Подготовленная подогретая среда с помощью насоса 30 поступает в нагреватель 22системы непрерывной стерилизации питательной среды и затем подается в спиральный теплообменник 23 для выдерживания при температуре 140 °С. Стерильная питательная среда охлаждается в теплообменнике 24 и направляется в чистый стерильным ферментатор 25 ,который заполняют на 65 - 75 % в зависимости от степени пенообразования при росте культуры.

Посевной материал получают в посевном отделении. Среду для него готовят в специальной небольшой емкости 9 , нагревают, перемешивают и насосом 10направляют в инокуляторы первой 16 и второй 19 ступеней, где проводятся стерилизация, охлаждение и засев среды. Суспензия исходной культуры пересевается вначале в колбы на качалке, затем подается в инокулятор первой ступени 16 ,выращивается в нем и полностью передавливается в инокулятор второй ступени 19 со стерильной охлажденной средой. Выращенный посевной материал из инокулятора 19 передается в ферментатор 25. В процессе культивирования проводится пеногашение. Пеногаситель стерилизуют в специальном аппарате периодического действия 12 , затем охлаждается и поступает через мерник 14 в ферментатор. В процессе культивирования в инокуляторах и ферментаторе растущая культура аэрируется кондиционированным стерильным воздухом. Сжатый в компрессоре и нагретый от 80 до 220 °С воздух после удаления конденсационной влаги поступает в головной фильтр 11 , заполненный стекловатой. Далее очищенный воздух поступает в индивидуальные фильтры тонкой очистки 13 , 15 , 17 , 20 , 26 и подается для охлаждения пеногасителя и аэрирования растущей культуры в инокуляторах 16 , 19 и ферментаторе 25. Отходящий воздух из инокуляторов и ферментатора перед выбросом в атмосферу очищается в фильтрах 18 , 21 и 27 . Готовая культуральная жидкость насосом 30 или самотеком при перемешивании поступает в теплообменник 28 для охлаждения перед поступлением в сборник 29 .Необходимость охлаждения вызвана тем, что сразу всю культуральную жидкость обработать невозможно, а при длительном хранении в сборнике может произойти инактивация ферментов. Из сборника 29 охлажденная жидкость по мере необходимости подается на фильтровальную установку.

Получение ферментных препаратов из культур микроорганизмов

Культура микроорганизмов, выращенная поверхностным способом, и культуральная жидкость после глубинного культивирования содержат большое количество балластных веществ. Выделение и очистка ферментов - трудоёмкий и дорогостоящий процесс поэтому, если ферментный препарат можно использовать в виде неочищенной культуры микроорганизмов, его очистку не проводят. В таких отраслях, как спиртовая и кожевенная, целесообразнее использовать именно неочищенную культуру микроорганизма; то же самое можно сказать и об использовании культур микроорганизмов в сельском хозяйстве при приготовлении комбикормов и при непосредственной обработке кормов на фермах.

В большинстве отраслей пищевой промышленности (хлебопекарной, пивоварении, виноделии, сыроделии, крахмало-паточном и сокоэкстрактном производствах), а также в текстильной, меховой, микробиологической промышленности и особенно медицине можно использовать только очищенные препараты ферментов, частично или полностью освобожденные от балластных веществ.

Исходным материалом для получения очищенных ферментных препаратов может служить фильтрат культуральной жидкости, реже - биомасса продуцента или водный экстракт из поверхностной культуры продуцента. Ферментные препараты могут быть получены в виде порошков или жидких концентратов. В процессе выделения происходит повышение доли активного белка в общей массе препарата, т. е. увеличивается его удельная активность.Например, в таблице 1 показаны стадии очистки от сопутствующих ферментов и балластных веществ культуры Endomycopsis sp. 20-9. Анализ таблицы 1 показывает, что чистота глюкоамилазы в препарате возросла в 37 раз, в препарате отсутствует гликозилтрансфераза, а б-амилазная активность может быть отнесена за счёт действия глюкоамилазы, так как использовался колориметрический метод определения активности б-амилазы.

Принципиальная схема получения ферментных препаратов

Схема очистки фермента от балластных веществ сводится к освобождению его от нерастворимых веществ, сопутствующих растворимых веществ и других ферментов. Процессы получения очищенных препаратов из поверхностных и глубинных культур несколько различны. Из поверхностных культур труднее получить высокоочищенные препараты из-за большого количества балластных веществ. Из глубинных культур получить очищенные препараты несколько легче, но при этом приходится вести выделение из разбавленных растворов, если выделение ферментов проводится из жидкой части культуры. Выделение осложняется, если фермент внутриклеточный, и тогда необходимо разрушать клетки микроорганизмов.

Принципиальную схему выделения и очистки ферментов из глубинных и поверхностных культур микроорганизмов можно представить в виде следующей схемы.

Из схемы ясно, что экстракт из поверхностной культуры или фильтрат культуральной жидкости является исходным материалом для получения препаратов ферментов различной степени очистки. На первом этапе выделения отходом процесса является нерастворимая часть культуры - биошрот, содержащий нерастворимые включения среды и биомассу продуцента.

Таблица 1 -

Стадии очистки

Объём, мл

Общее количество белка, мг

Глюкоамилаэная активность

Амилолитическая активность

Трансглюкоэидазиая активность*

общая, ед.

удельная, ед./мг белка

выход,%

степень очистки

общая, ел.

выход,%

Исходная культуральная жидкость

1 200

13 600

28 500

2,1

100

1

9 500

100

Глюкоза,изомальтоза,

Отделение биомассы, концентрирование, отделение

560

11 100

25 600

2,3

90

1,1

8 500

89

То же

Осаждение ацетоном, растворение в воде

350

2 040

19 800

9,7

69,5

4,6

1 050

11,3

»

Ультрафильтрация

55

1 610

18 200

11,3

64

5,4

860

9,1

»

Хроматография на ДЭАЭ-целлюлозе

555

298

15 000

50,4

52,5

24,5

30

0,35

Нет

Ультрафильтрация

16

250

13 450

54

47,2

25,7

27,5

0,29

»

Гельфильтрование через акрилекс П-100

100

140

11 400

76,5

40,35

36,5

22,8

0,24

»

Обессоливание, лиофилизация

0,1**

92

7 150

77

25

37

14,3

0,15

»

*, ** Характеризуется хроматографически по наличию изосахаров. Выряжено в г.

Далее в зависимости от свойств выделяемого фермента и сопутствующего ему балласта схема очистки и получения ферментного препарата может включать различные приемы и методы, такие, как концентрирование, диализ, осаждение органическими растворителями, солями, гель-фильтрование, афинная хроматография, иммобилизация, сушка термолабильных материалов и т. д. Поэтому рассмотрим этапы получения ферментных препаратов.

Технологическая схема получения очищенных ферментных препаратов

Схемы получения ферментных препаратов зависят от свойств выделяемого фермента и методов очистки, примененных для получения препарата нужной степени чистоты. В качестве примера рассмотрим технологическую схему получения препаратов из поверхностной и глубинной культур в виде жидких концентратов, сухих технических препаратов, получаемых сушкой распылением, и препаратов, осажденных органическими растворителями (рис. 2).

Фильтрат охлажденной культуральной жидкости собирается в основном сборнике и по мере надобности передается в сборник небольшой вместимости перед поступлением в подогреватель вакуум-выпарной установки пленочного типа. Концентрат культуральной жидкости с содержанием сухого вещества 6 - 10 % поступает в сборник концентрата. Для получения сухого технического препарата концентрат направляют в башню распылительной сушилки 8. Сухой препарат через циклон 10 ,бункер 11 и шнек 12 попадает на стадию стандартизации, фасования и упаковывания.

Рис. 2. Принципиальная технологическая схема получения очищенных препаратов из культур микроорганизмов, выращенных глубинным и поверхностным способами:

1 - сборник фильтрата культуральной жидкости; 2 - подогреватель вакуум-выпарной установки; 3 - сборник экстракта поверхностной культуры; 4 -конденсатор; 5 - сборник конденсата; 6 - вакуум-выпарной аппарат; 7 - сборник концентрата; 8 - распылительная сушилка; 9 - теплообменники; 10 - циклон;11 - бункер для высушенного препарата; 12 - шнек; 13 - фильтр рукавный; 14 - осадитель; 15 - дозаторы; 16 - сепаратор; 17 - насос для спирта; 18 - мерник дляспирта; 19 - смеситель промывки осадка спиртом: 20 - центрифуга; 21 - вакуум-сушилка роторная; 22 - бункер для высушенного осадка; 23 . 25 - бункерадля наполнителей; 24 - бункер для сухого препарата; 26 - установки дисмембраторов; 27 , 28 - весы; 29 - смесители непрерывного действия; 30 - бункера для стандартизированного препарата; 31 - установки для фасования и упаковывания препаратов; 32 - установка для экстракции ферментов; 33 - сушилка для биошрота; 34 - резервуар для воды; 35 - стерилизационная установка для сточных вод; 36 - охлаждающий теплообменник; 37 - фасование и упаковывание жидкогопрепарата Г2х или П2х.

Для получения более очищенного препарата концентрат из сборника подается на осаждение органическим растворителем. Предварительно концентрат охлаждают в теплообменнике до температуры 2 - 3 °С и подают через дозатор в осадитель. Одновременно в осадитель дозируется охлажденный растворитель. Образовавшийся осадок отделяют на сепараторе 16. Надосадочную жидкость направляют на регенерацию, а осадок - на промывку спиртом и повторное сепарирование. Промытый осадок высушивают в вакууме, измельчают, взвешивают, смешивают с наполнителем и направляют на фасование и упаковывание.

При получении ферментных препаратов из культур микроорганизмов, выращенных поверхностным способом, процесс очистки начинается с экстракции ферментов водой. Нерастворимый осадок высушивают и в виде сухого биошрота утилизируют на корм скоту.

Экстракт с содержанием сухого вещества 7 - 14 % при получении из него сухих препаратов не нуждается в дополнительном концентрировании и поэтому может быть сразу направлен на распылительную сушку с целью получения технического препарата, или же экстракт направляется в охладитель, а затем на осаждение органическими растворителями или солевыми растворами. Из экстракта можно получать стабильный жидкий концентрат с содержанием сухого вещества 50%, для чего экстракт направляют в сборник, затем в подогреватель и на вакуум-выпарную установку. Готовый жидкий концентрат фасуют в специальные емкости и направляют на склад готовой продукции. Из глубинной культуры можно также получать жидкие концентраты, например, методом ультрафильтрации.

Существуют многочисленные схемы получения ферментных препаратов различной степени очистки, вплоть до кристаллических и гомогенных препаратов. Такие схемы, созданные в различных странах мира, в большинстве своём очень сложны и сочетают в себе самые различные комбинации технологических приёмов. Поэтому давать какие-то общие рекомендации крайне трудно, и в каждом конкретном случае необходимо проводить кропотливые исследования на всех стадиях выделения фермента из данной культуры продуцента. Только в результате такой работы можно придти к практическим рекомендациям, которые будут справедливы только для данного фермента, данной культуры микроорганизма и для данной среды.

Получение неочищенных ферментных препаратов

Неочищенные ферментные препараты представляют собой культуру микроорганизма вместе с остатками питательной среды, высушенную при мягком режиме до влажности не более 8 - 12 %.

Неочищенный ферментный препарат может быть получен на основе поверхностной или глубинной культуры. Глубинная культура может быть перед сушкой очищена от нерастворимой части (твердая взвесь среды и биомассы продуцента) или высушена вместе с ней.

Большинство продуцентов накапливает основную часть синтезируемых ими ферментов в питательной среде. При получении очищенных ферментных препаратов нерастворимую часть среды вместе с биомассой продуцента отделяют на фильтрах, центрифугах или сепараторах.

На этой стадии стерильность процесса чаще всего нарушается.

Эффективность отделения биомассы во многом зависит не только от типов используемых аппаратов, но и от состава среды, размеров отделяемых частиц, количества нерастворимой фракции, физико-химических характеристик фильтрующих материалов, температурных режимов и т. д. Для улучшения процесса фильтрования проводят предварительную химическую обработку культуральной жидкости. Для этого культуральную жидкость подщелачивают до рН 8 - 8,5 и вводят 0,1 %-ный раствор хлористого кальция, в результате образуется гель фосфата кальция, который способствует наиболее полному отделению осадка при наименьших потерях. Но предварительная химическая обработка не всегда дает хорошие результаты, поэтому для повышения эффективности процесса часто используют различные кизельгуры, например, диатомит и радиолит (Япония), микрозил (Франция), диатомит (Бельгия), кларгель (Великобритания) и т. д. Использование этих наполнителей может резко повысить скорость фильтрования, но вместе с этим увеличиваются потери активности на этой технологической стадии.

Полученную биомассу продуцента вместе с нерастворимыми частицами среды (биошрот) при необходимости стерилизуют, высушивают и используют на корм животным. Фильтрат культуральной жидкости нестабилен, он не может храниться и должен немедленно направляться на дальнейшую обработку для получения очищенных ферментных препаратов.

Экстрагирование ферментов

Все ферменты являются водорастворимыми белками, поэтому наилучшим экстрагентом для них является вода. Для извлечения ферментов из дрожжей или бактерий необходимо подвергнуть механическому или автолитическому разрушению их клеточные стенки, обладающие высоким диффузионным сопротивлением. Оболочки мицелиальных нитей имеют меньшее диффузионное сопротивление, чем оболочки бактериальных и дрожжевых клеток, поэтому дезинтеграции культуры грибов не требуется.

Извлечение ферментов проводят как из влажных, так и из сухих поверхностных культур грибов. Сухая культура может храниться длительное время без потери активности ферментов, и из нее получают более концентрированные экстракты. Технологически это выгоднее, но при подсушивании культуры имеют место потери активности, и потому экстрагирование целесообразно вести из влажной культуры. При экстрагировании различные водорастворимые вещества извлекаются из культуры с неодинаковой скоростью, происходит их частичное фракционирование, удельная активность ферментов в экстракте повышается в 3,5 - 4 раза по сравнению с исходной культурой в результате отделения большой части веществ (до 75 %) с нерастворимым остатком - биошротом.

На полноту экстрагирования ферментов из культур оказывают влияние многие факторы: температура, рН, длительность процесса, конструктивные особенности экстракционных аппаратов, природа извлекаемого фермента, количество отобранного экстракта с единицы массы загруженной в аппарат культуры и т. д.

Одновременно с ферментами экстрагируются многие другие соединения, и часто скорость извлечения балластных веществ больше скорости экстрагирования из культуры целевого фермента. Поэтому рациональнее пойти на некоторые потери фермента и закончить экстрагирование на оптимальном значении отношения активности фермента в экстракте к сумме извлекаемых веществ. Этот вопрос решается экспериментально для каждого вида продуцента.

Влиять на процесс экстрагирования с помощью такого фактора, как температура, практически невозможно, так как ферменты очень термолабильны и инактивируются даже при 35 - 40 °С (рис. 4). Кроме того, повышение температуры до 35 - 40 °С влечет за собой увеличение содержания сухого вещества в экстракте и уменьшение удельной ферментативной активности на 1 г сухого вещества, повышение опасности инфицирования экстрактов. Поэтому при проведении экстракции в заводских условиях стремятся подавить развитие микрофлоры путем максимального снижения температуры воды до 22 - 25 °С и применения антисептиков (формалин, бензол, толуол, хлороформ и др.). В большинстве случаев ферменты наиболее полно извлекаются при рН 5 - 7.

Для получения концентрированных экстрактов при небольших потерях ферментов с биошротом необходимо применять специальные экстракционные установки. Ранее широко использовались диффузионные батареи (рис. 5). В них можно получить экстракт с содержанием сухого вещества от 7 до 14 % в зависимости от вида культуры, среды и величины отбора экстракта. Но эти установки для экстрагирования ферментов из поверхностной культуры имели сравнительно небольшую производительность, требовали больших затрат ручного труда, и в них наблюдались сравнительно большие потери активности.

Более перспективным в этом отношении является экстрактор непрерывного действия фирмы «Ниро Атомайзер» (Япония), работающий под избыточным давлением (рис. 6). Экстрактор представляет собой наклонную цилиндрическую емкость, снабженную двумя шнеками, теплообменными рубашками и насосами. Культура через дозирующее устройство 5 подается внутрь цилиндра, а с противоположной стороны вводится растворитель (вода). Экстракт выходит из установки через самоочищающийся фильтр, а биошрот удаляется с противоположного конца. В случае необходимости, если ферменты экстрагируются не полностью, можно осуществлять двухступенчатое экстрагирование, увеличивая длительность процесса. Вторичный экстракт может быть использован в качестве растворителя для первой ступени экстрагирования. Общая продолжительность экстрагирования регулируется частотой вращения шнеков. Вторичный биошрот используется как компонент среды или после обеспложивания в кормопроизводстве.

фермент контроль продуцент концентрирование

Концентрирование ферментных растворов методом вакуум-выпаривания

Экстракты из поверхностных культур микроорганизмов и фильтраты глубинной культуры являются нестабильными при хранении. Для получения готовых форм технических препаратов (П2х и Г2х) их необходимо сконцентрировать. Чаще всего для этих целей в технологии ферментных препаратов используются методы вакуум-выпаривания. Вакуум-выпаривание также применяется как один из этапов получения сухих технических или очищенных ферментных препаратов. Ферменты очень чувствительны к температуре выпаривания, поэтому основным условием концентрирования ферментных растворов является кратковременное ведение процесса при низких температурах кипения, чтобы выпариваемая жидкость не перегрелась, а ферменты не инактивировались. Следует учитывать, что чем чище раствор, чем меньше он содержит сопутствующих веществ, тем ферменты более чувствительны к воздействию высоких температур. При концентрировании экстрактов из поверхностных культур инактивация ферментов значительно меньше, так как в экстракте содержится очень большое количество защитных соединений, которые препятствуют инактивации ферментов. При концентрировании фильтратов культуральной жидкости наблюдаются несколько большие потери, поэтому ферменты культуральной жидкости стабилизируют различными соединениями (табл. 2). В процессе концентрирования ферментных растворов происходят изменение растворимости многих соединений и выпадение их осадков, и суммарное содержание сухого вещества в концентрате снижается на 11 - 20 %, изменяется рН концентрата (рис. 7). В осадок выпадают минеральные соли, некоторые органические вещества и продукты их распада, наблюдается потеря азота в результате уноса аммиака.

При концентрировании культуральной жидкости В. mesentericus значительно изменяется минеральный состав концентрата. Наиболее резко снижается содержание кальция, меди и магния, заметно уменьшается содержание цинка и марганца. Такое изменение минерального состава культуральной жидкости сказывается на стабильности ферментов в процессе концентрирования (рис. 13, б ). При сгущении культуральной жидкости до содержания сухого вещества 10 % количество кальция снижается всего на 5 %, а меди - на 75 %. Известно, например, что медь оказывает на ферменты ингибирующее действие, а кальций - стабилизирующее. Поэтому на первых стадиях концентрирования наблюдается повышение активности ферментов, особенно протеиназ. При более глубоком концентрировании вместе с резким снижением содержания кальция снижается активность ферментов.

Большинство ферментов очень чувствительно к термической обработке и нуждается в мягких режимах концентрирования. На рисунке были приведены данные по инактивации нейтральной протеиназы В. subtilis 103 в зависимости от температуры кипения раствора от 20 до 50 °С и температуры греющего пара от 90 до 120 °С. Из рисунка видно, что очень большое влияние оказывает температура теплоносителя.При низких температурах кипения (25 - 30 °С) происходит заметная инактивация ферментов (до 12 %), если температура греющего пара равна 120 °С. При температуре теплоносителя 90 - 100 °С и температуре кипения 35 - 40 °С потери активности не превышают 10 %. В зависимости от вида продуцента культуральная жидкость имеет различный химический состав и содержит различный комплекс ферментов, поэтому тепловые режимы вакуум-выпаривания уточняются экспериментальным путем.

Суммарные потери активности при вакуум-выпаривании в значительной степени зависят не только от режима концентрирования, но и от конструкции аппарата. Аппараты для стадии вакуум-выпаривания в последние годы значительно усовершенствованы, в десятки раз сокращена длительность процесса, что привело к значительному уменьшению потерь активности ферментов, а также позволило несколько ужесточить температурные режимы концентрирования ферментных растворов. Помимо трубчатых вакуум-выпарных установок с различным расположением трубой (горизонтальным, вертикальным и наклонным), со встроенной и выносной поверхностью нагрева, с использованием принудительной циркуляции созданы новые конструкции пленочных выпарных аппаратов, ультрацентробежных вакуум-выпарных установок и пластинчатых испарителей. Особый интерес представляют ротационные пленочные выпарные аппараты, где упариваемая жидкость в виде пленки движется по внутренней стенке аппарата. Лопатки, смонтированные на вращающемся роторе, непрерывно направляют движение ее сверху вниз. Время прохождения жидкости через аппарат составляет несколько секунд. В настоящее время фирма «Альфа-Лаваль» изготовляет вакуум-выпарные центробежные аппараты типа «Центритерм». Они очень компактны, время контакта ферментного раствора с обогревающей поверхностью предельно сокращено (не более 1 с), потери не превышают 10 %, производительность этих установок от 800 до 4800 л/ч.

Создана центробежная вакуум-выпарная установка пленочного типа производительностью 800 л/ч по испаренной влаге. Время контакта культуральной жидкости с теплоносителем не более 1 с, температура греющего пара 60 - 80 °С. Для увеличения производительности можно монтировать установку из трех модулей, каждый из которых работает либо автономно, либо последовательно, либо первые два модуля работают параллельно и соединены с третьим модулем последовательно. Представляет интерес для ферментной промышленности центробежная пленочного типа вакуум-выпарная установка «Единство» (Югославия) производительностью до 200 л/ч и с температурой упаривания 30 - 40 °С. Хорошие технологические показатели имеют роторные выпарные аппараты фирмы «Люва» (Швейцария), имеющие производительность по испаренной влаге от 50 до 200 л/(м2·ч). Французская фирма APV изготовляет пластинчатые вакуум-выпарные установки производительностью до 20 000 л/ч.

Несмотря на наличие высокопроизводительных вакуум-выпарных аппаратов полностью устранить недостатки метода вакуум-выпаривания не удается (потери активности, выпадение осадков и т. д.), и этот метод все больше заменяется методом ультрафильтрации.

Другие промышленные методы очистки, концентрирования и стабилизации ферментных препаратов

В ферментной промышленности для очистки белков от различных низкомолекулярных примесей (ионов солей, сахаров и т.д.) применяют мембранные методы очистки: диализ и электродиализ и баромембранные методы: обратный осмос, ультрафильтрацию, микрофильтрацию и тонкую фильтрацию.

Также используют осаждение белков органическими растворителями, высаливанием, органическими полимерами и путём избирательной денатурации; разделение белов хроматографическими методами.

Сушка ферментных препаратов имеет целью получить стабильный при хранении ферментный препарат из культуральной жидкости, её концентратов, из пастообразной массы, образующейся при высаливании, осаждении фермента спиртом или другими осадителями и т. д. Для обезвоживания ферментных растворов и осадков применяют сушку в вакуум-сушильных шкафах, распылительных и сублимационных установках. При этом возникает ряд проблем, связанных с большой термолабильностью ферментов.

Получаемые ферменты порой с целью стабилизации иммобилизуют, микрокапсулируют, гранулируют.

Микробиологический и биохимический контроль производства

Независимо от способа культивирования с момента засева продуцентом стерильной питательной среды ведется контроль за ростом культуры и образованием ферментов. Для каждого вида продуцента и способа культивироваиня устанавливается своя периодичность отбора средних проб растущей культуры. Отобранные пробы подвергаются микроскопированию и визуальному просмотру. С целью выявления возможных заражений производится периодический высев проб на агаризорованные среды с введением факторов, подавляющих рост продуцента. Постоянно ведется определение накопления в культуре ферментативной активности. При глубинном культивировании ведут контроль за потреблением основных лимитирующих компонентов среды (углеводы, N, Р), измеряют рН культуры.

Все показатели роста культуры, изменения состава среды и накопления ферментов и т. д. заносятся в лабораторный журнал.

На всех стадиях выделения ферментов проводят анализы активности, определяют величины потерь и выход товарного продукта. Готовые препараты ферментов подвергают особенно тщательному исследованию, особенно те, которые применяются в медицине и в пищевых продуктах. Препараты медицинского назначения не должны содержать микроорганизмов. Препараты для хлебопекарной, мясной и рыбной промышленности контролируют на содержание спор грибов-продуцентов и на присутствие спороносных бактерий. Споры или клетки продуцента в готовом продукте должны отсутствовать, а предельная норма обсеменённости микрофлорой определяется в каждом конкретном случае. Например, в грибных препаратах из поверхностных культур она не должна превышать 1·105 клеток на 1 г препарата. При контроле готовых препаратов на обсеменённость микроорганизмами делают высевы проб от каждой партии на твердые среды (МПА и сусло-агар) в чашки Петри. Заражение выражается количеством микроорганизмов на 1 г препарата. Контроль на зараженность спороносными бактериями проводится путем высева нагретых до 80 °С проб на чашах Петри с агаризорованной средой. Культивирование для выявления бактериального заражения ведут при 37 °С в течение 24 ч, а для грибного - при 30 °С в течение 48 - 72 ч.

В готовых препаратах определяют влажность и активность в стандартных единицах на 1 г препарата.

Технические жидкие и сухие ферментные препараты анализируют на активность ферментов, содержание сухого вещества и в зависимости от назначения на наличие микробного загрязнения. При контроле высокоочищенных препаратов помимо определения загрязненности микробами и активности ферментов проводятся анализы на содержание белка, зольных элементов, углеводов и других специфических свойств ферментов.

Кроме того, любой ферментный препарат перед промышленным производством подвергают длительной проверке в специальных медицинских учреждениях на токсичность, особенно если препарат предназначен для пищевой и медицинской промышленности. Токсичность препарата зависит от способности микроорганизма синтезировать в процессе жизнедеятельности токсины или канцерогенные вещества, а также от состава используемой для культивирования среды и способов выделения фермента. Исследования на токсичность проводят на лабораторных животных, которым вводят внутримышечно и перорально ферментные препараты в различном виде и дозировке и наблюдают реакцию организма.

Только после тщательного биологического исследования при положительных результатах дается разрешение на промышленное производство препарата и на его применение в пищевой промышленности, медицине, сельском хозяйстве и других областях.

Охрана труда и техника безопасности на предприятиях, выпускающих ферментные препараты

Инженерные мероприятия являются наиболее важными. Они призваны максимально предотвратить выход и вынос ферментных препаратов в помещения и за пределы предприятия, т. е. исключить контакт с ними человека. Известно также, что в производстве помимо самих ферментных препаратов используется ряд веществ, обладающих токсическими свойствами. Попадая в организм человека, такие вещества могут вызвать отравления и даже профессиональные заболевания.

Степень воздействия различных веществ на организм зависит от дисперсности раздражителя, его концентрации, продолжительности воздействия и путей проникновения в организм. Основными путями проникновения токсических веществ в организм являются органы дыхания (при загрязнении воздуха производственных помещений микроорганизмами - продуцентами, парами, пылью ядовитых веществ и аллергентов), пищеварительный тракт (при приеме пищи в цехе, недостаточно тщательном мытье рук перед едой), а также кожа (при загрязнении ее токсическими веществами и спорами продуцента). На предприятиях, выпускающих ферментные препараты, при использовании поверхностного способа культивирования продуцентов определенную опасность для окружающих представляет воздух заводских помещений, если он загрязнен органической пылью, содержащей отдельные компоненты питательных сред (мелкие частицы отрубей, ростков, опилок и др.), полупродукты производства (культура продуцента), готовую продукцию (мельчайшие частицы порошкообразных препаратов) и, главное, споры и конидии микроорганизмов - продуцентов ферментов. Наиболее тяжелые условия для работающих в цехе хранения и транспортирования сыпучих компонентов сред, приготовления питательных смесей и в цехах, связанных с приготовлением спорового посевного материала, транспортированием и дроблением готовой культуры, а также в производственных помещениях, где проводятся измельчение высушенных осадков ферментов и наполнителей, их смешивание и фасование готовых препаратов. При отсутствии на предприятии специальных герметизирующих устройств в местах пыления и при нарушении нормальной работы приточно-вытяжной вентиляции во всех помещениях содержание органической пыли повышается до 80 - 125 мг/м3, что отрицательно действует на здоровье работающих и может привести даже при более низких концентрациях органической пыли в воздухе к воспламенению и взрыву.

Наибольшая опасность для персонала при поверхностном способе культивирования микроорганизмов - это непосредственный контакт с культурой продуцента. Должна быть точная гарантия в том, что данный микроорганизм не патогенен и что он тщательно обследован перед передачей на производство. При работе с микроорганизмами используются индивидуальные средства защиты, не допускается вход в растильную камеру во время роста культуры, особенно на стадии спорообразования и подсушивания культуры. Отбор проб культуры должен проводиться пробоотборниками, исключающими возможность попадания культуры на кожу работающего. Нарушение правил работы, отсутствие аспирационных и герметизирующих устройств могут способствовать увеличению запыленности воздуха, а при работе с готовой культурой - повышению концентрации спор микроскопических грибов в воздухе до 104 - 105 на 1 м3, что может повлечь за собой заболевание работающих. Наиболее часто отмечаются поражения кожи и слизистых - контактный аллергический дерматит. Часто при прекращении контакта с аллергентом явления дерматита исчезают, но у некоторых лиц наблюдается явление сенсибилизации и при возобновлении работы вновь появляются признаки дерматита.

Основными мерами профилактики в производстве ферментных препаратов являются: максимальная герметизация оборудования и механизация процессов; применение индивидуальных средств защиты (комбинезоны, шлемы-капюшоны, халаты, перчатки, косынки, респираторы); ежедневный теплый душ после работы, обеспыливание, стерилизация рабочей одежды; мытье рук и полоскание рта перед приемом пищи; ежегодные медицинские осмотры; прием во время работы молочного колибактерина или молока. К работе на предприятиях ферментной промышленности нельзя допускать лиц с заболеваниями почек, печени, желудочно-кишечного тракта, легких, а также склонных к кожным болезням.

...

Подобные документы

  • Краткая характеристика процесса пищеварения, виды и причины нарушений. Основы дифференцированного применения ферментных препаратов. Краткая фармакологическая характеристика, клинические особенности применения, переносимость ферментных препаратов.

    реферат [43,2 K], добавлен 12.05.2012

  • Определение понятия и свойств ферментов. Рассмотрение примеров использования в медицине ферментных препаратов. Исследование принципов энзимодиагностики, измерения разных веществ в крови. Нарушения обмена веществ в основе наследственных энзимопатий.

    презентация [1,5 M], добавлен 21.04.2015

  • Молекулярно-биохимические основы терапевтического действия пептидных препаратов. Механизм действия нейропротекторов. Молекулярный механизм действия актовегина, нимодипина. Ферментные и неферментные антиоксиданты. Общие принципы действия ноотропов.

    курсовая работа [500,3 K], добавлен 23.11.2010

  • Препараты метаболического действия. Ноотропные и нормотимические средства: классификация, методы получения. Механизм биологической активности. Нейротрансмиттеры и связанные с ними теории. Медицинские показания применения ноотропных препаратов.

    курсовая работа [170,6 K], добавлен 28.01.2008

  • Антибиотики - самый большой класс фармацевтических соединений. Наиболее распространенные с коммерческой точки зрения соединения, их принцип получения. Использование ферментных препаратов типа "контейнер". Антидепрессивное воздействие зеленого чая.

    презентация [295,6 K], добавлен 04.12.2011

  • Понятие мультиисточниковых препаратов и их значение на отечественном фармацевтическом рынке. Качество, безопасность воспроизведенных лекарственных средств. Денежные расходы на их производство. Различие в эффективности дженериков и оригинальных препаратов.

    курсовая работа [33,4 K], добавлен 13.05.2013

  • Применение водорастворимых витаминов, участие их в синтезе различных ферментов. Фармакологическое действие рибофлавина, пиридоксина гидрохлорида. Препараты жирорастворимых витаминов. Употребление препаратов витамина К в лечебных и профилактических целях.

    презентация [7,7 M], добавлен 13.02.2017

  • Типология иммунобиологических препаратов, механизм действия эубиотиков, фагов, сыворотки и иммуномодуляторов. Способы получения живых и неживых, синтетических и полусинтетических, ассоциированных вакцин. Массовые способы вакцинации и ее эффективность.

    реферат [30,7 K], добавлен 10.06.2011

  • Классификация психотропных препаратов стимулирующего действия. Основные клинические эффекты психостимуляторов, показания для их применения. Характеристика, классификация и применение антидепрессантов, аналептиков, общетонизирующих и ноотропных препаратов.

    презентация [639,0 K], добавлен 02.04.2015

  • Аппаратурная схема производства. Конструкция вакуум выпарных установок с прямо- и противоточным конденсаторами смешения, пенного испарителя, устройства роторно-пленочного выпарного аппарата с выносным кипятильником и жестко закрепленными лопастями.

    презентация [2,3 M], добавлен 30.10.2014

  • Исследование группы сульфаниламидов: препаратов для системного применения, препаратов, действующих в просвете кишечника, препараты для наружного применения. Анализ группы хинолонов, фторхинолонов, нитрофуранов: механизм действия, спектр активности.

    презентация [472,5 K], добавлен 17.04.2019

  • Лекарственные средства для коррекции нарушений функций репродуктивной системы. Препараты женских и мужских половых гормонов и их синтетические аналоги. Классификация препаратов половых гормонов. Форма выпуска и механизм действия гормональных препаратов.

    презентация [271,1 K], добавлен 15.03.2015

  • Группа противотуберкулёзных препаратов, спектр их активности и лекарственное взаимодействие. Различия препаратов I и II ряда, комбинированные препараты. Инфекции, передающиеся половым путем, основные принципы их лечения. Выбор препаратов от сифилиса.

    презентация [768,7 K], добавлен 20.10.2013

  • Понятие и особенности классификации радиоактивных препаратов на открытые и закрытые. Список используемых радиоизотопов и история их практического применения. Сферы использования радиоактивного излучения, медицинские и удивительные бытовые аппараты.

    реферат [13,1 K], добавлен 12.05.2014

  • Патогенез инфаркта миокарда. Сущность ферментов вообще и их роль в организме. Значение ферментов в диагностике инфаркта миокарда. Описание ферментов, используемых при диагностике инфаркта миокарда: тропонин I и Т, общая креатинкиназа, изофермент ЛДГ-1.

    реферат [49,0 K], добавлен 12.10.2010

  • Основные группы органопрепаратов. Измельчение, обезжиривание, экстрагирование. Технологическая схема производства препаратов. Поверхностные и глубокие методы очистки. Проблема прионовых инфекций. Схема комплексной переработки поджелудочной железы.

    презентация [846,2 K], добавлен 29.10.2013

  • Дерматомикозы (Dermatomykoses) как группа заболеваний кожи и ее придатков, вызванных внедрением в нее грибов. Симптомы, описание клинических признаков заболеваний, препараты для лечения ряда грибковых заболеваний. Описание противогрибковых препаратов.

    лекция [64,8 K], добавлен 27.11.2009

  • История возникновения психотропных препаратов как класса лекарственных средств, характеристика их основных групп: транквилизаторы, седативные препараты и снотворные; гетероциклические антидепрессанты; ингибиторы моноаминоксидазы; препараты лития.

    реферат [27,0 K], добавлен 28.11.2012

  • Общая характеристика диагностических препаратов. Диагностические сыворотки и технология их приготовления: агглютинирующие, преципитирующие, антитоксические сыворотки. Антигены-диагностикумы и их контроль. Бактериофаги, аллергены, моноклональные антитела.

    курсовая работа [912,0 K], добавлен 20.12.2010

  • Антибиотики как вещества природного, полусинтетического происхождения, подавляющие рост живых клеток. Механизм действия и токсическое влияние актериостатических препаратов широкого спектра. Применение противогрибковых средств и противовирусных препаратов.

    презентация [1,1 M], добавлен 16.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.