Гормоны и адаптивные реакции организма

Механизм действия стероидных (жирорастворимых) гормонов. Клеточные механизмы действия антидиуретического гормона. Система ренин-ангиотензин-альдостерон. Процесс траспортировки глюкокортикоидов крови с помощью кортикостероид-связывающего глобулина.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 24.06.2015
Размер файла 33,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Государственное бюджетное образовательное учреждение

высшего профессионального образования

«Курский государственный медицинский университет»

Министерства здравоохранения Российской Федерации

Кафедра микробиологии, вирусологии, иммунологии

РЕФЕРАТ

На тему: «Гормоны и адаптивные реакции организма»

Выполнил: студент 2 курса

лечебного факультета 25 группы

Соловьев В.Ю.

Проверила: Васютина Ю.А

Курск 2015

Содержание

Введение

1. Механизм действия стероидных (жирорастворимых) гормонов

2. Вторичные посредники

3. цАМФ

4. Гормон роста (соматотропин)

5. Тиреоидные гормоны (Т3 - Т4)

6. Вазопресин (АДГ)

7. Система ренин-ангиотензин-альдостерон

8. Глюкокортикоиды

9. Организм и внешняя среда. Адаптация

Список литературы

гормон стероидный кровь

Введение

Гормоны - это продукты внутренней секреции, которые вырабатываются специальными железами или отдельными клетками, выделяются в кровь и разносятся по всему организму в норме вызывая определенный биологический эффект.

Сами гормоны непосредственно не влияют на какие-либо реакции клетки. Только связавшись с определенным, свойственным только ему рецептором вызывается определенная реакция.

Гормоны имеют различную химическую структуру. Это приводит к тому, что они имеют разные физические свойства. Гормоны разделяют на водо- и жирорастворимые. Принадлежность к какому-то из этих классов обуславливает их механизм действия. Это объясняется тем, что жирорастворимые гормоны могут спокойно проникать через клеточную мембрану, которая состоит преимущественно из бислоя липидов, а водорастворимые этого не могут. В связи с этим рецепторы(Р) для водо- и жирорастворимых гормонов имеют различное место локализации (мембрана и цитоплазма). Связавшись с мембранным рецептором гормон вызывает каскад реакций в самой клетке, но никак не влияет на генетический материал. Комплекс цитоплазматического Р и гормона может воздействовать на ядерные рецепторы и вызывать изменения в генетическом аппарате, что ведет к синтезу новых белков. Рассмотрим это поподробнее.

1. Механизм действия стероидных (жирорастворимых) гормонов

Проникновение стероида (С) в клетку

II. Образование комплекса СР

Все Р стероидных гормонов представляют собой глобулярные белки примерно одинакового размера, с очень высоким сродством связывающие гормоны

III. Трансформация СР в форму, способную связываться ядерными акцепторами [СР]

Любая клетка содержит всю генетическую информацию. Однако при специализации клетки большая часть ДНК лишается возможности быть матрицей для синтеза иРНК. Это достигается путем сворачивания вокруг белков гистонов, что ведет к препятствию транскрипции. В связи с этим генетический материал клетки можно разделить на ДНК 3-х видов:

1.транскрипционно неактивная

2.постоянно экспрессируемая

3.индуцируемая гормонами или другими сигнальными молекулами.

IV. Связывание [СР] с хроматиновым акцептором

Следует отметить, что этот этап действия С полностью не изучен и имеет ряд спорных моментов. Считается что [СР] взаимодействует со специфическими участками ДНК так, что это дает возможность РНК-полимеразе вступить в контакт к определенным доменам ДНК.

Интересным является опыт, который показал, что период полужизни иРНК при стимуляции гормоном увеличивается. Это приводит к многим противоречиям: становится непонятно * увеличение количества иРНК свидетельствует, о том что [СР] повышает скорость транскрипции или увеличивает период полужизни иРНК; в то же время увеличение полужизни иРНК объясняется наличием большого числа рибосом в гормон-стимулированной клетке, которые стабилизируют иРНК или другим действием [СР] неизвестным для нас на сегодняшний момент.

V. Избирательная инициация транскрипции специфических иРНК; координированный синтез тРНК и рРНК

Можно полагать, что основной эффект [СР] состоит в разрыхлении конденсированного хроматина, что ведет к открыванию доступа к нему молекул РНК-полимеразы. Повышение количества иРНК приводит к увеличению синтеза тРНК и рРНК.

VI. Процессинг первичных РНК

VII. Транспорт мРНК в цитоплазму

VIII. Синтез белка

IX. Посттрансляционная модификация белка

Однако, как показывают исследования, это основной, но не единственно возможный механизм действия гормонов. Например, андрогены и эстрогены вызывают увеличение в некоторых клетках цАМФ что дает возможность предположить, что для стероидных гормонов имеются также мембранные рецепторы. Это показывают что стероидные гормоны действуют на некоторые чувствительные клетки как водорастворимые гормоны.

2. Вторичные посредники

Пептидные гормоны, амины и нейромедиаторы в отличие от стероидов * гидрофильные соединения и не способны легко проникать через плазматическую мембрану клетки. Поэтому они взаимодействуют с расположенными на поверхности клетки мембранными рецепторами. Гормон-рецепторное взаимодействие иницирует высококоординированную биологическую реакцию, в которой могут участвовать многие клеточные компоненты, причем некоторые из них расположены на значительном расстоянии от плазматической мембраны.

цАМФ * первое соединение, которое открывший его Сазерленд назвал “вторым посредником”, потому что “первым посредником” он считал сам гормон, вызывающий внутриклеточный синтез “второго посредника”, который опосредует биологический эффект первого.

На сегодняшний день можно назвать не менее 3 типов вторичных посредников: 1)циклические нуклеотиды (цАМФ и цГМФ); 2)ионы Ca и 3)метаболиты фосфатидилинозитола.

С помощью таких систем небольшое число молекул гормона, связываясь с рецепторами, вызывает продукцию гораздо большего числа молекул второго посредника, а последние в свою очередь влияют на активность еще большего числа белковых молекул. Таким образом, происходит прогрессивная амплификация сигнала, исхдно возникающего при связывании гормона с рецептором.

3. цАМФ

Упрощенно действие гормона через цАМФ можно представить так:

1. гормон + стереоспецифический рецептор

2. активация аденилатциклазы

3. образование цАМФ

4. обеспечение цАМФ координированной реакции

Следует отметить, что рецепторы тоже являются динамическими структурами. Это означает, что их количество может или снижаться или повышаться. Например у людей с увеличенной массой тела уменьшается количество рецепторов инсулина. Опыты показали, что при нормализации их массы замечается увеличение количества рецепторов до нормального уровня. Иными словами, при повышении или снижении концентрации инсулина имеют место реципрокные изменения концентрации рецепторов. Считается, что это явление может защитить клетку от слишком интенсивной стимуляции при неадекватно высоком уровне гормона.

2.Активация аденилатциклазы (А) тоже является регулируемым процессом. Ранее считалось, что гормон (Г), связываясь с рецептором (Р), изменяет его конформацию, что приводит к активированию А. Однако оказалось, что А, является аллостерическим ферментом, который активируется под действием ГТФ. ГТФ переносит специальный белок (трансдуктор) G. В связи с этим была принята модель , описывающая не только активацию А, но и терминацию этого процесса

а) Г + Р + G*ГДФ * Г*Р*G + ГДФ

б) Г*Р*G + ГТФ * Г + Р + G*ГТФ

в) G*ГТФ + А * *цАМФ + G*ГДФ

Таким образом, “выключающим” систему сигналом служит гидролиз ГТФ. Для возобновления цикла ГДФ должен отсоединиться от G, что происходит при связывании гормона с Р.

Некоторые факторы оказывают ингибирующее действие на А и вызывают снижение концентрации цАМФ. Примерами агонистов стимулирующих циклазу, могут служить глюкагон, АДГ, ЛГ, ФСГ, ТТГ и АКТГ. К факторам ингибирующим циклазу, относятся опиоиды, соматостатин, ангиотензин II и ацетилхолин. Адреналин может как стимулировать (через *-рецепторы), так и ингибировать (через *-рецепторы) данный фермент. Возникает вопрос каким же образом осуществляется двунаправленная регуляция А. Оказалось, что ингибирующая система включает в себя трехмерный белок, чрезвычайно похожий на приведенный выше G-белок. Эффект Gи может быть описан следующим образом:

а) Г + Р + Gи*ГДФ * Г*Р* Gи + ГДФ

б) Г*Р*Gи + ГТФ * Г + Р + Gи*ГТФ

в) Gи*ГТФ + А * *цАМФ + Gи*ГДФ

После фосфорилирования белков-ферментов в ходе выше описанных реакций изменяется их конформация. Следовательно изменяется и конформация их активного центра, что ведет к их активированию или ингибированию. Получается, что благодаря вторичному посреднику цАМФ в клетке активируются или ингибируется действие специфичных для нее ферментов, что вызывает определенный биологический эффект свойственный для этой клетки. В связи с этим несмотря на большое количество ферментов, которые действуют через вторичный посредник цАМФ, в клетке возникает определенный, специфический ответ.

Кальмодулин

Эффект кальмодулина очень похож на эффект цАМФ. В клетке по мере дифференцировки образуется набор Са2+-кальмодулин-чувствительных белков. Кальмодулин активирует ферменты связываясь с ними и изменяя их конформацию. В то же время кальмодулин сам является аллостерическим белком, который проявляет свои биологические свойства только в связанном с ионами Са виде.

Комплекс кальмодулина с Са может изменять активность белков одним из двух способов:

1) путем пряиого воздействия на фермент-мишень

2) через активируемую этим комплексом протеинкиназу

Взаимодействие вторых посредников

Фосфатидилинозитол также запускает кальмодулин. В то же время кальмодулин как и цАМФ активируют белки-ферменты благодаря чему вызывается биологический эффект. Даже среди 3 известных на сегодняшний день типов вторичных посредников мы видим тесное взаимодействие.

Рассмотрим взаимодействие кальмодулина и цАМФ. Большое разнообразие набора кальмодулиновых белков в клетке ведет к различному действию на цАМФ в разных клетках организма. В одном случае кальмодулин активирует фосфодиэстеразу (см. рис.1) что приводит к ингибированию эффекта цАМФ. В другом случае он активирует аденилатциклазу, в третьем ингибирует. В связи с таким разнообразием эффектов Расмуссен предположил 5 различных ситуаций, в которых конечная интегральная реакция зависит от одновременного присутствия цАМФ и Са2+, действующих вместе или последовательно:

1) равноправное партнерство, когда оба посредника необходимы для полного проявления биологического эффекта

2) тот или другой посредник играет главную роль, а другой лишь облегчает его роль

3) посредники действуют последовательно, т.е. высвобождение Са повышает продукцию цАМФ (активирует аденилатциклазу) и дальше они действуют вместе

4) двойной контроль является излишним

5) посредники являются антагонистами, т.е выступают в роли “сигнала выключения друг друга”

4. Гормон роста (соматотропин)

Как и каждый гормон аденогипофиза соматотропин синтезируется под действием рилизинг фактора (ГР-РФ). Стимуляторами выработки ГР-РФ являются тиреоидный гормоны и глюкокортикоиды. Главным ингибитором реактивности питуицитов по отношению к ГР-РФ является соматостатин. Он стимулируется соматомединами. То есть можно сказать что соматостатин действует по методу обратной связи.

ГР-РГ стимулирует как секрецию так и синтез СТГ. Этот эффект опосредуется связыванием ГР-РФ с рецепторами плазматической мембраны соматотрофов и активацией трех систем вторичных посредников. С их помощью происходит усиленный синтез мРНК СТГ. Этот эффект действия водорастворимого гормона на ядерный аппарат клетки объясняют фосфорилированием и дефосфорилированием определенной группы протеинкиназ, которые действуют на генетический аппарат клетки. На данный момент ни одна из этих протеинкиназ не идентифицирована.

СТГ не действует прямо на клетку. Он переносится кровью в печень где превращается в соматомедины. То что СТГ не действует прямо на гормон было доказано на опыте, когда изолированную хрящевую ткань перфузировали раствором, который содержал большое количество СТГ и не наблюдали никакого ее роста. При помещении ее в нормальную сыворотку крови ее клетки росли. Потом были найдены соматомедины, которые непосредственно вызывают эффект роста.

Клеточный механизм действия СТГ на хрящевую ткань связан с эффектами соматомедина. Хотя стимуляция роста и других тканей, таких как печень и мышцы, может опосредоваться аналогичным механизмом, in vitro показано и прямое действие СТГ на мышцу. Так, подобно инсулину СТГ вызывает независимое от синтеза белка усиление транспорта глюкозы. Спустя некоторое время после добавления СТГ мышца приобретает резистентность к действию инсулина, и в этот период усиливается транспорт аминокислот, зависящий от синтеза нового белка.

Действие СТГ на печень до сих пор недостаточно изучено. Гормон стимулирует синтез белка, РНК. Это в свою очередь ведет к увеличению количества полисом. Также в конце концов он стимулирует синтез ДНК. На данный момент неизвестно, как СТГ, имеющий рецепторы на мембране может вызывать эффекты похожие на действие стероидных гормонов. Можно предположить, что он вызывает такие эффекты вызывая синтез ферментов, отвечающих за синтез нуклеиновых кислот. Это также доказывает то, что жирорастворимые гормоны включают только определенные гены, а СТГ ведет к генерализованой реакции увеличения синтеза белка на включенных генах, что ведет к росту клетки, а не к ее дифференциации.

До сих пор не вполне ясно, какие эффекты вызывает непосредственно СТГ, а какие соматомедины. Известно точно, что соматомедины действуют непосредственно на хрящевую ткань, вызывая в хондробластах:

1) стимуляцию включения SO4 в протеогликаны

2) стимуляцию включения тимидина в ДНК

3) стимуляцию синтеза РНК

4) стимуляцию синтеза белка

5. Тиреоидные гормоны (Т3 - Т4)

Пептидергические нейроны в преоптической области гипоталамуса синтезируют и выделяют в воротную систему гипофиза тиреотропин-рилизинг гормон (ТРГ). ТРГ стимулирует выработку в клетках гипофиза тиреотропного гормона (ТТГ). ТТГ представляет собой гликопротеид с молекулярной массой 29000.

ТТГ может влиять на развитие тиреоидных фолликулярных клеток, предшествующих образованию самих фолликулов в щитовидной железе. Так, было показано, что тиреоидные клетки in vitro, диспергированные с помощью протеолитических ферментов, при добавлении в среду ТТГ вновь собираются в молекулы. Это показывает, что ТТГ способствует синтезу каких-то компонентов клеточной мембраны, необходимых для распознавания друг друга.

ТТГ-рецепторный комплекс, образующийся в результате связывания ТТГ, вызывает ответные биологические реакции с помощью не менее четырех внутриклеточных посредников: цАМФ, инозитолтрифосфата, диацилглицерола и комплекса Са2+-кальмодулин. Интересно, что активация аденилатциклазы в мембранах тиреоидных клеток под действием ТТГ в основном обуславливается ингибированием Gи-белка.

Под влиянием ТТГ в клетках тиреоидных фолликулов возникают глубокие морфологические изменения. Тиреоидная клетка в высокой степени полярна: на ее апикальной поверхности имеются многочисленные микроворсинки (увеличение площади), к которым прилегают запасы коллоида в фолликуле. Базальная поверхность клетки контактирует с кровью.

Коллоид представляет собой белковый раствор богатый на остаток аминокислоты тирозина. В ходе биохимических реакций фенольный гидроксид тирозина соединяется с фенолом другого тирозина и присоединяя к себе йод образуется тетрайодтиронин, связанный пептидными связями с остатками других аминокислот. Такие белки называются тиреоглобулинами.

Под действием ТТГ в клетку поступают ионы Са, которые связываясь с кальмодулином вызывают движение лизосом из базальной части клетки к апикальной. Здесь происходит слияние лизосомы с каплей коллоидного раствора и образующаяся в результате фаголизосома движется в обратном направлении. При этом имеющийся в ней набор гидролаз разщепляет пептидные связи и образуются тироксин и трийодтиронин, которые и попадают в кровь.

Второй стадией действия ТТГ-рецепторного комплекса является выработка тиреоглобулина. В данном случае эффект ТТГ на фолликулярную клетку похож на действие СТГ. В ходе усиления синтеза РНК, повышения проникновения глюкозы в клетку синтезируется I-содержащий белок тиреоглобулин.

Тиреоидные гормоны в крови

После того как протеаза тиреоглобулина высвобождает занесенные в фолликулярном коллоиде T4 и Т3 они выходят из клетки и попадают в кровоток, где избирательно связываются с одним из нескольких белков-переносчиков. Считается, что при попадении в клетку тиреоидные гормоны диссоциируют с белком переносчиком.

Биологическое действие тиреоидных гормонов

Недостаточность и избыток тиреоидных гормонов сказывается практически на любом процессе жизнедеятельности.

В целом, чем раньше возникает дефицит гормона, тем сильнее это сказывается на ЦНС. Если такой дефицит долгое время остается без изменений, то могут наступить необратимые нарушения ЦНС. Даже возникновение гормональной недостаточности у ранее здорового взрослого человека ведет к появлению тех же симптомов психической иннертности, апатии и сонливости, которые характерны для ребенка с кретинизмом. Больной тиреотоксикозом * возбужденный, беспокойный, эмоционально лабильный. Больной гипотиреозом предпочитает теплую погоду и сильно страдает от холода; при гипертиреозе ситуация обратная. Он “чрезмерно” приспособлен к холоду и плохо переносит тепло. По существу в тепле у него не выключается механизм адаптации к холоду.

Нет такой системы органов, на которую не влиял бы дефицит или избыток тиреоидных гормонов. Поведенческие сдвиги, вызванные патологией щитовидной железы, отражают действие гормонов на ЦНС и нейромышечный аппарат.

При гипертиреозе наблюдается мышечная слабость, усиленная всасываемость глюкозы, повышение ХОК, увеличение основного объема. При гипотиреозе наоборот.

Клеточные механизмы действия тиреоидных гормонов

Механизм действия тиреоидных гормонов не укладывается в обычные схемы, разработанные для стероидных гормонов, аминов и пептидных гормонов. От аминов и пептидов тиреоидные гормоны отличаются своей растворимостью в липидах, чем напоминают стероидные гормоны.

Также необходимо проводить различие между ролью тиреоидных гормонов в процессе дифференцировки и их ролью в поддержании функций полностью дифференцированных клеток.

1. Периферическое дейодирование Т4

Биологическим эффектом обладает Т3, поэтому существуют механизмы дейодирования тироксина. Тироксин попадает в клетки гипофиза, где под действием дейодиназы происходит синтез Т3. В то же время в тканям существует два вида дейодиназ: дейодиназа наружного кольца с образованием Т3 и дейодиназа внутреннего кольца с образованием рТ3 который не соединяется с рецепторами и поэтому не вызывает иологического эффекта. Таким образом ткани сами немного регулируют действие на них тиреоидных гормонов.

2. Действие на плазматическую мембрану

Хотя при изучении тиреоидных гормонов основное влияние уделяется процессам, происходящим в клеточном ядре, все же на плазматической мембране клеток, чувствительных к тиреоидным гормонам ,обнаружены высокоаффинные участки связывания последних. Их эффектом служит стимуляция транспорта аминокислот.

3. Действие на митохондрии

В митохондриях найдены рецепторы к Т3. Установлено, что при гипотиреозе транспорт АДФ в митохондрию понижается, а при гипертиреозе увеличивается. Это ведет к изменению синтеза АТФ, что и сказывается на обмене веществ.

4. Ядро

На ядерной мембране обнаружены рецепторы тиреоидных гормонов. Доказано, что связываясь с рецепторами тиреоидные гормоны усиливают транскрипцию не всех, а определенных для данных клеток иРНК.

С учетом того, что тиреоидные гормоны действуют на увеличение транспорта аминокислот, увеличение количества АТФ, то синтез новых белков происходит достаточно быстро. Избирательная стимуляция синтеза определенных иРНК ведет к дифференциации клетки в детстве, а в зрелом возрасте в поддержании ее нормального функционирования. Этот эффект очень сильно заметен по отношению к ЦНС, потому что нарушение образования тиреоидных гормонов в первую очередь стает заметным по изменениям поведения, психики и эмоциональности.

6. Вазопресин (АДГ)

Антидиуретический гормон (АДГ) * это только один из компонентов сложного комплекса нейрональных, эндокринных и поведенческих механизмов, совместное действие которых обеспечивает гомеостаз жидкости и электролитов в организме. Однако на первой линии обороны гомеостаза располагаются АДГ, ренин-ангиотензин-альдостерон.

Между тремя механизмами поддержания постоянства жидкости, электролитов и объема (АДГ, ренин-ангиотензин-альдостероновая система, жажда и питьевое поведение) тесная связь.

Клеточные механизмы действия АДГ

АДГ влияет в основном на клетки трех типов: 1)клетки почечных канальцев 2)гладкомышечные клетки сосудов и 3)клетки печени. Влияние гормона на почки заключается в сохранении воды путем стимуляции ее реабсорбции из гипотонической мочи в дистальной части извитых канальцев и собирательных протоков. Действуя на гладкомышечные клетки кровеносных сосудов, АДГ участвует в гомеостатическом поддержании артериального давления. В печени эффект АДГ сходен с таковым глюкагона, т.е. он стимулирует гликогенолиз и глюконеогенез.

Рецепторы АДГ в почках известны как V2-рецепторы, а в кровеносных сосудах и печени как V1-рецепторы. АДГ активирует разные эффекторные системы и тем самым опосредуют разные биологические эффекты.

V2-рецепторы чувствительных к АДГ клеток почечных канальцев расположены на контрлюминальной (обращенной к крови и лимфе) поверхности канальца. В клеточной мембране они взаимодействуют с комплексом G-белок-аденилатциклаза и стимулируют образование цАМФ. Наиболее отчетливый биологический эффект повышенного уровня цАМФ регистрируется на люминальной мембране с противоположной стороны клетки. В отсутствии АДГ люминальные мембраны чувствительных клеток практически не проницаемы для воды. В результате образуется гипотоническая моча, т.е. утрачивается ион-концентрирующая способность почек. При взаимодействии АДГ с рецепторами увеличивается концентрация цАМФ, фосфорилируются какие-то невыявленные на данный момент белки, и отдельные белковые частицы перемещаются из глубины клетки к ее люминальной мембране, где собираются в агрегаты. Эти примечательные частицы придают ранее водонепроницаемой мембране способность транспортировать в клетку воду, свободную от ионов. Вода идет по градиенту концентраций в кровеносное русло. Биологический эффект в клетках почечных канальцев полноценно проходит в присутствии кальмодулина, так как для него надо перенос определенных белковых комплексов, который происходит при наличии кальмодулина, который обеспечивает транспорт частиц микротрубочками.

Реакция сосудов заключается в сокращении их гладкомышечного слоя и должна поэтому опосредоваться увеличением концентрации Са2+ в цитозоле. В реакции участвует и кальмодулин.

7. Система ренин-ангиотензин-альдостерон

Эта система тесно связана с юкстагломерулярным аппаратом почки. Главная функция юкстагломерулярного аппарата * регуляция артериального давления и объема крови. Кроме того в этот аппарат поступает информация о концентрации Na+ в канальцевой моче; нервная регуляция осуществляется симпатическими нервами через *-рецепторы. В ответ на снижение давления, объема крови и концентрации натрия выделяется ренин. Он воздействует на *2-глобулины и расщепляет их с образованием ангиотензина-1. Затем превращающий фермент, который находится в легких, отщепляет от ангиотензина 1 две терминальные аминокислоты с образованием ангиотензина 2. Этот октапептид вызывает главным образом сужение артериол. Одновременно он выступает тропным гормоном для клеток клубочковой зоны, синтезирующих и секретирующих альдостерон. Секретирующие альдостерон клетки надпочечников находятся под контролем целого комплекса факторов, в том числе концентрации электролитов в среде и уровня АКТГ. Альдостерон способствует реабсорбции натрия из клубочкового фильтрата в почечных канальцах и увеличению экскреции калия с мочой.

Задержка натрия имеет по меньшей мере два следствия: во-первых, увеличивается задержка воды и потому восстанавливается объем жидкости; во-вторых, повышенная концентрация натрия придает мышечным клеткам стенок артериол большую чувствительность к вазоактивным веществам. Эти эффекты дополняют друг друга и в конечном счете восстанавливают артериальное давление до стабильного уровня.

Стимуляторы синтеза альдостерона

Синтез и секрецию альдостерона клетками клубочковой зоны стимулируют не только ангиотензины 2 и 3, но и АКТГ, простагландин Е, высокая концентрация К+ и низкая Na+. Активация синтеза альдостерона под влиянием ангиотензинов опосредуется повышением внутриклеточной концентрации [Ca2+] и включением кругооборота полифосфатидилинозитола

Клетки клубочковой зоны реагируют и на АКТГ повышенной секрецией как альдостерона, так и кортизола. В этом случае медиаторами реакции служат цАМФ и Ca2+, но повышение [Ca2+] достигается за счет стимуляции его притока в клетку, а не мобилизации внутриклеточных запасов.

Повышение концентрации К+ тоже стимулирует синтез и секрецию альдостерона; в основе лежит деполяризация мембраны клеток клубочковой зоны и соответственно открытие зависимых от вольтажа кальциевых каналов. Деполяризация активирует и аденилатциклазную систему, что приводит к умеренному повышению уровня цАМФ.

Механизм действия альдостерона

Альдостерон оказывает 3 основных эффекта: 1)повышает реабсорбцию Na+ в почечных канальцах 2)увеличивает секрецию К+ и 3)увеличивает секрецию Н+.

Альдостерон задерживает Na+ и приводит к потере К+ не только в почках, но и в слюнных железах, дистальных отделах толстого кишечника и потовых железах.

Опыты показали, что клетки мочевого пузыря и нефрона проявляют 2 типа реакций на альдостерон. Преобладают клетки запрограмированные в основном на реабсорбцию Na+ и выведение К+. Клетки второго типа содержат фермент карбоангидразу, катализирующий реакцию

CO2 + H2O * H+ + HCO3*

и в ответ на действие альдостерона секретируют Н+. Клетки обоих типов способны отвечать на альдостерон при условии непрерывного поступления АТФ, так как под влиянием альдостерона происходит перестройка клеточной мембраны.

8. Глюкокортикоиды

Глюкокортикоиды крови транспортируются с помощью кортикостероид-связывающего глобулина.

Кортизол - основной представитель так называемых глюкокортикоидов, т.е. стероидов надпочечников, действующих преимущественно на метаболизм органических соединений.

Глюкокортикоиды прямо или опосредованно регулируют практически все физиологические и биохимические процессы. Кортизол способен изменять реактивность клеток по отношению к другим гормонам и нейромедиаторам. Для того чтоб понять биологическое действие глюкокортикоидов можно привести в пример восстановленные нарушения при введении заместительных доз глюкокортикоидов при дефиците кортизола:

1) гиперчувствительность к инсулину

2) снижение запасов гликогена в тканях

3) гипогликемия при голодании

4) недостаточную мобилизацию белков периферических тканей

5) сниженный глюконеогенез

6) ослабление реакции жировых клеток на обычные липолитические стимулы

7) отсутствие торможения секреции АКТГ по механизму обратной связи

8) гипотензию

9) снижение способности к выведению воды при водной нагрузке

10) мышечную слабость и быструю утомляемость

11) психологические и эмоциональные сдвиги

Механизм антивоспалительного эффекта глюкокортикоидов

В больших дозах глюкокортикоиды ингибируют почти все фазы воспалительного процесса. Они блокируют расширение капилляров, адгезию и миграцию лейкоцитов, секрецию гистамина и серотонина, образования кининов и т.д.

С выяснением роли простагландинов была доказана антивоспалительная роль глюкокортикоидов. Они тормозят синтез простагландинов и лейкотриенов in vivo.

Клеточный механизм действия (см. механизм действия стероидных гормонов).

9. Организм и внешняя среда. Адаптация

Целостный организм неразрывно связан с окружающей его внешней средой, и поэтому, как писал еще И. М. Сеченов, в научное определение организма должна входить и среда, влияющая на него. Физиология целостного организма изучает не только внутренние механизмы саморегуляции физиологических процессов, но и механизмы, обеспечивающие непрерывное взаимодействие и неразрывное единство организма с окружающей средой. Непременным условием и проявлением такого единства является адаптация организма к данным условиям. Однако понятие адаптации имеет и более широкий смысл и значение.

Адаптация (от лат. adaptatio -- приспособление) -- все виды врожденной и приобретенной приспособительной деятельности, которые обеспечиваются на основе физиологических процессов, про исходящих на клеточном, органном, системном и организменном уровнях. Этим термином пользуются для характеристики широкого круга приспособительных процессов: от адаптивного синтеза белков в клетке и адаптации рецепторов к длительно действующему раздражителю до социальной адаптации человека и адаптации народов к определенным климатическим условиям. На уровне организма человека под адаптацией понимают его приспособление к постоянно меняющимся условиям существования.

Организм человека адаптирован к адекватным условиям среды в результате длительной эволюции и онтогенеза, создания и совершенствования в ходе их адаптивных механизмов (адаптогенез) в ответ на выраженные и достаточно длительные изменения окружающей среды. К одним факторам внешней среды организм адаптирован полностью, к другим -- частично, к третьим -- не может адаптироваться из-за их крайней экстремальности. В этих условиях человек погибает без специальных средств жизнеобеспечения (на пример, в космосе без скафандра вне космического корабля). К менее жестким -- субэкстремальным влияниям человек может адаптироваться, однако длительное нахождение человека в субэкстремальных условиях ведет к перенапряжению адаптационных механизмов, болезням, а иногда и смерти.

Различают многие виды адаптации. Физиологической адаптацией называют достижение устойчивого уровня активности организма и его частей, при котором возможна длительная активная деятельность организма, включая трудовую активность в измененных условиях существования (в том числе социальных) и способность воспроизведения здорового потомства. Физиология исследует формирование и механизмы индивидуальной адаптации.

Различные люди с разной скоростью и полнотой адаптируются к одним и тем же условиям среды. Скорость и полнота адаптации обусловлена состоянием здоровья, эмоциональной устойчивостью, физической тренированностью, типологическими особенностями, по лом, возрастом конкретного человека.

Адаптационные реакции также делят на общие, или неспецифи¬ческие, происходящие под влиянием практически любого достаточно сильного или длительного стимула и сопровождающиеся однотип¬ными сдвигами функций организма, систем и органов в ответ на различные по характеру воздействия, и частные, или специфиче¬ские, проявляющиеся в зависимости от характера и свойств воздей¬ствующего фактора или их комплекса.

Неспецифический ответ организма на любое интенсивное воздействие на него Г. Селье назвал стрессом (напряжение, давление), а вызывающий его фактор -- стрессором. По Селье, общий адаптационный синдром как ответная реакция на стрессор включает в себя усиление деятельности гипоталамуса, гипофиза с увеличением продукции АКТГ, гипертрофию коры надпочечников, атрофию вилочковой железы, изъязвление слизистой оболочки желудка. В дальнейшем были доказаны участие в стрессорной реакции практически всего организма и ведущая роль в этом центральной нервной системы.

В общем адаптационном синдроме Г. Селье выделил три фазы изменения уровня сопротивления организма стрессору: 1) реакция тревоги, когда сопротивление снижалось; 2) фаза повышенного сопротивления; 3) фаза истощения механизмов сопротивления. В повседневной жизни встречаются все эти фазы реакций организма -- ощущение трудности перенесения сложной ситуации, «втягивание» -- привыкание к ней, затем ощущение невозможности дальнейшего нахождения в этой ситуации, острая потребность выхода из нее.

Предложены и другие классификации фаз адаптации организма человека, о которых будет сказано в соответствующих главах учебника.

Каждая реакция адаптации имеет некую «стоимость», т. е. цену адаптации, за которую «платит» организм затратой веществ, энергии, различных резервов, в том числе защитных. Истощение этих резервов приводит к фазе дизадаптации, для которой характерны состояние сдвигов гомеостаза, мобилизация вспомогательных физиологических систем, неэкономная трата энергии.

Если организм возвращается к исходным условиям, то он постепенно утрачивает приобретенную адаптацию, т. е. реадаптируется к исходным условиям. Повторная адаптация возможна. Если организм вновь окажется в неких условиях, к которым он был адаптирован. При этом в одних случаях способность к повторной адаптации может быть повышена, в других -- понижена в зависимости от истощенности или тренированности механизмов адаптации. Тренировка механизмов адаптации благоприятна для мобильности и стой кости адаптации. Готовность к адаптации и ее эффективность динамичны и зависят от многих факторов, в числе которых состояние здоровья, рациональное питание, режим сна и бодрствования, труда и отдыха, физическая активность и тренировка, закаливание, адаптирующие лекарственные средства (адаптогены), воздействие гипоксии.

Состояние стресса может быть тем фоном, на котором на организм действуют иные раздражители. Такая ситуация является типичной для повседневной жизни. Реакция на такой добавочный раздражитель может усилиться, что рассматривают как перекрестную сенсибилизацию, а может быть ослаблена -- это обозначают как перекрестная резистентность.

Добавочный раздражитель сам по себе влияет на выраженность стрессорной реакции. Так, отрицательные эффекты распространенного в нашей жизни эмоционального стресса ослабляются или снимаются интенсивной физической нагрузкой, любимым занятием, философией оптимизма и многими другими приемами.

Описанные фазы неспецифической адаптации характеризуют активность адаптационных реакций, которые должны быть дополнены еще и адаптивным поведением, целью которых является ускорение адаптации и уменьшение отрицательных влияний адаптогенных факторов.

Существует и пассивная форма адаптации по принципу «экономизации активности», которая проявляется в гипореактивности или ареактивности. Ее выражением может быть такое общее состояние организма, как сон. Физиологический сон выступает в роли экономизирующего энергетические затраты фактора, «охранительное» его значение отмечал И.П.Павлов. Известно лечебное применение раз личных видов сна.

Ареактивность может быть результатом снижения реактивности рецепторов (адаптация рецепторов), торможения центральной части рефлекторной дуги. В механизме адаптации может принять участие и эффекторный компонент, когда с помощью различных механизмов снижается интенсивность или исключаются реакции эффекторов -- органов-исполнителей.

Объективное определение адаптированности или неадаптированности человека к субэкстремальным условиям вызывает значительные затруднения. Тем не менее, об адаптированности организма человека к новым условиям свидетельствуют восстановление полноценной физической и умственной работоспособности; сохранение общей резистентности в ответ на действие дополнительного возмущающего фактора, его переносимость в субэкстремальных условиях; достаточно совершенная адаптированность к временным факторам; нормальный иммунный статус организма человека; воспроизведение здорового потомства; устойчивый (без дрейфа) уровень активности реакций и взаимодействия функциональных систем.

В субэкстремальных условиях у человека проявляются не только неспецифические, но и специфические, частные, общие реакции, направленные на адаптацию организма к конкретным условиям внешней среды. В одних случаях эти условия созданы искусственно, например специфические условия производства, в других случаях это естественные условия, например климатические.

В развитии большинства адаптации прослеживается два этапа: начальный -- «срочная» адаптация, и последующий -- «долговременная» адаптация. «Срочная» адаптационная реакция развивается сразу с началом действия стрессора на основе готовых физиологических механизмов. Например, увеличение теплопродукции в ответ на холодовое воздействие или повышение легочной вентиляции при недостатке кислорода во вдыхаемом воздухе и т. д. «Срочная» адаптация мобилизует функциональные резервы и часто в неполной мере обеспечивает адаптационный эффект.

«Долговременная» адаптационная реакция развивается посте пенно в результате длительного или многократного действия на организм факторов внешней среды. Эта адаптация происходит на основе многократной «срочной» адаптации. В итоге накопления структурных и функциональных изменений организм приобретает новое качество -- из неадаптированного превращается в адаптированный. Именно переход от «срочной» адаптации к «долговременной» делает возможной стабильную жизнь организма в новых условиях.

Адаптации значительно отличаются у разных людей скоростью и выраженностью в зависимости от индивидуальных особенностей каждого человека.

На основании результатов исследования адаптации лиц, переселяющихся в район Сибири и Крайнего Севера, выявлены следующие конституционные типы (по В. П. Казначееву): «спринтеры», «стай еры» и «миксты» (смешанный тип).

Организм «спринтера» способен осуществлять мощные физиологические реакции с высокой степенью надежности в ответ на действие значительных, но кратковременных факторов внешней среды. Высокий уровень надежности физиологических реакций может поддерживаться лишь относительно короткий срок. «Спринтеры» мало приспособлены к выдерживанию длительных и менее интенсивных нагрузок.

«Стайер» менее приспособлен к переносимости мощных кратко временных нагрузок. Однако после кратковременной перестройки его организм способен выдерживать продолжительные равномерные воздействия факторов внешней среды. Промежуточные варианты конституционных типов названы «микстами».

«Спринтеры» и «стайеры» различаются по ряду конституциональных, физиологических и биохимических показателей, а также заболеваемостью. В целом цикл адаптивной перестройки в новой экологической и климатической зоне с субэкстремальными условиями у людей длится 2--3 года. Это относительно короткий срок -- у других биологических видов эквивалентные перестройки требуют смены нескольких поколений.

Список литературы

1. Физиология человека/ Под ред. член-корр. АМН СССР Г.И.Косицкого.М.: Медицина, 1985.

2. Нормальная физиология/ Под ред. проф. А.В.Коробкова.- М.: Высшая школа,1980.

3. Нормальная физиология/ Под ред. проф. В.А.Полянцева.- М.: Медицина, 1989.

4. Руководство к практическим занятиям по физиологии/ Под ред. член-корр. АМН СССР Г.И.Косицкого и проф. В.А.Полянцева.- М.: Медицина, 1988.

5. Практикум по нормальной физиологии/ Под ред. проф. Н.А.Агаджаняна и проф. А.В.Коробкова.- М.: Высшая школа, 1983.

6. Начала физиологии. Учебник для вузов / Под ред. А.Д. Ноздрачева СПб.: Лань. 2001.

7. Физиология человека. Учебник для мед. вузов. 2-е изд. Под ред. В.М. Покровского, Г.Ф. Коротько. - М.: Медицина, 2003.

8. Фундаментальная и клиническая физиология. Учебник. Под ред. А.Г. Камкина, А.А. Каменского. М.: «Академия», 2004.

9. Нормальная физиология. Учебник для мед. вузов/ К.В. Судаков. - М. Мед. информ. агентство, 2006.

10. Нормальная физиология. Практикум. Под ред. К.В. Судакова. - М. Мед. информ. агентство, 2008.

Размещено на Allbest.ru

...

Подобные документы

  • Гормоны как продукты внутренней секреции. Стероидные гормоны, эффективность кальмодулина, гормон роста (соматотропин): его строение и синтез, воздействие на ряд систем организма. Особенности тиреоидных гормонов. Система ренин-ангиотензин-альдостерон.

    реферат [318,8 K], добавлен 07.06.2010

  • Химическое строение стероидных гормонов и их полусинтетических аналогов. Механизм фармакологического действия на клеточном уровне. Описание нестероидных и стероидных гормонов. Свойства и идентификация кортикостероидов. Лекарственные субстанции этого ряда.

    курсовая работа [506,9 K], добавлен 23.06.2014

  • Строение, номенклатура и классификация стероидных гормонов, обзор путей их биосинтеза. Ферменты, вовлечённые в биосинтез стероидных гормонов, их регуляция. Механизм действия, взаимодействие с клетками-мишенями. Особенности инактивации и катаболизма.

    презентация [4,1 M], добавлен 23.10.2016

  • Основные положения мембраннорецепторной теории действия стероидных гормонов. Биологическое действие гормонов, проявляемое через их взаимодействие с рецепторами клеток-мишеней. Механизмы передачи гормональных сигналов в клетки. Андрогены и экстрогены.

    презентация [482,9 K], добавлен 26.10.2014

  • Изучение молекулярного механизма, влияния на функцию почек (диффузия воды через стенку мочевого пузыря амфидий при неизмененных размерах пор) и действия на дистальный отдел нефрона (активизация фермента протеинкиназа) антидиуретического гормона гипофиза.

    реферат [22,7 K], добавлен 08.06.2010

  • Системы межклетосной комуникации. Механизм действия гормонов. Гормоны гипофиза, гипоталамуса, регулирующие метаболизм кальция, коры и мозгового вещества надпочечников, поджелудочной железы, желудочно-кишечного тракта. Механизм действия катехоламинов.

    учебное пособие [34,8 K], добавлен 19.07.2009

  • Гормоны как биологически активные вещества, вырабатываемые эндокринными железами. Основные свойства и механизм действия гормонов. Главные эндокринные железы. Особенности мужских и женских гормонов. Функции паращитовидных желез в организме человека.

    презентация [774,8 K], добавлен 06.02.2013

  • Определение понятия иммунного ответа организма. Пути и механизмы регуляции иммунного ответа с помощью нейромедиаторов, нейропептидов и гормонов. Основные клеточные регуляторные системы. Глюкокортикоидные гормоны и иммунологические процессы в организме.

    презентация [405,1 K], добавлен 20.05.2015

  • Реактивность - основа защитных функций организма. Причины действия патогенного фактора. Клеточные и гуморальные механизмы, обеспечивающие специфические реакции (иммунитет). Регуляция кроветворения макрофагами. Патофизиология базофилов и эозинофилов.

    презентация [1,2 M], добавлен 29.08.2013

  • Эндокринные железы, механизм действия гормонов, их регуляция. Клиника наиболее распространенных эндокринных заболеваний. Основная функция гормонов. Синтез и секреция гормонов. Влияние коры мозга на функцию эндокринных желез. Симптомы вегетоневроза.

    реферат [32,8 K], добавлен 20.01.2011

  • Понятие диабетической нефропатии и гипергликемии. Факторы риска развития патологии почек. Группы препаратов, блокирующих ренин-ангиотензиновую систему, локально-почечную активность ангиотензина. Механизмы их нефропротективного действия. Терапия статинами.

    презентация [1,0 M], добавлен 28.01.2015

  • Структура и основные элементы эндокринной системы человеческого организма, принцип их действия и степень влияния на все органы и системы организма. Характер действия гормонов, выделяемых эндокринными органами, их возможные заболевания и лечение.

    реферат [16,4 K], добавлен 04.06.2010

  • Схема выработки ренина и образования ангиотензина. Влияние этих ферментов на функцию почек и участие в распределении внутрипочечного кровотока. Характеристика кининов как эндогенных веществ, механизм их действия на почечную экскрецию натрия и воды.

    реферат [24,2 K], добавлен 09.06.2010

  • Роль почек в патогенезе ХСН. Почечные факторы вазоконстрикции, антинатрийуреза и антидиуреза при сердечной недостаточности. Хронический кардиоренальный синдром. Система предсердного натрийуретического фактора. Ренин-ангиотензин-альдостероновая система.

    курсовая работа [63,4 K], добавлен 28.04.2015

  • Альдостерон как генетический индуктор, специфика его воздействия на клетки организма, сферы применения и оценка эффективности. Натрийуретический эффект триамтерена и амилорида, их влияние на калийурез. Описание других синтетических мочегонных средств.

    реферат [24,3 K], добавлен 19.06.2010

  • Классификация и химическая природа гормонов щитовидной железы. Участие гормонов щитовидной железы в обменных процессах организма. Влияние тиреоидных гормонов на метаболические процессы организма. Проявление дефицита и избытка гормонов щитовидной железы.

    реферат [163,5 K], добавлен 03.11.2017

  • Исследование стероидных гормонов, их роль в жизнедеятельности человеческого организма (функции, которые обеспечиваются данными гормонами). Изучение хода биосинтеза эстрогенов и прогестерона - особенности развития половых гормонов у женщин и их функции.

    презентация [4,8 M], добавлен 23.10.2011

  • Механизмы клеточного и гуморального иммунитета. Резистентность организма к инфекциям. Аутоиммунные патологические реакции и развитие реакций отторжения при пересадках органов и тканей. Иммуностимуляторы и иммуносупрессоры, механизм их действия.

    реферат [17,2 K], добавлен 21.08.2011

  • Свертывающая система крови. Система фибринолиза: плазминоген и его эндогенные активаторы. Механизм действия гепарина. Показания к применению антикоагулянтов прямого и непрямого действия. Производство природного гирудина в промышленных масштабах.

    реферат [501,2 K], добавлен 09.01.2014

  • Характеристика и классификация видов гормонов. Характеристика анаболических стероидов. Механизм действия стероидов. Влияние анаболических стероидов на организм. Регуляция деятельности органов и тканей живого организма. Пептидные и белковые гормоны.

    презентация [10,9 M], добавлен 01.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.