Открытие антибиотикорезистентности
История открытия антибиотиков и появление антибиотикорезистентности. Приобретенная устойчивость и модификация собственного генома. Нынешняя ситуация, сложившаяся в борьбе с инфекциями. Применение субтерапевтических доз в качестве факторов роста.
Рубрика | Медицина |
Вид | реферат |
Язык | русский |
Дата добавления | 08.04.2016 |
Размер файла | 25,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
РЕФЕРАТ
ОТКРЫТИЕ АНТИБИОТИКОРЕЗИСТЕНТНОСТИ
История открытия антибиотиков. Народной медицине давно были известны некоторые способы применения в качестве лечебных средств микроорганизмов или продуктов их обмена, однако причина их лечебного действия в то время оставалась неизвестной. Например, для лечения некоторых язв, кишечных расстройств и других заболеваний в народной медицине применялся заплесневевший хлеб.
В 1871--1872 гг. появились работы русских исследователей В. А. Манассеина и А. Г. Полотебнова, в которых сообщалось о практическом использовании зеленой плесени для заживления кожных язв у человека. Первые сведения об антагонизме бактерий были обнародованы основоположником микробиологии Луи Пастером в 1877 г. Он обратил внимание на подавление развития возбудителя сибирской язвы некоторыми сапрофитными бактериями и высказал мысль о возможности практического использования этого явления.
С именем русского ученого И. И. Мечников а (1894) связано научно обоснованное практическое использование антагонизма между энтеробактериями, вызывающими кишечные расстройства, и молочнокислыми микроорганизмами, в частности болгарской палочкой («мечниковская простокваша»), для лечения кишечных заболеваний человека.
Русский врач Э. Гартье (1905) применил кисломолочные продукты, приготовленные на заквасках, содержащих ацидофильную палочку, для лечения кишечных расстройств. Как оказалось, ацидофильная палочка обладает более ярко выраженными антагонистическими свойствами по сравнению с болгарской палочкой.
В конце XIX -- начале XX в. были открыты антагонистические свойства у спорообразующих бактерий. К этому же периоду относятся первые работы, в которых описываются антагонистические свойства у актиномицетов. Позднее из культуры почвенной спороносной палочки Bacillus brevis Р. Дюбо (1939) удалось выделить антибиотическое вещество, названное тиротрицином, которое представляло собой смесь двух антибиотиков -- тироцидина и грамицидина. В 1942 г. советскими исследователями Г. Ф. Гаузе и М. Г. Бражниковой был выделен из подмосковных почв новый штамм Bacillus brevis, синтезирующий антибиотик грамицидин С, отличающийся от грамицидина Дюбо.
В 1939 г. Н. А. Красильников и А. И. Кореняко из культуры фиолетового актиномицета Actinomyces violaceus, выделенного ими из почвы, получили первый антибиотик актиномицетного происхождения -- мицетин -- и изучили условия биосинтеза и применения мицетина в клинике.
А. Флеминг, изучая стрептококков, выращивал их на питательной среде в чашках Петри. На одной из чашек вместе со стафилококками выросла колония плесневого гриба, вокруг которой стафилококки не развивались. Заинтересовавшись этим явлением, Флеминг выделил культуру гриба, определенную затем как Penicillium notatum. Выделить вещество, подавляющее рост стафилококков, удалось только в 1940 г. оксфордской группе исследователей. Полученный антибиотик был назван пенициллином.
С открытия пенициллина началась новая эра в лечении инфекционных болезней -- эра применения антибиотиков. В короткий срок возникла и развилась новая отрасль промышленности, производящая антибиотики в крупных масштабах. Теперь вопросы микробного антагонизма приобрели важное практическое значение и работы по выявлению новых микроорганизмов -- продуцентов антибиотиков стали носить целенаправленный характер.
В СССР получением пенициллина успешно занималась группа исследователей под руководством 3. В. Ермольевой. В 1942 г. был выработан отечественный препарат пенициллина. Ваксманом и Вудрафом из культуры Actinomyces antibioticus был выделен антибиотик актиномицин, который впоследствии стал использоваться как противораковое средство.
Первым антибиотиком актиномицетного происхождения, нашедшим широкое применение особенно при лечении туберкулеза, был стрептомицин, открытый в 1944 г. Ваксманом с сотрудниками. К противотуберкулезным антибиотикам относятся также открытые позже виомицин (флоримицин), циклосерин, канамицин, рифамицин.
В последующие годы интенсивные поиски новых соединений привели к открытию ряда других терапевтически ценных антибиотиков, нашедших широкое применение в медицине. К ним относятся препараты с широким спектром антимикробного действия. Они подавляют рост не только грамположительных бактерий, которые более чувствительны к действию антибиотиков (возбудители пневмонии, различных нагноений, сибирской язвы, столбняка, дифтерии, туберкулеза), но и грам отрицательных микроорганизмов, которые более устойчивы к действию антибиотиков (возбудители брюшного тифа, дизентерии, холеры, бруцеллеза, туляремии), а также риккетсий (возбудители сыпного тифа) и крупных вирусов (возбудители пситтакоза, лимфогранулематоза, трахомы и др.). В настоящее время число известных антибиотиков приближается к 2000, однако в клинической практике используется всего около 50.
С открытием антибиотиков, обладающих избирательным действием на микробы в организме, могло показаться, что наступила эпоха окончательной победы человека над инфекционными болезнями. Но уже вскоре было обнаружено явление резистентности (устойчивости) отдельных штаммов болезнетворных микробов к губительному действию антибиотиков. По мере увеличения сроков и масштабов практического применения антибиотиков нарастало и число устойчивых штаммов микроорганизмов. Если в 40-х годах клиницистам приходилось сталкиваться с единичными случаями инфекций, вызванных устойчивыми формами микробов, то в настоящее время количество, например, стафилококков, устойчивых к пенициллину, стрептомицину, хлорамфениколу (ле-вомицетину), превышает 60--70% . В 2001 г. Всемирной Организацией Здравоохранения (ВОЗ) был принят и опубликован фундаментальный документ «Глобальная стратегия по сдерживанию антимикробной резистентности»
Открытие и доказательство
Полувековая история науки об антибиотиках включает как накопление данных о механизмах резистентности к ним, так и разработку подробной классификации последних на уровне генома и фенотипа бактерий. Время или очередность открытия основных механизмов резистентности определялось не только их распространенностью, но и большим или меньшим развитием определенных областей биохимии. Так, быстрое открытие ферментативной инактивации антибиотиков обусловлено успехами в формировании энзимологии с ее методами еще в 20-30-е годы; механизмы резистентности к антибиотикам на уровне их мишеней стали известны и объяснимы в результате достигнутой в 50-х годах возможности изучения белкового синтеза в бесклеточных системах. Механизмы резистентности к антибиотикам на уровне оболочки бактериальной клетки стали получать свое конкретное описание гораздо позднее - в 80-90-х годах, ввиду того, что субклеточная организация оболочки в целом, молекулярная организация ее мембранных структур и периплазматического пространства были установлены в основных чертах только к этому времени. Публиковавшиеся ранее разрозненные, хотя и не столь редкие сообщения о слабом накоплении антибиотика в клетках того или иного резистентного штамма фактически еще не касались механизма явления.
Гипотеза о том, что актиномицеты-продуценты антибиотиков, живущие в почвах, становятся источником генов устойчивости к антибиотикам, была сформулирована еще в 1973 году американскими учеными Бенвенистом и Дэвисом (Benveniste, Davies). Однако впоследствии выяснилось, что гены продуцентов АБ имеют очень низкое сходство с генами патогенных бактерий. Поэтому было сделано предположение о том, что любые природные бактерии, а не только сами продуценты, являются источником генов устойчивости к АБ. Первые свидетельства в пользу этого предположения были получены французскими учеными при изучении происхождения генов бета-лактамазы и генов устойчивости к хинолонам. В обоих случаях удалось обнаружить природные бактерии, несущие гены, почти идентичные клиническим. Однако это были лишь единичные примеры; к тому же нельзя было исключить возможность переноса генов в обратном направлении, от клинических штаммов бактерий к бактериям природным.
Для убедительного подтверждения данной гипотезы было необходимо выделить гены, идентичные или практически идентичные клиническим из природных экосистем, не подвергавшихся антропогенному воздействию. Впервые такие гены устойчивости к АБ из абсолютно нетронутых экосистем удалось обнаружить в 2008 году российским генетикам из Института молекулярной генетики РАН. Для этих исследований были использованы образцы «вечной» мерзлоты возрастом от 20 тыс. до 3 млн лет. В 2011 году канадские исследователи также обнаружили гены устойчивости в ДНК, выделенной из образца мерзлоты с Клондайка возрастом 30 тыс. лет. В настоящее время в лабораториях ряда стран активно ведутся геномные исследования в этом направлении. Благодаря всем этим исследованиям уже никто не сомневается в том, что резистентность к АБ имеет глубокие эволюционные корни и существовала задолго до начала применения АБ во врачебной практике.
Чем же объясняется явление антибиотикорезистентности?
Механизмы антибиотикорезистентности
Антибиотикорезистентность -- это устойчивость микробов к антимикробным химиопрепаратам. Бактерии следует считать резистентными, если они не обезвреживаются такими концентрациями препарата, которые реально создаются в макроорганизме. Резистентность может быть природной и приобретенной.
Природная устойчивость. Некоторые виды микробов природно устойчивы к определенным семействам антибиотиков или в результате отсутствия соответствующей мишени (например, микоплазмы не имеют клеточной стенки, поэтому не чувствительны ко всем препаратам, действующим на этом уровне), или в результате бактериальной непроницаемости для данного препарата (например, грамотрицательные микробы менее проницаемы для крупномолекулярных соединений, чем грамположительные бактерии, так как их наружная мембрана имеет «маленькие» поры).
Приобретенная устойчивость. Приобретение резистентности -- это биологическая закономерность, связанная с адаптацией микроорганизмов к условиям внешней среды. Она, хотя и в разной степени, справедлива для всех бактерий и всех антибиотиков. К химиопрепаратам адаптируются не только бактерии, но и остальные микробы -- от эукариотических форм (простейшие, грибы) до вирусов. Проблема формирования и распространения лекарственной резистентности микробов особенно значима для внутрибольничных инфекций, вызываемых так называемыми «госпитальными штаммами», у которых, как правило, наблюдается множественная устойчивость к антибиотикам (так называемая полирезистентность). антибиотикорезистентность геном инфекция
Генетические основы приобретенной резистентности. Устойчивость к антибиотикам определяется и поддерживается генами резистентности (r-генами) и условиями, способствующими их распространению в микробных популяциях. Приобретенная лекарственная устойчивость может возникать и распространяться в популяции бактерий в результате:
* мутаций в хромосоме бактериальной клетки с последующей селекцией (т. е. отбором) мутантов. Особенно легко селекция происходит в присутствии антибиотиков, так как в этих условиях мутанты получают преимущество перед остальными клетками популяции, которые чувствительны к препарату. Мутации возникают независимо от применения антибиотика, т. е. сам препарат не влияет на частоту мутаций и не является их причиной, но служит фактором отбора. Далее резистентные клетки дают потомство и могут передаваться в организм следующего хозяина (человека или животного), формируя и распространяя резистентные штаммы. Мутации могут быть: 1) единичные (если мутация произошла в одной клетке, в результате чего в ней синтезируются измененные белки) и 2) множественные (серия мутаций, в результате чего изменяется не один, а целый набор белков, например пенициллинсвязывающих белков у пенициллин-резистентного пневмококка);
* переноса трансмиссивных плазмид резистентности (R-плазмид). Плазмиды резистентности (трансмиссивные) обычно кодируют перекрестную устойчивость к нескольким семействам антибиотиков. Впервые такая множественная резистентность была описана японскими исследователями в отношении кишечных бактерий. Сейчас показано, что она встречается и у других групп бактерий. Некоторые плазмиды могут передаваться между бактериями разных видов, поэтому один и тот же ген резистентности можно встретить у бактерий, таксономически далеких друг от друга. Например, бета-лактамаза, кодируемая плазмидой ТЕМ-1, широко распространена у грамотрицательных бактерий и встречается у кишечной палочки и других кишечных бактерий, а также у гонококка, резистентного к пенициллину, и гемофильной палочки, резистентной к ампициллину;
* переноса транспозонов, несущих r-гены (или мигрирующих генетических последовательностей). Транспозоны могут мигрировать с хромосомы на плазмиду и обратно, а также с плазмиды на другую плазмиду. Таким образом, гены резистентности могут передаваться далее дочерним клеткам или при рекомбинации другим бактериям-реципиентам.
Реализация приобретенной устойчивости. Изменения в геноме бактерий приводят к тому, что меняются и некоторые свойства бактериальной клетки, в результате чего она становится устойчивой к антибактериальным препаратам. Обычно антимикробный эффект препарата осуществляется таким образом: агент должен связаться с бактерией и пройти сквозь ее оболочку, затем он должен быть доставлен к месту действия, после чего препарат взаимодействует с внутриклеточными мишенями. Реализация приобретенной лекарственной устойчивости возможна на каждом из следующих этапов:
* модификация мишени. Фермент-мишень может быть так изменен, что его функции не нарушаются, но способность связываться с химиопрепаратом (аффинность) резко снижается или может быть включен «обходной путь» метаболизма, т. е. в клетке активируется другой фермент, который не подвержен действию данного препарата.
* «недоступность» мишени за счет снижения проницаемости клеточной стенки и клеточных мембран или «эффлюко»-механизма, когда клетка как бы «выталкивает» из себя антибиотик.
* инактивация препарата бактериальными ферментами. Некоторые бактерии способны продуцировать особые ферменты, которые делают препараты неактивными (например, бета-лактамазы, аминогликозид-модифицирующие ферменты, хлорамфениколацетилтрансфераза). Бета-лактамазы -- это ферменты, разрушающие бета-лактамное кольцо с образованием неактивных соединений. Например, разрушение пенициллина бесклеточными экстрактами клеток E. coli было впервые описано Е.Абрахамом и Е.Чейном в 1940 г. еще до активного применения этого антибиоитика на практике. Гены, кодирующие эти ферменты, широко распространены среди бактерий и могут быть как в составе хромосомы, так и в составе плазмиды.
Генетические механизмы формирования АБР
Существует два принципиальных генетических механизма формирования АБР.
Приобретение новых для бактерии генов детерминант резистентности. Чаще всего новые для бактерий детерминанты резистентности приобретаются с подвижными генетическими элементами - плазмидами и транспозонами. Обычно с подвижными элементами передаются гены ферментов, инактивирующих антибиотики. Однако известны случаи, когда в состав подвижных элементов входят кластеры структурных и регуляторных генов, кодирующих метаболические пути синтеза модифицированных мишеней действия АБП. Считается, что на предшествующих этапах эволюции эти детерминанты были перенесены на подвижные генетические элементы с хромосом бактерий - первичных хозяев. Для ряда детерминант резистентности, локализованных на подвижных генетических элементах, первичные хозяева известны, однако для многих детерминант подобная информация отсутствует.
Модификация собственного генома. Наиболее типичным примером такого механизма являются мутации (аминокислотные замены, делеции, инсерции) в генах, кодирующих мишени действия АБП, системы эффлюкса, а также пориновые каналы. Резистентность к химиопрепаратам формируется практически только по этому механизму. В формировании устойчивости к антибиотикам этот механизм имеет меньшее значение.
Хотя гены устойчивости к АБ у бактерий возникли еще в древности, широкое распространение таких генов среди микроорганизмов началось после начала использования антибактериальных средств в медицине. Активное и повсеместное применение антибактериальных средств послужило мощнейшим эволюционным инструментом, способствуя селекции и распространению бактерий с измененным геномом. Более 100 тыс. тонн АБ, производимых ежегодно, заставляют микроорганизмы проявлять чудеса приспособляемости.
Инфекции для которых формирование АР особенно опасно
1.Enterococcus faecium Наиболее важной особенностью рода энтерококков является их высокий уровень эндемической антибиотикорезистентности. Некоторые энтерококки имеют внутренние механизмы устойчивости к бета-лактамным антибиотикам (пенициллины и цефалоспорины), а также ко многим аминогликозидным[5]. В последние два десятилетия появились особо вирулентные штаммы энтерококков, резистентные к ванкомицину (vancomycin-resistant enterococcus, or VRE) и способные вызывать внутрибольничные инфекции. Особенно распространены в США[4]. Другие развитые страны, такие как Великобритания, были менее задеты эпидемией VRE, а Сингапур в 2005 году остановил ее. VRE поддается лечению комбинацией антибиотиков Quinupristin/dalfopristin (Synercid), с чувствительностью около 70 %
2. Staphylococcus aureus (MRSA) Рост резистентности к современным препаратам, высокая токсичность. Недостаток пероральных препаратов для проведения ступенчатой терапии.
Klebsiella pneumoniae,
Escherichia coli Микроорганизмы, продуцирующие бета-лактамазы расширенного спектра действия, встречающиеся с увеличивающейся частотой и вызывающие тяжёлые, с высокой частотой летальных исходов, инфекции. K. pneumoniae, продуцирующая карбапенемазы, вызывает тяжёлые инфекции в отделениях длительного ухода. Имеется несколько эффективных антибактериальных препаратов, новые препараты на этапе разработки отсутствуют.
Acinetobacter baumannii Доля данного микроорганизма увеличивается повсеместно, в последнее время вызывает нозокомиальные вспышки. Очень высокий уровень летальности. Резистентность к карбапенемам.
Pseudomonas aeruginosa Повсеместное увеличение числа случаев инфекций, вызванных P. aeruginosa. Резистентность к карбапенемам, фторхинолонам, аминогликозидам.
Enterobacter spр. Мультирезистентность, обусловленная выработкой бета-лактамаз расширенного спектра, карбапенемаз, цефалоспориназ; увеличение процента госпитальных инфекций.
По сути, начав активно использовать антибиотики, человек неожиданно для себя поставил широкомасштабный и планомерный эксперимент по отбору устойчивых бактерий. Следует особо подчеркнуть, что в результате этого в клинике произошел отбор не только генов устойчивости, но и особых систем, значительно ускоряющих приобретение новых генов устойчивости за счет ГПГ. Это привело к тому, что АБ, которые еще недавно успешно использовались для борьбы с самыми различными возбудителями инфекций, теперь в подавляющем большинстве случаев оказываются неэффективными. Ведь в процессе эволюции у бактерий выработаны многочисленные приспособительные механизмы, позволяющие быстро меняться и выживать в условиях самого жесткого отбора, будь он естественным или искусственным.
Нынешняя опасная ситуация, сложившаяся в борьбе с инфекциями, напрямую связана с огромным количеством производимых АБ. Большинство из них плохо усваивается человеком и животными, в результате чего от 25% до 75% потребляемых антибактериальных средств без изменений выводится из организма с калом и мочой, попадая затем вместе с водой в естественные водоемы. По всему миру ученые регулярно находят в городских сточных водах высокую концентрацию АБ после их использования в медицине и животноводстве. И никакие очистные сооружения не в силах этому противостоять. Такая ситуация прямо способствует распространению резистентности к АБ: бактерии, живущие в естественной среде, после контакта с малыми дозами АБ из очистных сооружений приобретают к ним устойчивость.Под-тверждением этому служит тот факт, что в местах слива сточных вод постоянно обнаруживаются бактерии с генами устойчивости к АБ, а также бактериофаги, передающие эти гены бактериям. Кроме того, использование для удобрения полей навоза животных, получавших антибиотики, также приводит к заметному увеличению в почве бактерий, содержащих гены устойчивости. Эти гены потом могут передаваться бактериям, живущим на растениях, а затем с растительной пищей попадать в кишечник человека и захватываться кишечной микрофлорой.
В немалой степени способствует распространению устойчивости к АБ заведенная в животноводстве практика создания крупных комплексов с многотысячными поголовьями. Плазмиды с генами устойчивости, R-плазмиды, очень быстро распространяются на ограниченном пространстве с большим количеством животных. И здесь уже можно увидеть социальные причины увеличения резистентности к АБ. Постепенная миграция сельских жителей в города приводит к исчезновению небольших животноводческих хозяйств и замене их гигантскими комплексами, которые являются прекрасным резервуаром для накопления факторов резистентности. В таких комплексах гены устойчивости к АБ приобретают не только животные, но и люди из обслуживающего персонала.
Еще одним важным фактором распространения устойчивости к АБ оказывается принятое сегодня за правило применение субтерапевтических доз АБ в животноводстве в качестве факторов роста. Директор ВОЗ М. Чен привела поразительные данные о том, что более половины всех производимых сегодня антибиотиков скармливают животным для их быстрого роста: «Количество антибиотиков, используемых среди здоровых животных, превышает количество антибиотиков, используемых среди нездоровых людей».
Еще одной ключевой причиной распространения устойчивости к АБ стало необоснованное назначение их врачами (наряду с самолечением). Вообще, как это ни парадоксально, любые контакты со сферой здравоохранения несут в себе повышенный риск заразиться бактериями, устойчивыми к целому спектру АБ. Нужна по-настоящему стерильная чистота, аккуратность и ответственность, чтобы противостоять распространению устойчивых штаммов в таких медицинских учреждениях.
Но даже из такой сложной ситуации есть выход. И здесь будет уместно привести два примера. Дания в конце 1990-х первой в Европе ввела запрет на использование антибиотиков в качестве стимуляторов роста животных. Результаты такого шага не заставили себя ждать. Международная группа экспертов показала, что отказ Дании от АБ в животноводстве не только не нанес большого ущерба доходам фермеров, но и способствовал значительному снижению факторов устойчивости к АБ на фермах и в мясе животных. В выигрыше оказались все, кроме производителей АБ. Германия, запретив использование АБ авопарцина на птицефермах, тоже добилась внушительных результатов: количество энтерококков, устойчивых к ванкомицину (аналогу авопарцина), за четыре года после запрета снизилось в три раза.
Налицо непростая ситуация. Человечество стоит перед очень сложной многогранной проблемой. Научные исследования показали, насколько сложно устроены биологические процессы у живых организмов и как осторожно нужно вмешиваться в их естественный ход. Появление в последние десятилетия устойчивых к лекарствам супербактерий и множества новых инфекций -- лучшее тому подтверждение. Бездумное применение антибиотиков создало реальную угрозу для человечества. И для того, чтобы устранить или хотя бы уменьшить эту угрозу, потребуются большие усилия, и в первую очередь правительств и научно-медицинского сообщества.
Литература
1. Жизнь растений: в 6-ти томах. -- М.: Просвещение. Под редакцией А. Л. Тахтаджяна, главный редактор чл.-кор. АН СССР, проф. А.А. Федоров. 1974. http://trv-science.ru/2015/05/19/rezistentnost-bakterij/
2. Сидоренко С.В., Тишков В.И. Молекулярные основы резистентности к антибиотикам. Успехи биологической химии. 2004, 44: 263-306.
3. http://www.antibiotic.ru/index.php?article=1958
4. http://shift-ed.narod.ru/mikrob/42.htm
5. Антибиотикорезистентность и системы активного выброса ксенобиотиков у бактерий Сазыкин Ю.О., Швец А.В., Иванов В.П. (Москва)
Размещено на Allbest.ru
...Подобные документы
Общая характеристика антимикробных препаратов. Классификация химиотерапевтических средств. Открытие пенициллина в 1928г. Механизмы развития антибиотикорезистентности. Механизм действия антибиотиков. Характеристика и применение антибактериальных средств.
презентация [3,6 M], добавлен 23.01.2012Разработка и производство антибиотиков, хронология изобретений. История открытия пенициллина и его целебного воздействия при различных инфекционных болезнях. Бактериостатические и бактерицидные антибиотики, их свойства и применение; побочные действия.
презентация [354,6 K], добавлен 18.12.2016История открытия пенициллина. Классификация антибиотиков, их фармакологические, химиотерапевтические свойства. Технологический процесс получения антибиотиков. Устойчивость бактерий к антибиотикам. Механизм действия левомицетина, макролидов, тетрациклинов.
реферат [54,1 K], добавлен 24.04.2013Первооткрыватели антибиотиков. Распространение антибиотиков в природе. Роль антибиотиков в естественных микробиоценозах. Действие бактериостатических антибиотиков. Устойчивость бактерий к антибиотикам. Физические свойства антибиотиков, их классификация.
презентация [3,0 M], добавлен 18.03.2012История открытия антибиотиков. Механизм действия антибиотиков. Избирательное действие антибиотиков. Резистентность по отношению к антибиотикам. Основные группы известных на сегодняшний день антибиотиков. Основные побочные реакции на прием антибиотиков.
доклад [30,0 K], добавлен 03.11.2009Изучение лекарственных препаратов под общим названием "антибиотики". Антибактериальные химиотерапевтические средства. История открытия антибиотиков, механизм их действия и классификация. Особенности применения антибиотиков и их побочные действия.
курсовая работа [51,4 K], добавлен 16.10.2014Общая характеристика антибиотиков и особенности их получения. Схема производства пенициллина. Использование рДНК-биотехнологии. Применение антибиотиков в пищевой промышленности и сельском хозяйстве. Классификация антибиотиков по штаммам-продуцентам.
презентация [488,1 K], добавлен 04.12.2015История открытия антибиотиков. Этиотропность антимикробных препаратов. Основные требования, предъявляемые к антибактериальным препаратам. Классификация химиотерапевтических средств. Механизм действия хинолонов. Основные классификации антибиотиков.
реферат [1,1 M], добавлен 05.03.2012Открытие одного из первых антибиотиков - пенициллина, спасшего не один десяток жизней. Оценка состояния медицины до пенициллина. Плесень как микроскопический грибок. Очистка и массовое производство пенициллина. Показания для применения пенициллина.
презентация [438,5 K], добавлен 25.03.2015Анализ историй стационарных больных новорожденных детей с инфекцией мочевыводящих путей, находившихся на лечении в отделении патологии новорожденных и недоношенных детей. Снижение антибиотикорезистентности штаммов Enterobacter к цефтриаксону/гентамицину.
статья [23,2 K], добавлен 18.08.2017История открытия пенициллинов, их природные источники, биологическая роль, строение и свойства. Аппаратурно-технологическая схема получения пенициллина. Методы выделения антибиотиков, их достоинства и недостатки. Методы оценки антибиотической активности.
курсовая работа [2,5 M], добавлен 09.04.2013Механизм действия антибиотиков на микробную клетку, направления и этапы исследования данной тематики, современные достижения. Влияние антибиотиков на макроорганизм. Антибиотикорезистентность и пути ее преодоления. Возможные осложнения при их применении.
реферат [34,4 K], добавлен 25.08.2013Маляриологическая ситуация в мире. Достижения Рональда Росса и Батиста Грасси в истории изучения малярии. Данные Всемирной Организации Здравоохранения (ВОЗ) по заболеваемости малярией. Механизм передачи малярии. Основные меры по борьбе против малярии.
курсовая работа [35,3 K], добавлен 15.06.2011Первые открытия антибиотических структур, изменившие средства борьбы с инфекционными заболеваниями. Вклад в развитие учения об антибиотиках зарубежных и украинских ученых. Новый этап в развитии химиотерапии. Успех применения сульфаниламидных препаратов.
реферат [20,9 K], добавлен 03.12.2013Классификация и характеристика феназинов. Применение феназиновых антибиотиков и их продуцентов. Пути биосинтеза феназиновых антибиотиков. Выделение феназина из культуральной жидкости. Подбор оптимальных условий хранения феназиновых антибиотиков.
курсовая работа [790,8 K], добавлен 18.05.2013Исследование основных свойств и способов получения алкалоидов. Витамины, кофермены и антивитамины, применяемые в качестве лекарственных веществ. Гормоны и их синтетические аналоги. История создания, классификация, способы получения и анализа антибиотиков.
реферат [49,2 K], добавлен 16.11.2010Геномика и медицина. Структура вирусного генома. Другие геномы. Структура генома прокариот. Ориентация генов (направление транскрипции). Гомологичные гены и копийность генов. Изменение функции гена в процессе эволюции. Исследования генома человека.
курсовая работа [2,2 M], добавлен 04.01.2008Госпитальная (нозокомиальная, приобретенная в стационаре) пневмония. Факторы риска полирезистентных возбудителей. Пути проникновения инфекции. Сопутствующие заболевания, клинические признаки, диагностика и лечение. Оптимальный набор антибиотиков.
презентация [471,2 K], добавлен 17.12.2014Характеристика действия основных групп антибиотиков на организм человека. Анализ факторов уменьшения эффективности антибактериальной терапии. Рассмотрение принципов разумного применения антибиотиков в историческом, бытовом и академическом аспектах.
реферат [38,3 K], добавлен 07.04.2010История создания наиболее значимых классов противомикробных средств – сульфамидов, диаминопириидинов, антибиотиков, а также синтетических антибактериальных препаратов нового поколения – фторхинолов. Общая характеристика действия и свойства стрептоцида.
статья [109,5 K], добавлен 05.07.2010