Влияние низкоинтенсивного электромагнитного излучения на течение острой инсулиновой недостаточности у крыс

Использование электромагнитных излучений в терапии заболеваний, резистентных к фармакологическим средствам. Способ излучения крыс с острой инсулиновой недостаточностью. Влияние воздействия на течение болезни, вызванной введением токсических доз аллоксана.

Рубрика Медицина
Вид автореферат
Язык русский
Дата добавления 25.09.2016
Размер файла 251,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Автореферат

диссертации на соискание ученой степени кандидата медицинских наук

Влияние низкоинтенсивного электромагнитного излучения на течение острой инсулиновой недостаточности у крыс

Кокая Н.Г.

1. Общая характеристика работы

Актуальность исследования. За последние годы значительно возросло внимание к проблеме биологического действия электромагнитных полей и излучений, сравнимых по интенсивности с естественным электромагнитным фоном. Этот интерес связан в первую очередь с тем, что малое по величине воздействие вызывает биологические эффекты, сопоставимые, или даже более значительные, чем эффекты, наблюдаемые при действии существенно более высоких доз [А.В. Корнаухов, 2003; В.Н. Бинги, 2005; Д.А. Черенков, 2006]. Проблема изучения механизмов сверхслабых воздействий на биологические системы тесно перекликается с проблемой передачи биологической информации, её записью и хранением в клетках, а так же в межклеточном пространстве и между организмами [Е.Б. Бурлакова, 1990; Р. Pomeranz, 1998].

Несмотря на многолетние исследования, механизмы сверхслабых воздействий на биологические системы остаются плохо изученными [В.Н.Бинги, 2005]. В то же время, на основании многочисленных экспериментальных данных, некоторые авторы [Е.Л. Мальцева, Е.П. Пальмина, 1998] склонны считать, что именно электромагнитные взаимодействия внутри и вне биосистемы оказывают важную регулирующую роль в управлении физиологическими функциями наряду с нейрогормональными, гуморальными и биофизическими факторами.

Большое число работ посвящено использованию низкоинтенсивных электромагнитных излучений в терапии заболеваний, резистентных к фармакологическим средствам и невосприимчивых к большинству известных методов лечения [И.А. Мыскина, 2004; Е.В. Суркова, 2005; С.А. Догадин, 2007]. Одним из таких заболеваний, которое трудно поддается терапии, является сахарный диабет. Постоянно увеличивающаяся распространенность и заболеваемость сахарным диабетом позволила экспертам ВОЗ признать наличие эпидемии сахарного диабета неинфекционного характера [М.И. Балаболкин, Е.М. Клебанова, 2007]. Сложный патогенез сахарного диабета, большое число тяжелых осложнений, трудности лечения делают проблему терапии сахарного диабета ещё более актуальной.

В настоящее время основными элементами лечения сахарного диабета остается диета, инсулинотерапия и применение пероральных противодиабетических препаратов. Физические методы воздействия применяются главным образом для профилактики и лечения осложнений, связанных с сахарным диабетом [А.Ю. Кехоева, К.В. Агаджанова, И.О.Елизарова, 2010]. На сегодняшний день встречаются единичные указания на то, что низкоинтенсивное лазерное излучение могло бы быть использовано как основной патогенетически обусловленный метод лечения сахарного диабета [О.А. Лукина, 2009].

В экспериментальной медицине модель аллоксанового сахарного диабета получила широкое распространение, так как аллоксан избирательно повреждает в-клетки панкреатических островков, а применение токсических доз аллоксана быстро вызывает у крыс развитие острой инсулиновой недостаточности, сопряженной с токсическим повреждением клеток жизненно важных органов [Р. Досон, Д.Эллиот,1991]. Данная экспериментальная модель очень удобна для изучения патогенетических механизмов, связанных с нарушением углеводного обмена, и позволяет быстро оценить различные способы коррекции [Н.Н. Карнищенко, 2004].

Цель исследования. Изучить патофизиологические механизмы действия низкоинтенсивного электромагнитного излучения, преобразованного биоструктурами, в условиях экспериментальной модели острой инсулиновой недостаточности у крыс.

Задачи исследования.

Разработать способ воздействия низкоинтенсивным электромагнитным излучением, преобразованным биоструктурами (пЭМИ), на крыс с острой инсулиновой недостаточностью, вызванной введением токсических доз аллоксана.

Изучить влияние корригирующего воздействия низкоинтенсивным электромагнитным излучением, преобразованного биоструктурами, на течение острой инсулиновой недостаточности у крыс, вызванной введением токсических доз аллоксана.

Исследовать влияние корригирующего воздействия низкоинтенсивным электромагнитным излучением, преобразованным биоструктурами, на биохимические показатели сыворотки крови, морфо-функциональное состояние поджелудочной железы и печени у крыс с острой инсулиновой недостаточностью.

Изучить влияние превентивного воздействия низкоинтенсивным электромагнитным излучением, преобразованным биоструктурами, на течение острой инсулиновой недостаточности у крыс, вызванной введением токсических доз аллоксана.

Исследовать влияние превентивного воздействия низкоинтенсивным электромагнитным излучением, преобразованным биоструктурами, на биохимические показатели сыворотки крови, морфо-функциональное состояние поджелудочной железы и печени у крыс с острой инсулиновой недостаточностью.

Научная новизна. В результате проведенных исследований впервые разработан способ воздействия низкоинтенсивным электромагнитным излучением, преобразованным биоструктурами, на крыс с острой инсулиновой недостаточностью.

Впервые установлено, что предложенный способ способствует снижению летальности и нормализации уровня глюкозы в крови у крыс с экспериментальным сахарным диабетом при корригирующем воздействии и повышению устойчивости животных к повреждающему агенту при превентивном применении.

Впервые показано, что корригирующее воздействие данным видом излучения способствует активации регенерационных процессов в ткани поджелудочной железы наряду с имеющимися деструктивными процессами, а превентивное воздействие оказывает цитопротекторное действие и способствует развитию гипертрофических и гиперпластических процессов в ткани поджелудочной железы.

Впервые выявлено снижение активности панкреатической амилазы и печеночных ферментов у крыс с экспериментальным сахарным диабетом в результате воздействия на них низкоинтенсивным электромагнитным излучением, преобразованным биоструктурами.

Впервые изучены патогенетические механизмы компенсаторно-приспособительного и протекторного действия низкоинтенсивного электромагнитного излучения, преобразованного биоструктурами, на модели острой инсулиновой недостаточности у крыс.

Теоретическая и практическая значимость работы.

Полученные экспериментальные данные расширяют современные представления о биологической роли низкоинтенсивных электромагнитных полей, преобразованных биоструктурами, и их значения в регуляции жизнедеятельности организма.

Совокупность полученных данных и теоретических положений позволяет оценить влияние низкоинтенсивного электромагнитного излучения, преобразованного биоструктурами, на течение экспериментального сахарного диабета и патофизиологически обосновать механизмы действия данного вида излучения на биологические объекты.

Основные положения, выносимые на защиту:

Корригирующее воздействие низкоинтенсивным электромагнитным излучением, преобразованное биоструктурами, способствует активации компенсаторно-приспособительных механизмов, направленных на сохранение жизнедеятельности организма, и активации регенерационных процессов в поврежденном органе у крыс с острой инсулиновой недостаточностью.

Превентивное воздействие низкоинтенсивным электромагнитным излучением, преобразованное биоструктурами, оказывает цитопротекторный эффект, обеспечивая устойчивость животных к действию повреждающего агента.

2. Внедрение результатов исследования

Результаты исследования внедрены в научно-исследовательскую работу ЦНИЛ НИИ ПФМ ГБОУ ВПО НижГМА Минздравсоцразвития России для дальнейшего изучения патофизиологических механизмов сверхслабых воздействий на биологические системы и механизмов, связанных с нарушением углеводного обмена.

Апробация диссертации. Материалы диссертации доложены на школе молодых исследователей "Фундаментальные науки и прогресс клинической медицины" (Москва, 2010), итоговой научной конференции "Татьянин день" (Москва, 2010), 4-ой международной научной конференции молодых ученых медиков (Курск, 2010), 2-ой международной конференции "Фундаментальные и прикладные аспекты медицинской приматологии" (Сочи, 2011), конференции "Психотроника" (Кентукки, США, 2010).

Диссертация апробирована на межкафедральном заседании кафедр нормальной анатомии, патологической физиологии, нормальной физиологии и ЦНИЛ НИИ ПФМ ГБОУ ВПО НижГМА Минздравсоцразвития России 20 января 2012 (протокол №5) (Н. Новгород, 2012).

Личный вклад автора заключался в том, что участвовал в постановке и проведении патофизиологических экспериментов, статистически обрабатывал полученные данные, а также участвовал в написании научных статей.

Публикации. По теме диссертации опубликовано 10 научных работ, из них 5 - в журналах, рекомендованных ВАК.

Объем и структура диссертации. Диссертация изложена на 145 страницах машинописного текста и состоит из введения, обзора литературы, трех глав собственных наблюдений, обсуждения полученных результатов, выводов и практических рекомендаций. Работа иллюстрирована 5 таблицами и 27 рисунками. Библиографический указатель включает 230 источников литературы, из них 107 отечественных и 123 зарубежных авторов.

3. Содержание работы

Материалы и методы исследования

Для решения поставленных в работе целей и задач эксперименты были выполнены на 140 белых лабораторных крысах-самцах линии Wistar в возрасте 5-6 месяцев, массой 180-220 г. Общее количество объектов исследования и распределение по экспериментальным группам представлено в таблице (Табл.1).

Экспериментальный сахарный диабет вызывали путем внутрибрюшинного введения раствора аллоксана, приготовленного extempore в дозе 200 мг/кг, после 24 часового голодания на фоне нормальных показателей уровня глюкозы в крови.

Экспериментальных животных помещали под наблюдение в стандартные условия вивария. Ежедневно в течение 1,5 месяцев оценивали общее состояние животных, количество потребляемой жидкости, фиксировали день гибели животных во всех наблюдаемых группах, регистрировали уровень глюкозы в крови глюкометром Ascensia Entrust фирмы Bayer.

Таблица 1. Общее количество объектов исследования и распределение их по группам

Группа

Вид воздействия

Ткань для модуляции ЭМИ

Число воздействий

пЭМИ

Число животных в группе

1

Контрольная 1

Без воздействия

-

-

20

2

Контрольная 2

Без воздействия

-

-

20

3

Опытная 1

Корригирующие

Поджелудочная железа + селезенка

4

20

4

Опытная 2

Превентивное

Поджелудочная железа + селезенка

4

20

5

Плацебо 1

Корригирующие

-

4

20

6

Плацебо 2

Превентивное

-

4

20

7

Интактные

Без воздействия и моделирования экспериментального СД

-

-

20

В контрольных и плацебо группах забор крови из подъязычной вены для биохимического исследования и изъятие тканей поджелудочной железы и печени для патоморфологического исследования проводили на 3 и 4-е сутки с момента введения аллоксана, что соответствовало дню максимальной гибели животных в этих группах. У интактных крыс и в 1-ой и 2-ой опытных группах забор крови для биохимического исследования осуществляли на 3-е сутки, 8-е сутки эксперимента и через 1,5 месяца с момента введения аллоксана. Изъятие тканей поджелудочной железы для патоморфологического исследования в опытных группах проводили на 8-е сутки и через 1,5 месяца с момента введения аллоксана. Изъятие ткани печени для патоморфологического исследования проводили через 1,5 месяца с момента введения аллоксна.

Содержание уровня глюкозы, общего белка, альбумина, щелочной фосфатазы, АсАТ, АлАТ, амилазы панкреатической, креатинина и мочевины в сыворотке крови экспериментальных животных определяли с помощью биохимического анализатора АБ-02 Уральского оптико-механического завода при длине волны 500/600 нм (режим измерения по конечной точке) и набора специальных реагентов после центрифугирования в течение 10 минут.

Для гистологических исследований ткани фиксировали в 10% нейтральном формалине, обезвоживали в спиртах восходящей концентрации и заливали в парафин. Парафиновые срезы толщиной 5-7 мкм получали на микротоме Leica SM 2000R, окрашивали гематоксилином и эозином и анализировали с помощью микроскопа Leica DMLS. Видеоизображения получали на видеосистеме с помощью CCD-камеры.

Полученные данные были обработаны на персональном компьютере с использованием пакета прикладных программ Microsoft Excel и программы STATISTICA® for Windows, Release 6.0 (2006). Для определения достоверности данных были применены: при количественных нормально распределенных данных - критерий Стьюдента, для непараметрических данных - точный критерий Фишера, непараметрические методы Манна-Уитни. За критерий достоверности была принята величина p<0,05.

Способ воздействия низкоинтенсивным электромагнитным излучением, преобразованным биоструктурами

В качестве источника электромагнитного излучения был использован гелий-неоновый лазер мощностью 2 мВт и длиной волны 632.8 нм, который имеет две одночастотные, совмещенные, ортогональные линейно поляризованные моды излучения [Г.Г. Тертышный, 1999]. Генерацию электромагнитного излучения проводили по схеме интерферометра Фабри-Перо, в которой рабочий лазерный луч многократно проходит через тонкие слои: покровное стекло, слой клеток свежепрепарированных тканей поджелудочной железы или селезенки здорового новорожденного крысенка линии Wistar (Р2-4), предметное стекло. Перед проведением эксперимента изъятые органы (поджелудочная железа, селезенка) в объеме 3 мм3 наносили на предметное стекло, накрывали покровным стеклом и помещали на оптической оси лазерного луча. Юстировку стекол с препаратами проводили таким образом, чтобы обеспечить частичное обратное отражение луча, модулированного препаратами, в резонатор лазера.

Такой многопроходный режим позволяет препарату выступать в роли оптического коррелятора [Мазур, Грачев, 1985] и влиять на распределение вторичных мод излучения лазера. Оптические сигналы регистрировались и подавались на электронную схему, которая управляет режимом генерации лазера, при этом происходит частотная стабилизация когерентного излучения. В таком режиме работы импульсный блок питания лазера, играющий роль передатчика электромагнитного излучения, генерирует преобразованное зондируемыми препаратами электромагнитное излучение. Расстояние от зондируемого препарата до активного элемента лазера 11см.

На рисунке 1 представлены зарегистрированные сигналы электромагнитного излучения He-Ne лазера в состоянии резонанса.

а б

Рис.1. Сигнал с блока питания лазера в резонансном режиме без биообъекта (а) и спектр частотно-амплитудных и фазовых составляющих электромагнитного излучения сканируемой ткани поджелудочной железы (б).

Для исключения побочного влияния внешних факторов воздействия для каждой опытной группы параллельно формировались контрольная и плацебо группы. В контрольных группах (табл.1) воздействие электромагнитным излучением не проводилось. Животных 1-ой опытной группы (табл.1) подвергали корригирующему воздействию электромагнитным излучением, преобразованным тканями поджелудочной железы и селезенки новорожденной крысы (Р2-4) (пЭМИ) с 3-х суток с момента введения аллоксана. На животных 2-ой опытной группы (табл.1) осуществляли превентивное воздействие пЭМИ, за сутки до моделирования аллоксанового сахарного диабета. Животных 1-ой плацебо группы (табл.1) подвергали воздействию электромагнитным излучением, не преобразованным биоструктурами, начиная с 3-х суток с момента введения аллоксана. Животных 2-ой плацебо группы (табл.1) подвергали воздействию электромагнитным излучением, также не преобразованным биоструктурами, а аллоксановый сахарный диабет моделировали спустя сутки после последнего воздействия.

Животных опытных и плацебо групп располагали на расстоянии 70 см от источника электромагнитного излучения. Воздействие пЭМИ на 1 и 2-ю опытные группы проводили ежедневно по 30 минут в течение 4-х дней по схеме: 10 минутное воздействие пЭМИ, полученным в результате прохождения лазерного луча через препарат с тканью поджелудочной железы; 10 минутное воздействие пЭМИ, полученным в результате прохождения лазерного луча через препарат с тканью селезёнки; 10 минутное воздействие пЭМИ, полученным в результате прохождения лазерного луча через препарат с тканью поджелудочной железы. Воздействие не преобразованным биоструктурами электромагнитным излучением на животных 1-ой и 2-ой плацебо групп осуществляли в течение 4-х дней по 30 минут ежедневно. При этом лазерный луч проходил через предметное и покровное стекла, не содержащих биоструктуры.

В группе интактных животных экспериментальный сахарный диабет не моделировали и воздействие электромагнитным излучением не проводили.

4. Результаты исследований и их обсуждение

Особенности течения экспериментального сахарного диабета, вызванного введением токсических доз аллоксана

В ходе настоящего исследования были установлены различия в течение экспериментального сахарного диабета у животных в контрольных и в опытных группах. Не было установлено различий в течение аллоксанового диабета у животных 1-ой и 2-ой контрольных групп (р=0,8) и у животных 1-ой и 2-ой плацебо групп (р=0,9).

Так же не было установлено различий в течении аллоксанового диабета между контрольными и плацебо группами (р=0,6), однако были выявлены существенные различия в течение экспериментального сахарного диабета у животных 1-ой и 2-ой опытных групп (рис. 2) (р=0,03).

После введения аллоксана в дозе 200 мг/ кг у крыс в течение 2-3-х дней развивалась острая инсулиновая недостаточность, сопровождающаяся токсическим повреждением ряда жизненно важных органов и систем. Начиная со 2-х суток с момента введения аллоксана, у животных контрольной и плацебо групп отмечалась выраженная гипергликемия, а средний уровень глюкозы в крови составил 25,93±8,16 ммоль/л, что достоверно отличалось (p=0,004) от исходного значения (рис.2).

Рис. 2. Динамика уровня глюкозы в крови крыс в экспериментальных группах после моделирования острой инсулиновой недостаточности

На фоне резкого повышения уровня глюкозы в крови и развития гиперосмолярного состояния в сыворотки крови крыс контрольных и плацебо групп на 3-е сутки с момента введения аллоксана отмечалось достоверное увеличение содержания общего белка (104,0±4,9 г/л) и альбумина (54,2±3,7 г/л) по сравнению с исходными значениями (63,0±2,4 г/л) (р=0,04) и показателями у интактных крыс (63,5±2,8 г/л) (р=0,03), достоверное увеличение показателей ферментативной активности щелочной фосфатазы (126,5±8,3 МЕ/л) (р=0,05), АсАТ (225,8±10,4 МЕ/л) (р=0,02) и креатинина (168,0±6,8 мкмоль/л) (р=0,05), снижение уровня мочевины до 0,7±0,2 ммоль/л.

Значения уровня ферментативной активности панкреатической амилазы в сыворотки крови крыс в этих группах увеличились не значительно, что является неблагоприятным прогностическим признаком для жизни при острых панкреатитах. Следует отметить, что в этих группах отсутствовало самопроизвольное снижение уровня глюкозы в крови и нормализация биохимических показателей сыворотки крови за период наблюдения (рис.2). Выживаемость животных в контрольных группах составила 30%, а в плацебо 10% (рис.3).

Рис. 3. Выживаемость животных (%) в экспериментальных группах после моделирования острой инсулиновой недостаточности.

Морфологические изменения в ткани поджелудочной железы у крыс в контрольных и плацебо группах были похожи и имели ряд специфических особенностей. В отличие от интактных крыс при гистологическом исследовании поджелудочной железы, у животных этих групп выявлены выраженные дегенеративные изменения островков Лангерганса. Число и размер островков уменьшены, форма их неправильная. Количество в-клеток в островках резко снижено, в большинстве из них отмечалась вакуолизация цитоплазмы, уменьшение размеров ядер, конденсация хроматина, в некоторых клетках - кариопикноз. Выявлено наличие лимфоцитарного инфильтрата вокруг и внутри части островков.

В препаратах печени крыс в этих группах обнаружено сохранение балочного строения клеток, границы гепатоцитов выражены слабо. Ядра средние или крупные с ядрышком. Общее количество клеток не претерпевало значительных изменений по сравнению с интактными, однако, обнаруживались дегенерирующие гепатоциты, в связи с чем, количество нормальных гепатоцитов было меньше. У дегенерирующих гепатоцитов встречались гиперхромные ядра неправильной формы (кариопикноз), у некоторых клеток ядро отсутствовало. У большинства клеток цитоплазма рыхлая с небольшими вакуолями.

Эффект от корригирующего воздействия низкоинтенсивным электромагнитным излучением, преобразованным биоструктурами

На фоне развившейся острой инсулиновой недостаточности на животных 1-ой опытной группы, оказывали корригирующее воздействие низкоинтенсивным ЭМИ He-Ne лазера, преобразованным тканями поджелудочной железы и селезенки новорожденного крысенка (Р 2-4). Средний показатель уровня глюкозы в крови животных 1-ой опытной группы на 4-е сутки с момента введения аллоксана, составил 21,93±9,91 ммоль/л, что достоверно (p=0,02, критерий Фишера) отличалось от исходного значения (5,97±1,38). После воздействия к 7-м суткам с момента введения аллоксана средний показатель уровня глюкозы в крови крыс снизился до 15,75±8,41 ммоль/л (p=0,03, критерий Фишера) (рис.2,4).

В большинстве случаев (65%) после воздействия пЭМИ уровень глюкозы в крови крыс 1-ой опытной группы нормализовался, а у 7 животных (35%) в течение всего периода наблюдения (1,5 месяца) отмечалась выраженная гипергликемия. Несмотря на стойкое повышение уровня глюкозы в крови у этих животных, сохраняющееся в течение длительного периода, их гибели не произошло, а общее состояние расценивали как удовлетворительное.

На 3-е сутки эксперимента у крыс в 1-ой опытной группе показатели общего белка, альбумина, креатинина и мочевины в сыворотки крови оставались в пределах нормы, что достоверно отличалось от тех же показателей в контрольных и плацебо группах (р<0,05). На 3-е и 8-е сутки эксперимента в сыворотке крови животных 1-ой опытной группы отмечалось достоверное увеличение, по сравнению с исходными значениями, показателей щелочной фосфатазы (345,3±12,5 МЕ/л; р=0,01), АсАТ (178,5±13,4 МЕ/л; р=0,03) и значительное увеличение панкреатической амилазы (4986,0±145,5 МЕ/л; р=0,002). Через 1,5 месяца после введения аллоксана у выживших животных отмечалось нормализация биохимических показателей в сыворотки крови. Выживаемость животных в 1-ой опытной группе на 4-е сутки с момента введения аллоксана составила 90%, а к 7-м суткам снизилась до 75% и оставалась на этом уровне в течение 1,5 месяцев, что значительно отличается от показателей выживаемости в контрольных (30%) и плацебо (10%) группах (рис.3).

Гистологическая картина препаратов поджелудочной железы в 1-ой опытной группе на 8-е сутки с момента введения аллоксана характеризовалась признаками функционального напряжения работы клеток островков Лангерганса. Наблюдались в основном мелкие и средние островки. Доля инсулярного аппарата была уменьшена, определялась вакуолизация в-клеток, уменьшение их количества. Деструктивные изменения были выражены в различной степени. Особенностью гистологической картины в препаратах этой группы являлось сохранность ядер клеток островковой зоны железы. Этого не наблюдалось в препаратах поджелудочной железы контрольной и плацебо групп. Спустя 1,5 месяца с момента введения аллоксана гистологическая картина поджелудочной железы в 1-ой опытной группе характеризовалась наличием большого количества мелких островков правильной формы, нормальной гистологической структуры вблизи кровеносных синусов и протоков. Наряду с этим наблюдались дегенеративные изменения в разной степени выраженности, участки воспалительных инфильтратов в строме железы и склероз. Подобные структурные изменения в ткани поджелудочной железы говорят не только о перенесенном цитотоксическом воздействии аллоксана на клетки островковой зоны, приводящие к дегенеративным изменениям, но и об активации регенерационных процессов.

В отличие от контрольных и плацебо групп при гистологическом исследовании препаратов печени крыс 1-ой опытной группы в отдаленном периоде (через 1,5 месяца) были выявлены выраженные дегенеративные изменения в структуре органа. Нарушено балочное расположение гепатоцитов. В паренхиме встречалась лимфоцитарная инфильтрация. Большинство центральных вен значительно расширены и часто полнокровны. В портальных трактах сильная гистиолимфоцитарная инфильтрация. Купферовские клетки умеренно активированы, большинство имеет вытянутую форму. Увеличение количества клеток Купфера в печени крыс является показателем напряженного фагоцитоза, что может быть связано с более активной работой печени по утилизации продуктов распада различных клеточных структур. Гепатоциты немного гипертрофированы. Следует отметить, что большинство ядер в клетках правильной формы, хорошо окрашены, с ядрышками. Так же встречались гепатоциты с "дырчатыми" ядрами, клетки без ядер, или с пикнозом ядра. Двуядерных клеток было очень мало.

Эффект от превентивного воздействия низкоинтенсивным электромагнитным излучением, преобразованным биоструктурами

Во 2-ой опытной группе, на животных которой оказывали превентивное воздействие пЭМИ, наблюдали более выраженный эффект, чем в 1-ой опытной группе (рис. 2, 3, 4). В этой группе не было отмечено ни одного случая летального исхода, наблюдалась 100% выживаемость животных в течение всего периода наблюдения (рис.3). У 90% животных 3-ей группы после введения аллоксана уровень глюкозы в крови оставался в пределах физиологической нормы в течение всего периода наблюдения (1,5 месяца), что достоверно отличалось (р=0,03) от значений показателя уровня глюкозы в крови крыс 1-ой опытной группы (рис. 2, 4).

Рис. 4. Динамика уровня глюкозы в крови животных 1-ой и 2-ой опытных групп за период наблюдения, ммоль/л.

За время наблюдения у двух крыс из 2-ой опытной группы к 6-м суткам эксперимента был отмечен подъем уровня глюкозы в крови более 20 ммоль/л с последующим самопроизвольным снижением до нормальных значений. Изменения биохимических показателей в сыворотке крови крыс 2-ой опытной группы, в отличие от крыс в контрольных, плацебо и 1-ой опытной групп, были менее выраженными. Однако на 3-е и 8-е сутки эксперимента было отмечено достоверное увеличение, по сравнению с исходными значениями, ферментативной активности щелочной фосфатазы (123,7±9,8; р=0,04), АсАТ (156,8±23,4; р=0,05) и панкреатической амилазы (1238,8±235,3; р=0,008), что связано с цитотоксическим действием аллоксана. Через 1,5 месяца с момента введения аллоксана у крыс во 2-ой опытной группе наблюдалась нормализация биохимических показателей в сыворотке крови. В течение всего периода наблюдения общее состояние животных 2-ой опытной группы расценивали как удовлетворительное.

Гистологическая картина препаратов поджелудочной железы во 2-ой опытной группе на 8-е сутки с момента введения аллоксана значительно отличалась от 1-ой опытной группы, контрольных и плацебо групп. Наряду с патологической картиной ткани поджелудочной железы и воспалительными изменениями в ней, в препаратах наблюдали большое количество островков как мелких, так и среднего и крупного размеров с просветлённой цитоплазмой, правильной округлой формой, крупными, округлыми ядрами, содержащими ядрышко. Встречались островки по своей структуре близкие к структуре островкового аппарата интактных крыс. Спустя 1,5 месяца с момента введения аллоксана гистологическая картина в этой группе характеризовалась признаками гипертрофии и гиперплазии поджелудочной железы. Наблюдали большое количество островков разного размера, правильной округлой формы. Структура островков и отдельных в-клеток была не изменённой, ядра в клетках большие, округлые с ядрышками.

При гистологическом исследовании печени во 2-ой опытной группе обнаружили организованную балочную структуру паренхимы печени на большей части площади препарата. Около крупных сосудов умеренное скопление темно-окрашенных клеток лимфоидного типа. Синусоиды умеренно расширены. Цитоплазма большинства гепатоцитов умеренно оксифильная, зернистая с небольшими вакуолями. По сравнению с 1-ой опытной группой отмечено появление нормальных гепатоцитов. Ядро у большей части клеток четкое, хорошо структурированное, хорошо окрашенное с четко различимыми ядрышками. Двуядерные клетки встречались редко.

Заключение

электромагнитный инсулиновый болезнь токсический

Ввиду избирательного цитотоксического действия аллоксана на клетки поджелудочной железы у экспериментальных животных в контрольных и плацебо группах развивалась острая инсулиновая недостаточность, которая, согласно биохимическим показателям, сопровождалась выраженной гипергликемией, гиперосмолярностью, кетоацидозом в сочетании с собственным токсическим действием аллоксана. Не корригируемая инсулиновая недостаточность приводила к гибели животных на 3-4-е сутки с момента введения аллоксана. Несмотря на выраженные дегенеративные изменения в поджелудочной железе значимых изменений в структуре печени обнаружено не было.

Гистологическая картина печени в большей степени была характерна для токсического повреждения клеток печени (кетоацидоз, собственное токсическое действие аллоксана), которое представлено дегенерирующими гепатоцитами без разрушения структуры паренхимы печени. Это говорит о том, что ввиду острой не корригируемой инсулиновой недостаточности при применении токсических доз аллоксана животные контрольных и плацебо групп погибали раньше, чем реализовывались компенсаторно-приспособительные механизмы, характерные для длительного хронического течения сахарного диабета, которые имели бы отражение в структурных изменениях заинтересованного органа - печени.

Напротив, у животных 1-ой опытной группы, которые подвергались корригирующему воздействию пЭМИ в остром периоде и выживали после введения токсических доз аллоксана, отдаленная морфологическая картина в поджелудочной железе, наряду с деструктивными изменениями, характеризовалась признаками начинающейся регенерации поврежденного органа, а в печени - выраженными дегенеративными изменениями в структуре органа. Подобные изменения в печени были обусловлены как последствиями острого цитотоксического действия аллоксана, так и воздействием ряда патологических факторов, появляющихся при хроническом течении инсулиновой недостаточности и нарушении углеводного обмена.

На первом этапе корригирующее воздействие электромагнитным излучением, преобразованное тканями поджелудочной железы и селезенки новорожденного крысенка, у животных с развившейся острой инсулиновой недостаточностью (1-я опытная группа) стимулировало активацию компенсаторно-приспособительных механизмов, направленных на сохранение жизнедеятельности, о чем говорит высокая выживаемость животных в остром периоде (90%).

На втором этапе, учитывая наличие стойкого патологического состояния, у животных начинали реализоваться компенсаторно-приспособительные механизмы, направленные на восстановление утраченной функции и нормализацию углеводного гомеостаза, которые сопровождались выраженными изменениями паренхиматозной структуры заинтересованного органа - печени, и активации процессов регенерации в поджелудочной железе. Об успешной реализации компенсаторно-приспособительных механизмов говорила высокая выживаемость животных в этой группе в течение всего периода наблюдения (75%), положительная динамика уровня глюкозы в крови и биохимических показателей в сыворотке крови (рис. 2, 3, 4).

В отличие от корригирующего воздействия пЭМИ, превентивное воздействие на животных 2-ой опытной группы оказало цитопротекторный эффект на клетки поджелудочной железы, вероятно, за счет повышения резистентности тканей к стрессорным воздействиям. Активация компенсаторно-приспособительных механизмов у крыс, в результате превентивного воздействия пЭМИ, способствовала 100% выживаемости и устойчивости животных к действию аллоксана в остром периоде, а в более поздние сроки привела к гипертрофическими и гиперпластическими изменениям в поджелудочной железе, которые носили компенсаторный характер, сохранении морфологической структуры печени.

Разработан способ коррекции экспериментальной острой инсулиновой недостаточности у крыс, основанный на воздействии низкоинтенсивным электромагнитным излучением гелий-неонового лазера, преобразованным тканями поджелудочной железы и селезенки новорожденного крысенка.

На экспериментальной модели аллоксанового диабета показано, что корригирующее воздействие данным видом излучения приводит к снижению уровня глюкозы в крови до нормальных значений у 65% животных и 75% выживаемости.

3. При корригирующем воздействии низкоинтенсивным электромагнитным излучением, преобразованным биоструктурами, на животных с экспериментальной инсулиновой недостаточностью реализовались компенсаторно-приспособительные механизмы, приводящие к нормализации биохимических показателей сыворотки крови и активации процессов регенерации в ткани поджелудочной железы, но сопровождались дегенеративными изменениями в структуре ткани печени.

4. Установлено, что превентивное воздействие низкоинтенсивным электромагнитным излучением, преобразованное тканями поджелудочной железы и селезенки новорожденной крысы, предотвращает повышение уровня глюкозы в крови и обеспечивает 100% выживаемость животных при последующем введении токсических доз аллоксана.

5. В основе превентивного воздействия данным видом излучения лежит выраженный цитопротекторный эффект на клетки поджелудочной железы, что способствует нормализации биохимических показателей в сыворотке за счет развития гипертрофических и гиперпластических процессов в поврежденном органе и сохранении структуры ткани печени.

Полученные результаты могут быть использованы для дальнейшего исследования патофизиологических механизмов действия низкоинтенсивных электромагнитных излучений на биологические объекты, как при острой инсулиновой недостаточности, так и при других патологических состояниях организма.

Список научных работ, опубликованных по теме диссертации

1. Влияние модулированного биоструктурами электро- магнитного излучения на течение аллоксанового сахарного диабета у крыс / Гаряев П.П., Кокая А.А., Мухина И.В., Кокая Н.Г. // Бюллетень Экспериментальной Биологии и Медицины №2, 2007, с. 155-158.

2. Влияние превентивного воздействия модулированного био- структурами электромагнитного излучения на морфологические изменения в поджелудочной железе у крыс с экспериментальной инсулиновой недостаточностью / Кокая Н.Г., Кокая А.А., Мухина И.В. // Материалы итоговой научной конференции "Татьянин день". - Москва- 2010.- с. 59.

3. Особенности морфологических изменений в поджелудочной железе у крыс при лечении экспериментальной инсулиновой недостаточности электромагнитным излучением / Кокая Н.Г., Кокая А.А., Мухина И.В. // Материалы к докладу школы молодых исследователей "Фундаментальные науки и прогресс клинической медицины". - Москва- 2010.- с. 88.

4. Влияние корригирующего и превентивного воздействия модулированного биоструктурами электромагнитного излучения на течение экспериментального сахарного диабета у крыс / Кокая Н.Г., Кокая А.А., Мухина И.В. // Тезисы 4-ой Международной научной конференции молодых ученых медиков. - Курск - 2010.- с. 158-161.

5. Эффект от воздействия электромагнитным излучением модулированным тканью поджелудочной железы и селезенки на течение экспериментального сахарного диабета у крыс / Фридман М., Кокая А.А., Кокая Н.Г., Мухина И.В. // Труды конференции "Психотроника"- Кентукки, США- 2010.-с. 22-25.

6. Влияние низкоинтенсивного лазерного излучения на отдаленные структурные перестройки в ткани поджелудочной железы у крыс с острой инсулиновой недостаточностью/ Кокая А.А., Кокая Н.Г., Мухина И.В. //

7. Влияние корригирующего и превентивного воздействия электромагнитным излучением, модулированным биоструктурами, на течение острой инсулиновой недостаточности у крыс / Кокая Н.Г., Кокая А.А., Мухина И.В. // Современные технологии в медицине №3, 2011, с. 11-15.

8. Морфологические изменения в поджелудочной железе крыс при коррекции острой инсулиновой недостаточности электромагнитным излучением, модулированным биоструктурами / Кокая Н.Г., Кокая А.А., Мухина И.В. // Естественные и технические науки №3(53), 2011, с. 156-164.

9. Влияние модулированного биоструктурами электромагнитного излучения на отдаленные адаптационные структурные перестройки клеток печени у крыс с экспериментальным сахарным диабетом / Кокая Н.Г., Кокая А.А., Мухина И.В. // Вестник новых медицинских технологий №3, 2011, с. 123-126.

10. Отдаленные адаптационные структурные перестройки клеток печени и поджелудочной железы крыс при коррекции острой инсулиновой недостаточности электромагнитным излучением, модулированным биоструктурами / Кокая А.А., Кокая Н.Г., Мухина И.В. // Медицинский альманах №5, 2011, с. 175-179.

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.