Состав и функции крови
Функции крови как ткани внутренней среды организма. Химический состав крови. Форменные элементы крови: эритроциты, лейкоциты, тромбоциты. Строение гемоглобина, его роль в транспорте кислорода. Виды и функции белков плазмы крови. Виды анемии, их причины.
Рубрика | Медицина |
Вид | реферат |
Язык | русский |
Дата добавления | 20.10.2015 |
Размер файла | 620,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
Тюменский государственный университет
Институт биологии
Реферат
Состав и функции крови
Тюмень 2015
Введение
Кровь представляет собой жидкость красного цвета, слабо щелочной реакции, солоноватого вкуса с удельным весом 1,054-1,066. Общее количество крови у взрослого в среднем составляет около 5 л (равно по весу 1/13 веса тела). Совместно с тканевой жидкостью и лимфой она образует внутреннюю среду организма. Кровь выполняет многообразные функции. Главнейшие из них следующие:
- транспорт питательных веществ от пищеварительного тракта к тканям, местам резервных запасов от них (трофическая функция);
- транспорт конечных продуктов метаболизма из тканей к органам выделения (экскреторная функция);
- транспорт газов (кислорода и диоксида углерода из дыхательных органов к тканям и обратно; запасание кислорода (дыхательная функция);
- транспорт гормонов от желез внутренней секреции к органам (гуморальная регуляция);
- защитная функция - осуществляется за счет фагоцитарной активности лейкоцитов (клеточный иммунитет), выработки лимфоцитами антител, обезвреживающих генетически чужеродные вещества (гуморальный иммунитет);
- свертывание крови, препятствующее кровопотере;
- терморегуляторная функция - перераспределение тепла между органами, регуляция теплоотдачи через кожу;
- механическая функция - придание тургорного напряжения органам за счет прилива к ним крови; обеспечение ультрафильтрации в капиллярах капсул нефрона почек и др.;
- гомеостатическая функция - поддержание постоянства внутренней среды организма, пригодной для клеток в отношении ионного состава, концентрации водородных ионов и др.
Кровь, как жидкая ткань, обеспечивает постоянство внутренней среды организма. Биохимические показатели крови занимают особое место и очень важны как для оценки физиологического статуса организма, так и для своевременной диагностики патологических состояний. Кровь обеспечивает взаимосвязь обменных процессов, протекающих в различных органах и тканях, выполняет различные функции.
Относительное постоянство состава и свойств крови, является необходимым и обязательным условием жизнедеятельности всех тканей организма. У человека и теплокровных животных обмен веществ в клетках, между клетками и тканевой жидкостью, а также между тканями (тканевой жидкостью) и кровью происходит нормально при условии относительного постоянства внутренней среды организма (кровь, тканевая жидкость, лимфа).
При заболеваниях наблюдаются различные изменения обмена веществ в клетках и тканях и, связанные с этим изменения состава и свойств крови. По характеру этих изменений можно в известной мере судить о самой болезни.
Кровь состоит из плазмы (55-60%) и взвешенных в ней форменных элементов - эритроцитов (39-44%), лейкоцитов (1%) и тромбоцитов (0,1%). Благодаря наличию в крови белков и эритроцитов её вязкость в 4-6 раз выше вязкости воды. При стояние крови в пробирке или центрифугировании с малыми скоростями форменные элементы её осаждаются.
Самопроизвольное осаждение форменных элементов крови получило название реакции осаждения эритроцитов (РОЭ, теперь - СОЭ). Величина СОЭ (мм/час) для разных видов животных колеблется в широких пределах: если для собаки СОЭ практически совпадает с интервалом значений для человека (2-10 мм/час), то для свиньи и лошади не превышает 30 и 64 соответственно. Плазма крови, лишённая белка фибриногена, носит название сыворотки крови.
кровь плазма гемоглобин анемия
1. Химический состав крови
Что представляет собой состав крови человека? Кровь - одна из тканей организма, состоящая из плазмы (жидкой части) и клеточных элементов. Плазма это однородная прозрачная или слегка мутноватая жидкость, имеющая желтый оттенок, которая является межклеточным веществом тканей крови. Плазма состоит из воды, в которой растворены вещества (минеральные и органические), в том числе белки (альбумины, глобулины и фибриноген). Углеводы (глюкоза), жиры (липиды), гормоны, ферменты, витамины, отдельные составляющие солей (ионы) и некоторые продукты обмена веществ.
Вместе с плазмой организм выводит продукты обмена, различные яды и иммунные комплексы антиген-антитело (которые возникают при попадании чужеродных частиц в организм как защитная реакция для их удаления) и все ненужное, мешающее работать организму.
Состав крови: клетки крови
Клеточные элементы крови тоже неоднородны. Состоят они из:
эритроцитов (красные кровяные тельца);
лейкоцитов (белые кровяные тельца);
тромбоцитов (кровяные пластинки).
Эритроциты - красные кровяные тельца. Транспортируют кислород от легких ко всем человеческим органам. Именно эритроциты содержат железосодержащий белок - ярко-красный гемоглобин, который присоединяет в легких из вдыхаемого воздуха к себе кислород, после чего постепенно переносит его ко всем органам и тканям различных частей тела.
Лейкоциты - белые кровяные тельца. Отвечают за иммунитет, т.е. за способность человеческого организма противостоять различным вирусам и инфекциям. Существуют различные виды лейкоцитов. Одни из них направлены непосредственно на уничтожение проникших в организм бактерий или различных чужеродных клеток. Другие задействованы в выработке специальных молекул, так называемых антител, которые также необходимы для борьбы с различными инфекциями.
Тромбоциты - кровяные пластинки. Помогают организму остановить кровотечение, т. е. регулируют свертываемость крови. Например, если вы повредили кровеносный сосуд, то на месте повреждения со временем возникнет сгусток крови, после чего образуется корочка, соответственно, кровотечение прекратится. Без тромбоцитов (а вместе с ними целого ряда вещество, которые содержатся в плазме крови) сгустки не будут образовываться, поэтому любая ранка или носовое кровотечение, например, могут привести к большой потере крови.
Состав крови: норма
Как мы уже писали выше, существуют красные кровяные тельца и белые кровяные тельца. Так вот в норме эритроцитов (красных кровяных телец) у мужчин должно быть 4-5*1012/л, у женщин 3.9-4.7*1012/л. Лейкоцитов (белых кровяных телец) - 4-9*109/л крови. Кроме этого, в 1 мкл крови находится 180-320*109/л кровяных пластинок (тромбоцитов). В норме объем клеток составляет 35-45% от общего объема крови.
Химический состав крови человека
Кровь омывает каждую клеточку человеческого тела и каждый орган, поэтому реагирует на любые изменения в организме или образе жизни. Факторы, влияющие на состав крови довольно разнообразны. Поэтому врачу, чтобы правильно прочитать результаты анализов необходимо знать и о вредных привычках и о физической активности человека и даже о рационе питания. Даже окружающая среда и та влияет на состав крови. Так же на показатели крови влияет все, что касается обмена веществ. Для примера, можно рассмотреть, как обычный прием пищи изменяет показатели крови:
Прием пищи перед анализом крови повысить концентрацию жиров.
Голодание в течении 2 дней повысит в крови билирубин.
Голодание более 4 дней снизит количество мочевины и жирных кислот.
Жирная пища повысит уровень калия и триглицеридов.
Чрезмерный прием в пищу мяса повысит уровень уратов.
Кофе повысить уровень глюкозы, жирных кислот, лейкоцитов и эритроцитов.
Кровь курильщиков существенно отличается от крови людей ведущих здоровый образ жизни. Однако если вы ведете активный образ жизни, перед сдачей анализа крови нужно уменьшить интенсивность тренировок. Особенно это касается сдачи анализов на гормоны. Влияют на химический состав крови и различные медикаментозные препараты, поэтому, если вы что-то принимали, обязательно сообщите об этом вашему врачу.
2. Плазма крови
Плазма крови -- жидкая часть крови, в которой во взвешенном состоянии находятся форменные элементы (клетки крови). Плазма представляет собой вязкую белковую жидкость слегка желтоватого цвета. В состав плазмы входит 90-94% воды и 7-10% органических и неорганических веществ. Плазма крови взаимодействует с тканевой жидкостью организма: из плазмы в ткани переходят все вещества, необходимые для жизнедеятельности, а обратно - продукты обмена.
Плазма крови составляет 55-60 % от общего объема крови. Она содержит 90-94% воды и 7-10% сухого вещества, в котором 6-8% приходится на долю белковых веществ, а 1,5-4% -- на другие органические и минеральные соединения. Вода служит источником воды для клеток и тканей организма, поддерживает кровяное давление и объем крови. В норме концентрации одних растворенных веществ в плазме крови все время остаются постоянными, а содержание других может колебаться в определенных пределах в зависимости от скорости их поступления в кровь или удаления из нее.
Состав плазмы
В состав плазмы входят:
органические вещества -- белки крови: альбумины, глобулины и фибриноген
глюкоза, жир и жироподобные вещества, аминокислоты, различные продукты обмена (мочевина, мочевая кислота и др.), а также ферменты и гормоны
неорганические вещества (соли натрия, калия, кальция и др.) составляют около 0,9-1,0% плазмы крови. При этом концентрация различных солей в плазме примерно постоянна
минеральные вещества, особенно ионы натрия и хлора. Они играют основную роль в поддержании относительного постоянства осмотического давления крови.
Белки крови: альбумин
Одни из основных компонентов плазмы крови -- разного типа белки, образующиеся главным образом в печени. Белки плазмы вместе с остальными компонентами крови поддерживают постоянство концентрации водородных ионов на слабощелочном уровне (рН 7,39), что жизненно важно для протекания большинства биохимических процессов в организме.
По форме и величине молекул белки крови разделяют на альбумины и глобулины. Наиболее распространенный белок плазмы крови -- альбумин (более 50% всех белков, 40-50 г/л). Они выступают как транспортные белки для некоторых гормонов, свободных жирных кислот, билирубина, различных ионов и лекарственных препаратов, поддерживают постоянство коллоидно-осмотического постоянства крови, участвуют в ряде обменных процессов в организме. Синтез альбумина происходит в печени.
Содержание альбуминов в крови служит дополнительным диагностическим признаком при ряде заболеваний. При низкой концентрации альбумина в крови нарушается равновесие между плазмой крови и межклеточной жидкостью. Последняя перестает поступать в кровь, и возникает отек. Концентрация альбумина может снижаться как при уменьшении его синтеза (например, при нарушении всасывания аминокислот), так и при увеличении потерь альбумина (например, через изъязвленную слизистую оболочку желудочно-кишечного тракта). В старческом и пожилом возрасте содержание альбумина снижается. Измерение концентрации альбумина в плазме используется в качестве теста функции печени, поскольку для ее хронических заболеваний характерны низкие концентрации альбумина, обусловленные снижением его синтеза и увеличением объема распределения в результате задержки жидкости в организме.
Низкое содержание альбумина (гипоальбуминемия) у новорожденных увеличивает риск развития желтухи, поскольку альбумин связывает свободный билирубин крови. Альбумин также связывает многие лекарственные препараты, поступающие в кровяное русло, поэтому при снижении его концентрации возрастает риск отравления несвязанным веществом. Анальбуминемия -- редкое наследственное заболевание, при котором концентрация альбумина в плазме очень мала (250 мг/л или меньше). Лица с данными нарушениями подвержены эпизодическому появлению умеренных отеков без каких-либо иных клинических симптомов. Высокая концентрация альбумина в крови (гиперальбуминемия) может быть вызвана либо избыточным вливанием альбумина, либо дегидратацией (обезвоживанием) организма.
Иммуноглобулины
Большинство прочих белков плазмы крови относится к глобулинам. Среди них различают: a-глобулины, связывающие тироксин и билирубин; b-глобулины, связывающие железо, холестерол и витамины A, D и K; g-глобулины, связывающие гистамин и играющие важную роль в иммунологических реакциях организма, поэтому их иначе называют иммуноглобулинами или антителами. Известны 5 основных классов иммуноглобулинов, наиболее часто встречающиеся из них IgG, IgA, IgM. Уменьшение и увеличение концентрации иммуноглобулинов в плазме крови может иметь как физиологический, так и патологический характер. Известны различные наследственные и приобретенные нарушения синтеза иммуноглобулинов. Снижение их количества часто она возникает при злокачественных заболеваниях крови, таких как хронический лимфатический лейкоз, множественная миелома, болезнь Ходжкина; может быть следствием применения цитостатических препаратов или при значительных потерях белка (нефротический синдром). При полном отсутствие иммуноглобулинов, например, при Спиде, могут развиваться рецидивирующие бактериальные инфекции.
Повышенные концентрации иммуноглобулинов наблюдаются при острых и хронических инфекционных, а также аутоиммунных заболеваниях, например, при ревматизме, системной красной волчанке и т. д. Весомую помощь в постановке диагноза многих инфекционных заболеваний оказывает выявление иммуноглобулинов к специфическим антигенам (иммунодиагностика).
Другие белки плазмы крови
Помимо альбуминов и иммуноглобулинов, плазма крови содержит ряд других белков: компоненты комплемента, различные транспортные белки, например тироксинсвязывающий глобулин, глобулин, связывающий половые гормоны, трансферрин и др. Концентрации некоторых белков повышаются при острой воспалительной реакции. Среди них известны антитрипсины (ингибиторы протеаз), С-реактивный белок и гаптоглобин (гликопептид, связывающий свободный гемоглобин). Измерение концентрации С-реактивного белка помогает следить за течением заболеваний, характеризующихся эпизодами острого воспаления и ремиссии, например, ревматоидным артритом. Наследственная недостаточность a1-антитрипсина может вызвать гепатит у новорожденных. Снижение концентрации гаптоглобина в плазме свидетельствует об усилении внутрисосудистого гемолиза, а также отмечается при хронических заболеваниях печени, тяжелом сепсисе и метастатической болезни.
К глобулинам относятся белки плазмы, участвующие в свертывании крови, такие как протромбин и фибриноген, и определение их концентрации важно при обследовании больных с кровотечениями.
Колебания концентрации белков в плазме определяется скоростью их синтеза и удаления и объемом их распределения в организме, например, при изменении положения тела (в течение 30 мин после перехода из лежачего положения в вертикальное концентрация белков в плазме возрастает на 10-20%) или после наложения жгута для венопункции (концентрация белка может увеличиться в течение нескольких минут). В обоих случаях увеличение концентрации белков вызвано усилением диффузии жидкости из сосудов в межклеточное пространство, и уменьшением объема их распределения (эффект дегидратации). Быстрое снижение концентрации белков, напротив, чаще всего является следствием увеличения объема плазмы, например, при увеличении проницаемости капилляров у пациентов с генерализованным воспалением.
Другие вещества плазмы крови
В плазме крови содержатся цитокины -- низкомолекулярные пептиды (менее 80 кД), участвующие в процессах воспаления и иммунного ответа. Определение их концентрации в крови используется для ранней диагностики сепсиса и реакций отторжения пересаженных органов.
Кроме того, в плазме крови содержатся питательные вещества (углеводы, жиры), витамины, гормоны, ферменты, участвующие в метаболических процессах. В плазму крови поступают продукты жизнедеятельности организма, подлежащие удалению, например мочевина, мочевая кислота, креатинин, билирубин и др.. С током крови они переносятся в почки. Концентрация продуктов жизнедеятельности в крови имеет свои допустимые границы. Повышение концентрации мочевой кислоты может наблюдаться при подагре, применении мочегонных препаратов, в результате снижения функции почек и др., снижение -- при остром гепатите, лечении аллопуринолом и др. Повышение концентрации мочевины в плазме крови наблюдается при почечной недостаточности, остром и хроническом нефрите, при шоке и т. д, снижение -- при печеночной недостаточности, нефротическом синдроме и т. д.
В плазме крови содержатся и минеральные вещества -- соли натрия, калия, кальция, магния, хлора, фосфора, йода, цинка и др., концентрация которых близка к концентрации солей в морской воде, где миллионы лет назад впервые появились первые многоклеточные существа. Минеральные вещества плазмы совместно участвуют в регуляции осмотического давления, рН крови, в ряде других процессов. Например, ионы кальция влияют на коллоидное состояние клеточного содержимого, участвуют в процессе свертывания крови, в регуляции мышечного сокращения и чувствительности нервных клеток. Большинство солей в плазме крови связано с белками или другими органическими соединениями.
3. Форменные элементы крови
Кровяные клетки
Тромбоциты (от тромб и греч. kytos -- вместилище, здесь -- клетка), клетки крови позвоночных животных, содержащие ядро (кроме млекопитающих). Участвуют в свертывании крови. Тромбоциты млекопитающих и человека, называемые кровяными пластинками, представляют собой округлые или овальные уплощенные фрагменты клеток диаметром 3-4 мкм, окруженные мембраной и обычно лишенные ядра. Они содержат в большом количестве митохондрии, элементы комплекса Гольджи, рибосомы, а также гранулы различной формы и величины, содержащие гликоген, ферменты (фибронектин, фибриноген), тромбоцитарный фактор роста и др. Тромбоциты образуются из крупных клеток костного мозга, называемых мегакариоцитами. Две трети тромбоцитов циркулирует в крови, остальные депонируются в селезенке. В 1 мкл крови человека содержится 200-400 тыс. тромбоцитов.
При повреждении сосуда тромбоциты активируются, становятся шаровидными и приобретают способность к адгезии -- прилипанию к стенке сосуда, и к агрегации -- слипанию друг с другом. Образующийся тромб восстанавливает целостность стенок сосуда. Повышение числа тромбоцитов может сопровождать хронические воспалительные процессы (ревматоидный артрит, туберкулез, колит, энтерит и т. д.), а также острые инфекции, геморрагии, гемолиз, анемии. Снижение числа тромбоцитов отмечается при лейкозе, апластической анемии, при алкоголизме и т. д. Нарушение функции тромбоцитов может быть обусловлено генетическими либо внешними факторами. Генетические дефекты лежат в основе болезни Виллебранда и ряда других редких синдромов. Продолжительность жизни тромбоцитов человека -- 8 дней.
Эритроциты (красные кровяные клетки; от греч. erythros -- красный и kytos -- вместилище, здесь -- клетка) -- высокоспецифичные клетки крови животных и человека, содержащие гемоглобин.
Диаметр отдельного эритроцита равен 7,2-7,5 мкм, толщина -- 2,2 мкм, а объем -- около 90 мкм3. Общая поверхность всех эритроцитов достигает 3000 м2, что в 1500 раз превышает поверхность тела человека. Такая большая поверхность эритроцитов обусловлена их большим числом и своеобразной формой. Они имеют форму двояковогнутого диска и при поперечном разрезе напоминают гантели. При такой форме в эритроцитах нет ни одной точки, которая бы отстояла от поверхности более чем на 0,85 мкм. Такие соотношения поверхности и объема способствуют оптимальному выполнению основной функции эритроцитов -- переносу кислорода от органов дыхания к клеткам организма.
Функции эритроцитов
Эритроциты переносят кислород от легких к тканям и двуокись углерода от тканей к органам дыхания. Сухое вещество эритроцита человека содержит около 95% гемоглобина и 5% других веществ -- белков и липидов. У человека и у млекопитающих животных эритроциты лишены ядра и имеют форму двояковогнутых дисков. Специфическая форма эритроцитов обусловливает более высокое отношение поверхности к объему, что увеличивает возможности газообмена. У акул, лягушек и птиц эритроциты овальной или округлой формы, содержат ядра. Средний диаметр эритроцитов человека 7-8 мкм, что приблизительно равно диаметру кровеносных капилляров. Эритроцит способен «складываться» при прохождении по капиллярам, просвет которых меньше диаметра эритроцита.
Эритроциты
В капиллярах легочных альвеол, где концентрация кислорода высока, гемоглобин соединяется с кислородом, а в метаболически активных тканях, где низкая концентрация кислорода, кислород освобождается и диффундирует из эритроцита в окружающие клетки. Процент насыщения крови кислородом зависит от парциального давления кислорода в атмосфере. Сродство двухвалентного железа, входящего в состав гемоглобина, к окиси углерода (СО) в несколько сотен раз больше его сродства к кислороду, поэтому в присутствии даже очень малого количества окиси углерода гемоглобин в первую очередь связывается именно с CO. После вдыхания окиси углерода у человека быстро наступает коллапс и он может погибнуть от удушья. С помощью гемоглобина осуществляется и перенос углекислоты. В ее транспорте участвует и содержащийся в эритроцитах фермент карбоангидраза.
Гемоглобин
Эритроциты человека, как и всех млекопитающих, имеют форму двояковогнутого диска и содержат гемоглобин.
Гемоглобин является основной составной частью эритроцитов и обеспечивает дыхательную функцию крови, являясь дыхательным пигментом. Он находится внутри эритроцитов, а не в плазме крови, что обеспечивает уменьшение вязкости крови и предупреждает потерю организмом гемоглобина вследствие его фильтрации в почках и выделения с мочой.
По химической структуре гемоглобин состоит из 1 молекулы белка глобина и 4 молекул железосодержащего соединения гема. Атом железа гема способен присоединять и отдавать молекулу кислорода. При этом валентность железа не изменяется, т. е. оно остается двухвалентным.
В крови здоровых мужчин содержится в среднем 14,5 г% гемоглобина (145 г/л). Эта величина может колебаться в пределах от 13 до 16 (130-160 г/л). В крови здоровых женщин содержится в среднем 13 г гемоглобина (130 г/л). Эта величина может колебаться в пределах от 12 до 14.
Гемоглобин синтезируется клетками костного мозга. При разрушении эритроцитов после отщепления гема гемоглобин превращается в желчный пигмент биллирубин, который с желчью поступает в кишечник и после превращений выводится с калом.
В норме гемоглобин содержится в виде 2-х физиологических соединений.
Гемоглобин, присоединивший кислород, превращается в оксигемо-глобин -- НbО2. Это соединение по цвету отличается от гемоглобина, поэтому артериальная кровь имеет ярко алый цвет. Оксигемоглобин, отдавший кислород, называют восстановленным -- Нb. Он находится в венозной крови, которая имеет более темный цвет, чем артериальная.
Гемоглобин появляется уже у некоторых кольчатых червей. С его помощью осуществляется газообмен у рыб, амфибий, рептилий, птиц, млекопитающих и человека. В крови некоторых моллюсков, ракообразных и др. кислород переносится белковой молекулой -- гемоцианином, содержащим не железо, а медь. У некоторых кольчатых червей перенос кислорода осуществляется с помощью гемэритрина или хлорокруорина.
Образование, разрушение и патология эритроцитов
Процесс образования эритроцитов (эритропоэз) происходит в красном костном мозге. Незрелые эритроциты (ретикулоциты), поступающие в кровоток из костного мозга, содержат клеточные органеллы -- рибосомы, митохондрии и аппарат Гольджи. Ретикулоциты составляют около 1% всех циркулирующих эритроцитов. Их окончательная дифференцировка происходит в течение 24-48 часов после выхода в кровоток. Скорость распада эритроцитов и замещение их новыми зависит от многих условий, в частности, от содержания кислорода в атмосфере. Низкое содержание кислорода в крови стимулирует костный мозг к образованию большего числа эритроцитов, чем разрушается в печени. При высоком содержании кислорода наблюдается противоположная картина.
В крови у мужчин содержится в среднем 5х1012/л эритроцитов (6 000 000 в 1 мкл), у женщин -- около 4,5х1012/л (4500000 в 1 мкл). Такое количество эритроцитов, уложенное цепочкой, 5 раз обовьют земной шар по экватору.
Более высокое содержание эритроцитов у мужчин связано с влиянием мужских половых гормонов -- андрогенов, стимулирующих образование эритроцитов. Количество эритроцитов варьирует в зависимости от возраста и состояния здоровья. Повышение числа эритроцитов чаще всего связано с кислородным голоданием тканей или с легочными заболеваниями, врожденными пороками сердца, может возникать при курении, нарушении эритропоэза из-за опухоли или кисты. Понижение количества эритроцитов является непосредственным указанием на анемию (малокровие). В запущенных случаях при ряде анемий отмечается неоднородность эритроцитов по величине и форме, в частности, при железодефицитной анемии у беременных.
Иногда в гем включается атом трехвалентного железа вместо двухвалентного, и образуется метгемоглобин, который так прочно связывает кислород, что не способен отдавать его тканям, в результате чего возникает кислородное голодание. Образование метгемоглобина в эритроцитах может быть наследственным или приобретенным -- в результате воздействия на эритроциты сильных окислителей, таких как нитраты, некоторые лекарственные препараты -- сульфаниламиды, местные анестетики (лидокаин).
Продолжительность жизни эритроцитов у взрослых людей составляет около 3 месяцев, после чего они разрушаются в печени или селезенке. Каждую секунду в организме человека разрушается от 2 до 10 млн. эритроцитов. Старение эритроцитов сопровождается изменением их формы. В периферической крови здоровых людей количество эритроцитов правильной формы (дискоцитов) составляет 85% от общего их числа.
Гемолиз
Гемолизом называют разрушение оболочки эритроцитов, сопровождающееся выходом из них гемоглобина в плазму крови, которая окрашивается при этом в красный цвет и становится прозрачной.
Гемолиз может происходить как вследствие внутренних дефектов клеток (например, при наследственном сфероцитозе), так и под влиянием неблагоприятных факторов микроокружения (например, токсинов неорганической или органической природы). При гемолизе содержимое эритроцита выходит в плазму крови. Обширный гемолиз приводит к снижению общего количества циркулирующих в крови эритроцитов (гемолитическая анемия).
В естественных условиях в ряде случаев может наблюдаться так называемый биологический гемолиз, развивающийся при переливании несовместимой крови, при укусах некоторых змей, под влиянием иммунных гемолизинов и т. п.
При старении эритроцита его белковые компоненты расщепляются на составляющие их аминокислоты, а железо, входившее в состав гема, удерживается печенью и может в дальнейшем использоваться повторно при образовании новых эритроцитов. Остальная часть гема расщепляется с образованием желчных пигментов билирубина и биливердина. Оба пигмента в конце концов выводятся с желчью в кишечник.
Скорость оседания эритроцитов (СОЭ)
Если в пробирку с кровью добавить антисвертывающие вещества, то можно изучить важнейший ее показатель -- скорость оседания эритроцитов. Для исследования СОЭ кровь смешивают с раствором лимоннокислого натрия и набирают в стеклянную трубочку с миллиметровыми делениями. Через час отсчитывают высоту верхнего прозрачного слоя.
Оседание эритроцитов в норме у мужчин равна 1-10 мм в час, у женщин -- 2-5 мм в час. Увеличение скорости оседания больше указанных величин является признаком патологии.
Величина СОЭ зависит от свойств плазмы, в первую очередь, от содержания в ней крупномолекулярных белков -- глобулинов и особенно фибриногена. Концентрация последних возрастает при всех воспалительных процессах, поэтому у таких больных СОЭ обычно превышает норму.
В клинике по скорости оседания эритроцитов (СОЭ) судят о состоянии организма человека. В норме СОЭ у мужчин 1-10 мм/час, у женщин 2-15 мм/час. Повышение СОЭ -- высокочувствительный, но неспецифический тест на активно протекающий воспалительный процесс. При пониженном количестве эритроцитов в крови СОЭ возрастает. Снижение СОЭ наблюдается при различных эритроцитозах.
Лейкоциты (белые кровяные клетки -- бесцветные клетки крови человека и животных. Все типы лейкоцитов (лимфоциты, моноциты, базофилы, эозинофилы и нейтрофилы) шаровидной формы, имеют ядро и способны к активному амебоидному движению. Лейкоциты играют важную роль в защите организма от болезней -- вырабатывают антитела и поглощают бактерий. В 1 мкл крови в норме содержится 4-9 тыс. лейкоцитов. Количество лейкоцитов в крови здорового человека подвержено колебаниям: оно повышается к концу дня, при физической нагрузке, эмоциональном напряжении, приеме белковой пищи, резкой смене температуры окружающей среды.
Существуют две основные группы лейкоцитов -- гранулоциты (зернистые лейкоциты) и агранулоциты (незернистые лейкоциты). Гранулоциты подразделяются на нейтрофилы, эозинофилы и базофилы. Все гранулоциты имеют разделенное на лопасти ядро и зернистую цитоплазму. Агранулоциты разделяются на два основных типа: моноциты и лимфоциты.
Нейтрофилы
Нейтрофилы составляют 40-75% всех лейкоцитов. Диаметр нейтрофила 12 мкм, ядро содержит от двух до пяти долек, соединенных между собой тонкими нитями. В зависимости от степени дифференцировки различают палочкоядерные (незрелые формы с подковообразными ядрами) и сегментоядерные (зрелые) нейтрофилы. У женщин один из сегментов ядра содержит вырост в форме барабанной палочки -- так называемое тельце Барра. Цитоплазма заполнена множеством мелких гранул. Нейтрофилы содержат митохондрии и большое количество гликогена. Продолжительность жизни нейтрофилов -- около 8 суток. Основная функция нейтрофилов -- обнаружение, захват (фагоцитоз) и переваривание с помощью гидролитических ферментов болезнетворных бактерий, обломков тканей и другого подлежащего удалению материала, специфическое распознавание которого осуществляется при помощи рецепторов. После осуществления фагоцитоза нейтрофилы погибают, и их остатки составляют основной компонент гноя. Фагоцитарная активность, наиболее выраженная в возрасте 18-20 лет, с возрастом уменьшается. Активность нейтрофилов стимулируется многими биологически активными соединениями -- тромбоцитарными факторами, метаболитами арахидоновой кислоты и др. Многие из этих веществ являются хемоаттрактантами, по градиенту концентрации которых нейтрофилы мигрируют в очаг инфекции (см. Таксисы). Изменяя свою форму, они могут протискиваться между клетками эндотелия и покидать пределы кровеносного сосуда. Освобождение токсичного для тканей содержимого гранул нейтрофилов в местах их массивной гибели может приводить к образованию обширных локальных повреждений (см. Воспаление).
Эозинофилы
Эозинофилы составляют 1-5% общего числа лейкоцитов, но при различных заболеваниях (например, астме, сенной лихорадке и др.) их число возрастает. Палочкоядерные эозинофилы -- незрелые формы с подковообразным ядром, сегментоядерные эозинофилы -- зрелые клетки с ядром, состоящим из двух крупных сегментов, соединенных тонкой перемычкой. Цитоплазма содержит хорошо развитую гранулярную эндоплазматическую сеть, небольшое количество цистерн гладкой эндоплазматической сети, скопления рибосом, отдельные митохондрии и много гликогена. Цитоплазматические гранулы, окрашиваемые эозином в красный цвет, определили название этих клеток. Они содержат комплекс ферментов, таких как пероксидаза, фосфолипаза, кислая фосфатаза, коллагеназа и т. д. Активирующими факторами для эозинофилов являются бактериальные продукты, гистамин и др. Достигнув места внедрения чужеродных бактерий, эозинофилы выделяют содержимое гранул и липидные медиаторы, губительно действующие на паразитов. Секретируемые эозинофилами вещества могут повреждать и нормальные ткани (например, бронхиальный эпителий), и вызывать в них некроз и фиброзное перерождение. Эозинофилы способны мигрировать из кровотока в ткани, контактирующие с внешней средой -- слизистые оболочки дыхательных и мочеполовых путей, кишечника. Размер эозинофила в крови около 12 мкм, а после выхода в соединительную ткань увеличивается до 20 мкм. Полагают, что эозинофилы обладают антигистаминным действием. Содержание эозинофилов в крови контролируется гормонами коры надпочечников. Продолжительность жизни -- предположительно 8-14 дней.
Базофилы
Базофилы составляют 0-1% популяции лейкоцитов. Размер 10-12 мкм. Чаще имеют трехдольное S-образное ядро, содержат все виды органелл, свободные рибосомы и гликоген. Цитоплазматические гранулы окрашиваются в синий цвет основными красителями (метиленовым синим и др.), с чем связано название данных лейкоцитов. В состав цитоплазматических гранул входят пероксидаза, гистамин, медиаторы воспаления и др. вещества, выброс которых в месте активации вызывает развитие аллергических реакций немедленного типа: аллергический ринит, некоторых формы астмы, анафилактический шок. Как и другие лейкоциты, базофилы могут покидать кровоток, но их способность к амебоидному движению ограничена. Продолжительность жизни неизвестна.
Моноциты
Моноциты составляют 2-9% от общего числа лейкоцитов. Это самые крупные лейкоциты (диаметр около 15 мкм). Моноциты имеют крупное бобовидное ядро, расположенное эксцентрично, в цитоплазме присутствуют типичные органеллы, фагоцитарные вакуоли, многочисленные лизосомы. Различные вещества, образующиеся в очагах воспаления и разрушения тканей, являются агентами хемотаксиса и активации моноцитов. Активированные моноциты выделяют ряд биологически активных веществ -- интерлейкин-1, эндогенные пирогены, простагландины и др. Покидая кровоток, моноциты превращаются в макрофагов, активно поглощают бактерий и др. крупные частицы.
Лимфоциты
Лимфоциты составляют 20-45% общего числа лейкоцитов. Они округлой формы, содержат крупное ядро и небольшое количество цитоплазмы. В цитоплазме немного лизосом, митохондрий, минимум эндоплазматической сети, достаточно много свободных рибосом. Выделяют 2 морфологически сходные, но функционально различающиеся группы лимфоцитов: Т-лимфоциты (80% ), образующиеся в тимусе (вилочковой железе), и В-лимфоциты (10%), образующиеся в лимфоидной ткани. Клетки лимфоцитов образуют короткие отростки (микроворсинки), более многочисленные у В-лимфоцитов. Лимфоциты играют центральную роль во всех иммунных реакциях организма (образование антител, уничтожение опухолевых клеток и т. д.). Большинство лимфоцитов крови находится в функционально и метаболически неактивном состоянии. В ответ на специфические сигналы, лимфоциты выходят из сосудов в соединительную ткань. Главная функция лимфоцитов состоит в узнавании и уничтожении клеток-мишеней (чаще всего вирусов при вирусной инфекции). Продолжительность жизни лимфоцитов варьирует от нескольких дней до десяти и более лет.
Анемия -- это уменьшение эритроцитарной массы. Поскольку объем крови обычно поддерживается на постоянном уровне, степень анемии можно определить либо на основании объема эритроцитов, выраженного в процентах по отношению к общему объему крови (гематокрит [ГК]), либо на основании содержания гемоглобина в крови. В норме эти показатели различны у мужчин и женщин, поскольку андрогены повышают как секрецию эритропоэтина, так и количество костномозговых клеток-предшественников. При диагностике анемии необходимо также учитывать, что на большой высоте над уровнем моря, где напряжение кислорода ниже обычного, величины показателей красной крови возрастают.
У женщин об анемии свидетельствует содержание гемоглобина в крови (НЬ) меньшее, чем 120 г/л и гематокрит (Ht) ниже 36 %. У мужчин возникновение анемии констатируют при НЬ < 140 г/л и Ht < 42 %. НЬ не всегда отражает число циркулирующих эритроцитов. После острой кровопотери НЬ может оставаться в нормальных пределах при дефиците циркулирующих эритроцитов, обусловленном снижением объема циркулирующей крови (ОЦК). При беременности НЬ снижен вследствие увеличения объема плазмы крови при нормальном числе эритроцитов, циркулирующих с кровью.
Клинические признаки гемической гипоксии, связанной с падением кислородной емкости крови вследствие снижения числа циркулирующих эритроцитов, возникают при НЬ меньшем, чем 70 г/л. О тяжелой анемии говорят бледность кожных покровов и тахикардия как механизм поддержания через рост минутного объема кровообращения адекватного транспорта кислорода с кровью, несмотря на ее низкую кислородную емкость.
Содержание ретикулоцитов в крови отражает интенсивность образования эритроцитов, то есть является критерием реакции костного мозга на анемию. Содержание ретикулоцитов обычно измеряют в процентах от общего числа эритроцитов, которое содержит единица объема крови. Ретикулоцитарный индекс (РИ) - показатель соответствия реакции усиления образования новых эритроцитов костным мозгом тяжести анемии:
РИ = 0,5 х (содержание ретикулоцитов х Ht больного/нормальный Ht).
РИ, превышающий уровень в 2-3 %, свидетельствует об адекватной реакции интенсификации эритропоэза в ответ на анемию. Меньшая величина говорит об угнетении образования эритроцитов костным мозгом как о причине анемии. Определение величины среднего эритроцитарного объема используется для того, чтобы отнести анемию у больного к одной из трех совокупностей: а) микроцитарные; б) нормоцитарные; в) макроцитарные. Нормоцитарную анемию характеризует нормальный объем эритроцитов, при микроцитарной анемии он снижен, а при макроцитарной повышен.
Нормальный диапазон колебаний среднего эритроцитарного объема составляет 80-98 мкм3. Анемия при определенном и индивидуальном для каждого пациента уровне концентрации гемоглобина в крови через снижение ее кислородной емкости вызывает гемическую гипоксию. Гемическая гипоксия служит стимулом ряда защитных реакций, направленных на оптимизацию и рост системного транспорта кислорода (схема 1). Если компенсаторные реакции в ответ на анемию оказываются несостоятельными, то посредством нейрогуморальной адренергической стимуляции сосудов сопротивления и прекапиллярных сфинктеров происходит перераспределение минутного объема кровообращения (МОК), направленное на поддержание нормального уровня доставки кислорода в мозг, к сердцу и легким. При этом в частности падает объемная скорость кровотока в почках.
Сахарный диабет в первую очередь характеризуют гипергликемия, то есть патологически высокое содержание глюкозы в крови, и другие нарушения обмена веществ, связанные с патологически низкими секрецией инсулина, концентрацией нормального гормона в циркулирующей крови или представляющие собой следствие недостаточности или отсутствия нормальной реакции клеток-мишеней на действие гормона-инсулина. Как патологическое состояние всего организма сахарный диабет в основном составляют расстройства обмена веществ, в том числе и вторичные относительно гипергликемии, патологические изменения микрососудов (причины ретино- и нефропатии), ускоренный атеросклероз артерий, а также нейропатия на уровне периферических соматических нервов, симпатических и парасимпатических нервных проводников и ганглиев.
Выделяют два типа сахарного диабета. От сахарного диабета I типа страдают 10 % больных сахарным диабетом как первого, так и второго типа. Сахарный диабет первого типа называют инсулинзависимым не только потому, что больным для устранения гипергликемии необходимо парентеральное введение экзогенного инсулина. Такая необходимость может возникнуть и при лечении больных с неинсулинзависимым сахарным диабетом. Дело в том, что без периодического введения инсулина больным сахарным диабетом I типа у них развивается диабетический кетоацидоз.
Если инсулинзависимый сахарный диабет возникает в результате почти полного отсутствия секреции инсулина, то причина неинсулинзависимого сахарного диабета - это частично сниженная секреция инсулина и (или) резистентность по отношению к инсулину, то есть отсутствие нормальной системной реакции на высвобождение гормона инсулинпродуцирующими клетками островков Лангерганса поджелудочной железы.
Длительное и экстремальное по силе действие неотвратимых раздражителей в качестве стимулов стресса (послеоперационный период в условиях неэффективной анальгезии, состояние вследствие тяжелых ранений и травм, персистирующий отрицательный психоэмоциональный стресс, вызванный безработицей и нищетой, и др.) обуславливает длительную и патогенную активацию симпатического отдела автономной нервной системы и нейроэндокринной катаболической системы. Эти сдвиги регуляции через нейрогенное снижение секреции инсулина и устойчивое преобладание на системном уровне эффектов катаболических гормонов антагонистов инсулина может трансформировать сахарный диабет II типа в инсулинзависимый, что служит показанием к парентеральному введению инсулина.
Гипотиреоз - патологическое состояние вследствие низкого уровня секреции гормонов щитовидной железы и связанной с ним недостаточности нормального действия гормонов на клетки, ткани, органы и организм в целом.
Так как проявления гипотиреоза аналогичны многим признакам других болезней, то при обследовании больных гипотиреоз нередко остается незамеченным.
Первичный гипотиреоз возникает в результате заболеваний самой щитовидной железы. Первичный гипотиреоз может быть осложнением лечения больных с тиреотоксикозом радиоактивным йодом, операций на щитовидной железе, влияния на щитовидную железу ионизирующих излучений (лучевая терапия при лимфогранулематозе в области шеи), а также у части больных представляет собой побочный эффект йод-содержащих препаратов.
В ряде развитых стран наиболее частой причиной гипотиреоза является хронический аутоиммунный лимфоцитарный тиреоидит (болезнь Хашимото), который у женщин возникает чаще, чем у мужчин. При болезни Хашимото равномерное увеличение щитовидной железы едва заметно, а с кровью больных циркулируют аутоантитела к аутоантигенам тиреоглобулина и микросомной фракции железы.
Болезнь Хашимото как причина первичного гипотиреоза нередко развивается одновременно с аутоиммунным поражением коры надпочечников, обуславливающим недостаточность секреции и эффектов ее гормонов (аутоиммунный полигландулярный синдром).
Вторичный гипотиреоз - это следствие нарушения секреции тиреотропного гормона (ТТГ) аденогипофизом. Чаще всего у больных недостаточность секреции ТТГ, вызывающая гипотиреоз, развивается вследствие хирургических вмешательств на гипофизе или является результатом возникновения его опухолей. Вторичный гипотиреоз часто сочетается с недостаточной секрецией других гормонов аденогипофиза, адренокортикотропного и прочих.
Определить вид гипотиреоза (первичный или вторичный) позволяет исследование содержания в сыворотке крови ТТГ и тироксина (Т4). Низкая концентрация Т4 при росте содержания в сыворотке ТТГ свидетельствует о том, что в соответствии принципом регуляции по обратной отрицательной связи снижение образования и высвобождения Т4 служит стимулом для роста секреции ТТГ аденогипофизом. В этом случае гипотиреоз определяют как первичный. Когда при гипотиреозе снижена концентрация в сыворотке ТТГ, или в том случае, если, несмотря на гипотиреоз, концентрация ТТГ находится в диапазоне среднестатистической нормы, снижение функции щитовидной железы является вторичным гипотиреозом.
При неявном субклиническом гипотиреозе, то есть при минимальных клинических проявлениях или отсутствии симптомов недостаточности функции щитовидной железы, концентрация Т4 может находиться в пределах нормальных колебаний. При этом уровень содержания ТТГ в сыворотке повышен, что предположительно можно связать с реакцией роста секреции ТТГ аденогипофизом в ответ на неадекватное потребностям организма действие гормонов щитовидной железы. У таких больных в патогенетическом отношении может быть оправданным назначение препаратов щитовидной железы для воссстановления на системном уровне нормальной интенсивности действия тиреоидных гормонов (заместительная терапия).
Более редкие причины гипотиреоза - это генетически детерминированная гипоплазия щитовидной железы (врожденный атиреоз), наследственные нарушения синтеза ее гормонов, связанные с отсутствием нормальной экспрессии генов определенных ферментов или ее недостаточностью, врожденная или приобретенная пониженная чувствительность клеток и тканей к действию гормонов, а также низкое поступление йода как субстрата синтеза гормонов щитовидной железы из внешней среды во внутреннюю.
Гипотиреоз можно считать патологическим состоянием, обусловленным дефицитом в циркулирующей крови и всем организме свободных гормонов щитовидной железы. Известно, что гормоны щитовидной железы трийодтиронин (Тз) и тироксин связываются с ядерными рецепторами клеток-мишеней. Сродство тиреоидных гормонов к ядерным рецепторам высоко. При этом сродство к Тз в десять раз превышает сродство к Т4.
Основное воздействие гормонов щитовидной железы на обмен веществ - это увеличение потребления кислорода и улавливания клетками свободной энергии в результате усиления биологического окисления. Поэтому потребление кислорода в условиях относительного покоя у больных с гипотиреозом находится на патологически низком уровне. Данный эффект гипотиреоза наблюдается во всех клетках, тканях и органах, кроме головного мозга, клеток системы мононуклеарных фагоцитов и гонад.
Таким образом, эволюция отчасти сохранила не зависящими от возможного гипотиреоза энергетический обмен на супрасегментарном уровне системной регуляции, в ключевом звене системы иммунитета, а также обеспечение свободной энергией репродуктивной функции. Тем не менее, дефицит массы в эффекторах системы эндокринной регуляции обмена веществ (дефицит гормонов щитовидной железы) приводит к дефициту свободной энергии (гипоэргозу) на системном уровне. Мы считаем это одним из проявлений действия общей закономерности развития болезни и патологического процесса вследствие дизрегуляции, - через дефицит массы и энергии в системах регуляции к дефициту массы и энергии на уровне всего организма.
Системный гипоэргоз и падение возбудимости нервных центров вследствие гипотиреоза проявляет себя такими характерными симптомами недостаточной функции щитовидной железы как повышенная утомляемость, сонливость, а также замедление речи и падение когнитивных функций. Нарушения внутрицентральных отношений вследствие гипотиреоза - это результат замедленного умственного развития больных с гипотиреозом, а также падения интенсивности неспецифической афферентации, обусловленного системным гипоэргозом.
Большая часть свободной энергии, утилизируемой клеткой, используется для работы Na+/ К+-АТФазного насоса. Гормоны щитовидной железы повышают эффективность работы этого насоса, увеличивая количество составляющих его элементов. Так как практически все клетки обладают таким насосом и реагируют на тиреоидные гормоны, то к системным эффектам тиреоидных гормонов относится повышение эффективности работы данного механизма активного трансмембранного переноса ионов. Это происходит посредством роста улавливания клетками свободной энергии и через увеличение числа единиц Nа+/К+-АТФазного насоса.
Гормоны щитовидной железы усиливают чувствительность адренорецепторов сердца, сосудов и других эффекторов функций. При этом в сравнении с другими регуляторными влияниями адренергическая стимуляция возрастает в наибольшей степени, так как одновременно гормоны подавляют активность фермента моноаминооксидазы, разрушающей симпатический медиатор норадреналин. Гипотиреоз, снижая интенсивность адренергической стимуляции эффекторов системы кровообращения, приводит к снижению минутного объема кровообращения (МОК) и брадикардии в условиях относительного покоя. Другая причина низких величин минутного объема кровообращения - это сниженный уровень потребления кислорода как детерминанты МОК. Снижение адренергической стимуляции потовых желез проявляет себя характерной сухостью колеи.
Гипотиреоидная (миксематозная) кома - редкое осложнение гипотиреоза, которое в основном складывается из следующих дисфункций и нарушений гомеостазиса:
¦ Гиповентиляция как результат падения образования углекислого газа, которую усугубляет центральное гипопноэ из-за гипоэргоза нейронов дыхательного центра. Поэтому гиповентиляция при миксематозной коме может быть причиной артериальной гипоксемии.
¦ Артериальная гипотензия как следствие снижения МОК и гипоэргоза нейронов сосудодвигательного центра, а также падения чувствительности адренорецепторов сердца и сосудистой стенки.
¦ Гипотермия в результате падения интенсивности биологического окисления на системном уровне.
Запор как характерный симптом гипотиреоза вероятно обусловлен системным гипоэргозом и может быть результатом расстройств внутрицентральных отношений вследствие падения функции щитовидной железы.
Гормоны щитовидной железы, как и кортикостероиды, индуцируют белковый синтез, активируя механизм транскрипции генов. Это основной механизм, посредством действия которого влияние Тз на клетки усиливает общий синтез белка и обеспечивает положительный азотистый баланс. Поэтому гипотиреоз нередко вызывает отрицательный азотистый баланс.
Тиреоидные гормоны и глюкокортикоиды, повышают уровень транскрипции гена гормона роста человека (соматотропина). Поэтому развитие гипотиреоза в детском возрасте может быть причиной задержки роста тела. Тиреоидные гормоны стимулируют синтез белка на системном уровне не только через усиление экспрессии гена соматотропина. Они усиливают синтез белка, модулируя функционирование других элементов генетического материала клеток и повышая проницаемость плазматической мембраны для аминокислот. В этой связи гипотиреоз можно считать патологическим состоянием, которое характеризует угнетение белкового синтеза как причина задержки умственного развития и роста тела детей с гипотиреозом. Связанная с гипотиреозом невозможность быстрой интенсификации белкового синтеза в иммунокомпетентных клетках может служить причиной дизрегуляции специфического иммунного ответа и приобретенного иммунодефицита вследствие дисфункций как Т-, так и В-клеток.
Одним из эффектов тиреоидных гормонов на метаболизм является усиление липолиза и окисления жирных кислот с падением уровня их содержания в циркулирующей крови. Низкая интенсивность липолиза у больных с гипотиреозом приводит к аккумуляции жира в организме, что обуславливает патологическое возрастание массы тела. Рост массы тела чаще выражен умеренно, что связано с анорексией (результат падения возбудимости нервной системы и трат свободной энергии организмом) и низким уровнем белкового синтеза у больных с гипотиреозом.
Гормоны щитовидной железы - важные эффекторы систем регуляции развития по ходу онтогенеза. Поэтому гипотиреоз у плодов или новорожденных приводит к кретинизму (фр. cretin, тупица), то есть сочетанию множественных дефектов развития и необратимой задержки нормального становления ментальных и когнитивных функций. Для большинства больных с кретинизмом вследствие гипотиреоза характерна микседема.
Патологическое состояние организма вследствие патогенно избыточной секреции гормонов щитовидной железы называют гипертиреозом. Под тиреотоксикозом понимают гипертиреоз крайней степени тяжести.
...Подобные документы
Объём крови живого организма. Плазма и взвешенные в ней форменные элементы. Основные белки плазмы. Эритроциты, тромбоциты и лейкоциты. Основной фильтр крови. Дыхательная, питательная, экскреторная, терморегулирующая, гомеостатическая функции крови.
презентация [1019,8 K], добавлен 25.06.2015Место крови в системе внутренней среды организма. Количество и функции крови. Гемокоагуляция: определение, факторы свёртывания, стадии. Группы крови и резус–фактор. Форменные элементы крови: эритроциты, лейкоциты, тромбоциты, их количество в норме.
презентация [1,9 M], добавлен 13.09.2015Общие функции крови: транспортная, гомеостатическая и регуляторная. Общее количество крови по отношению к массе тела у новорожденных и взрослых людей. Понятие гематокрита; физико-химические свойства крови. Белковые фракции плазмы крови и их значение.
презентация [3,6 M], добавлен 08.01.2014Внутренняя среда организма. Основные функции крови - жидкой ткани, состоящей из плазмы и взвешенных в ней кровяных телец. Значение белков плазмы. Форменные элементы крови. Взаимодействие веществ, приводящее к свертыванию крови. Группы крови, их описание.
презентация [2,5 M], добавлен 19.04.2016Анализ внутренней структуры крови, а также ее главные элементы: плазма и клеточные элементы (эритроциты, лейкоциты, тромбоциты). Функциональные особенности каждого типа клеточных элементов крови, продолжительность их жизни и значение в организме.
презентация [139,3 K], добавлен 20.11.2014Состав плазмы крови, сравнение с составом цитоплазмы. Физиологические регуляторы эритропоэза, виды гемолиза. Функции эритроцитов и эндокринные влияния на эритропоэз. Белки в плазме крови человека. Определение электролитного состава плазмы крови.
реферат [1,4 M], добавлен 05.06.2010Функции крови: транспортная, защитная, регуляторная и модуляторная. Основные константы крови человека. Определение скорости оседания и осмотической резистентности эритроцитов. Роль составляющих плазмы. Функциональная система поддержания рН крови.
презентация [320,3 K], добавлен 15.02.2014Кровь. Функции крови. Компоненты крови. Свертывание крови. Группы крови. Переливание крови. Болезни крови. Анемии. Полицитемия. Аномалии тромбоцитов. Лейкопения. Лейкоз. Аномалии плазмы.
реферат [469,2 K], добавлен 20.04.2006Физико-химические свойства крови, ее форменные элементы: эритроциты, ретикулоциты, гемоглобин. Лейкоциты или белые кровяные тельца. Тромбоцитарные и плазменные факторы свертывания. Противосвертывающая система крови. Группы крови человека по системе АВ0.
презентация [279,7 K], добавлен 05.03.2015Составные элементы крови: плазма и взвешенные в ней клетки (эритроциты, тромбоциты и лейкоциты). Виды и медикаментозное лечение малокровия. Нарушения свертываемости крови и внутренние кровотечения. Синдромы иммунодефицита - лейкопения и агранулоцитоз.
реферат [34,6 K], добавлен 16.01.2011Особенности современных представлений о крови - внутренней среде организма с определенным морфологическим составом и многообразными функциями, которую условно делят на две части: клетки (эритроциты, лейкоциты, тромбоциты) и плазму. Функции клеток крови.
реферат [780,2 K], добавлен 15.09.2010Общий анализ крови: нормы, расшифровка основных показателей: гемоглобин, лейкоциты, нейтрофилы, тромбоциты, СОЭ. Этапы свертывания крови. Физиологические формы гемоглобина, его патологические формы. Причины повышения активности креатинкиназы плазмы.
презентация [275,9 K], добавлен 04.04.2016Состав крови, ее элементы. Эритроциты человека - безъядерные клетки, состоящие из белково-липидной оболочки и стромы, заполненной гемоглобином. Виды гемолиза. Строение и функции лекоцитов и тромбоцитов. Сравнительная таблица форменных элементов крови.
презентация [1,4 M], добавлен 24.06.2013Функции крови - жидкой ткани сердечно-сосудистой системы позвоночных. Ее состав и форменные элементы. Формирование эритроцитов, типы патологий. Главная сфера действия лейкоцитов. Лимфоциты - основные клетки иммунной системы. Возрастные изменения крови.
презентация [2,3 M], добавлен 14.10.2015Состав и свойства крови, составные элементы: эритроциты, лейкоциты, тромбоциты, их свойства. Краткие сведения по органогенезу. Кровообращение плода и новорожденного, его принципы и значение. Возрастные особенности системы крови у детей и подростков.
презентация [1,6 M], добавлен 24.04.2014Система крови, ее состав, функции и физикохимические свойства. Функции эритроцитов, обмен железа в организме. Гемостаз – свертывание крови. Группы крови и их наследование. Правила переливания крови. Физиологические требования к кровезамещающим растворам.
лекция [421,3 K], добавлен 23.11.2009Анализ форменных элементов крови: эритроцитов, лейкоцитов, тромбоцитов. Гемоглобин и его функции в работе организма. Гранулоциты, моноциты и лимфоциты как составлющие лейкоцитов. Паталогии в составе крови, их влияние на функции организма человека.
реферат [31,4 K], добавлен 06.10.2008Функции, состав и форменные элементы крови. Характеристика, формирование и патология эритроцитов. Виды и главная сфера действия лейкоцитов. Основные клетки иммунной системы: эозинофилы, моноциты, лимфоциты, тромбоциты. Возрастные изменения крови.
презентация [897,9 K], добавлен 30.04.2014Функции крови, их сущность, особенности и характеристика. Лейкоциты и их роль в защите организма от микробов и вирусов. Иммунитет как сопротивляемость организма инфекциям и инвазиям чужеродных организмов, его виды. Функции антител в организме человека.
презентация [3,5 M], добавлен 27.05.2012Состав, элементы и функции крови – жидкой ткани организма. Необходимость создания искусственной крови. Разработки гемоглобиновых кровезаменителей. Новое поколение перфторуглеродных переносчиков кислорода. Получение эмульсий на основе перфторуглеродов.
презентация [549,4 K], добавлен 17.03.2014