Строение и функции синапсов
Характеристика пресинаптической и постсинаптической мембраны. Особенность превращения фенилаланина в тирозин. Анализ влияния экстранейронального захвата на сохранение адреналина. Классификация лекарственных средств, влияющих на адренергические синапсы.
Рубрика | Медицина |
Вид | статья |
Язык | русский |
Дата добавления | 24.06.2017 |
Размер файла | 351,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
СТРОЕНИЕ И ФУНКЦИИ СИНАПСОВ. АДРЕНЕРГИЧЕСКИЕ СИНАПСЫ
Синапс (от греч. synapsis - «соприкосновение, соединение») - функциональный (химический) контакт двух нервных клеток или нервной клетки и клетки исполнительного органа. Медиатор (от лат. mediator - «посредник») - вещество, выделяемое из нейрона или нейроглии, влияющее на электрохимический статус и метаболизм других клеток (табл. 9-1).
Исследованием физиологии, биохимии и фармакологии синаптической передачи занимались ученые многих стран (указаны годы выполнения исследований).
• Джон Лэнгли был автором идеи о постсинаптических рецепторах, опосредующих эффекты адреналина, никотина и кураре. Он предположил, что рецепторы способны активировать или тормозить функции эффекторных клеток, описал места выхода вегетативных нервов из ЦНС, их анатомические и функциональные особенности, разделил вегетативные нервы на симпатические и парасимпатические(1901- 1907).
• Томас Эллиот (студент Дж. Лэнгли в Кембридже) установил, что гормон надпочечников адреналин вызывает такие же эффекты, какие возникают при раздражении симпатических нервов. Т. Эллиот предсказал роль адреналиноподобного вещества как медиатора симпатической системы (1905).
• Уолтер Эрнест Диксон обратил внимание на сходство симптомов отравления алкалоидом мухомора мускарином и эффектов раздражения парасимпатического блуждающего нерва. Предположил, что блуждающий нерв выделяет мускариноподобное вещество (1907).
• Рид Хант описал эффекты ацетилхолина и его эфиров (1907).
• Генри Дейл открыл мускарино- и никотиноподобное влияние ацетилхолина, объяснил непродолжительное действие этого медиатора быстрым гидролизом на холин и ацетат. Он также выявил антиадренергический эффект алкалоидов спорыньи, описал адренергические и холинергические волокна (1914-1936).
• Уолтер Кеннон установил роль адреналиноподобного вещества (симпатина) как симпатического передатчика, вызывающего тахикардию и артериальную гипертензию. Отметил различия в действии симпатина (суживает сосуды) и адреналина (суживает или расширяет сосуды). Создал концепцию симпатоадреналовой системы (1921-1937).
• Отто Леви впервые экспериментально доказал медиаторный механизм передачи нервных импульсов (1921). Совместно с Эрнстом Навратилом идентифицировал ацетилхолин как медиатор блуждающего нерва(Уади551о11) (1926).
• Александр Филиппович Самойлов установил, что в передаче потенциалов действия по нерву участвуют электрические процессы, но для работы нервно-мышечных синапсов необходимы химические процессы. Предположил химический механизм торможения в ЦНС (1924).
• Вильгельм Фельдберг, Джон Гэддам и Говард Чанг доказали медиаторную функцию ацетилхолина в различных парасимпатических нервах (1933-1936).
• Бернард Кац открыл механизм выделения ацетилхолина в нервно-мышечных синапсах (1935-1940).
• Василий Васильевич Закусов - автор синаптической теории действия лекарственных средств на ЦНС (1930-е гг.).
• Алексей Васильевич Кибяков установил, что в переключении нервных импульсов в вегетативных ганглиях участвуют химические процессы (1933).
• Ульф Эйлер открыл медиаторную роль норадреналина (1946).
• Сергей Викторович Аничков установил участие ацетилхолина в функционировании каротидных клубочков (1946).
Г. Дейл и О. Леви в 1936 г., Б. Кац и У. Эйлер в 1970 г. были удостоены Нобелевской премии по медицине за работы о механизмах синаптической передачи нервных импульсов.
Прогресс в изучении синаптической передачи обеспечили эксперименты с использованием внутриклеточных микроэлектродов, микроионофоретической аппликации химических веществ и чувствительные аналитические методы (гистохимический, иммуноцитохимический, ауторадиографический). Об истории изучения синаптической передачи можно прочитать в сборнике «Теория химической передачи нервного импульса (этапы развития)» / Под. ред. М.Я. Михельсона. - СПБ.: Наука, 1981. - 143 с.
Строение и функции синапсов
В синапсах различают две контактирующие мембраны:
• передающую пресинаптическую мембрану аксона;
• воспринимающую постсинаптическую мембрану нервной клетки (тело, дендрит, аксон) или клетки исполнительного органа.
Между пресинаптической и постсинаптической мембраной находится синаптическая щель шириной 20-40 нм. Она заполнена полисахаридным гелем, имеет каналы для диффузии медиатора. Синапс ограничен филаментами, препятствующими выходу медиатора за пределы синаптической щели.
Низкомолекулярные медиаторы синтезируются в окончании аксона и депонируются в связи с белком в синаптических пузырьках (везикулах). Медиаторы-пептиды образуются в теле нейрона и в составе синаптических пузырьков транспортируются быстрым аксоплазматическим потоком в пресинаптическую зону. Синаптические пузырьки формируются из мембраны ЭПР.
Во время потенциала покоя через пресинаптическую мембрану выделяются единичные кванты медиатора.
Они вызывают миниатюрные потенциалы действия (0,1-3,0 мВ) на постсинаптической мембране, необходимые для поддержания физиологической реактивности органов и тонуса скелетных мышц, которые, в отличие от гладких, не имеют спонтанного миогенного тонуса.
Синаптическая передача начинается с потенциала действия пресинаптической мембраны. Положительный заряд на внутренней поверхности пресинаптической мембраны вызывает слипание с ее активными зонами отрицательно заряженных синаптических пузырьков, содержащих белок синаптобревин1. Входящий ток ионов кальция катализирует взаимодействие белков пресинаптической мембраны (синтаксин-1,8ЫАР-251) с синаптобревином. В пресинаптической мембране открывается канал (синаптопор) для экзоцитоза (выброса) квантов медиатора в синаптическую щель. Один потенциал действия вызывает выделение нейромедиатора из 300-2000 синаптических пузырьков. В экзоцитозе участвуют белки синаптостигмины.
1 Другое название синаптобревина - VAMP (Vesicle Associated Membrane Рго1ет;мембранный белок, связанный с пузырьками).
• Нейрональным захватом - активным транспортом через пресинаптическую мембрану в синаптические пузырьки для повторного участия в передаче нервных импульсов. Нейрональный захват способствует депонированию норадреналина, дофамина, серотонина, ГАМК, глицина, глутаминовой кислоты.
• Экстранейрональным захватом - депонированием в исполнительных органах.
• Ферментативным расщеплением. Таким путем полностью инактивируются ацетилхолин, медиаторы пептидной природы.
Недавние исследования выявили новые функции медиаторов. Они могут выделяться из нейроглии и действовать на циторецепторы нейроглии. В нервно-мышечных синапсах ацетилхолин выделяется не только из окончаний двигательных нервов, но и из шванновских клеток. Циторецепторы к медиатору могут располагаться на клетках-мишенях, значительно удаленных от места выброса, при этом передача сигнала становится медленной и диффузной. Опровергнут принцип Дейла «один нейрон - один медиатор». Выделение большинства классических медиаторов сопровождается одновременным выбросом нейропептидов (энкефалинов, субстанции Р, нейропептида Y, вазоактивного интестинального пептида, соматостатина), пуринов (АТФ, аденозина), оксида азота (NO). В спинном мозге в одном и том же синапсе выделяются два тормозящих медиатора - ГАМК и глицин.
1 SNAP-25 - SyNaptosome Associated Protein of 25 kDa; белок массой 25 кДа, связанный с синаптосомами.
Таким образом, адренергические волокна - только симпатические постганглионарные; холинергические волокна - двигательные, симпатические преганглионарные, парасимпатические преганглионарные и постганглионарные.
Адренергические синапсы
Адренергические нейроны расположены в ЦНС (голубое пятно среднего мозга, мост, продолговатый мозг) и симпатических ганглиях.
Периферические адренергические синапсы образованы варикозными утолщениями разветвлений постганглионарных симпатических волокон.
Медиатором адренергических синапсов является норадреналин. Его биохимический предшественник дофамин выполняет медиаторную функцию в дофаминергических синапсах. Адреналин - гормон мозгового слоя надпочечников. Все три вещества относятся к группе катехоламинов, так как содержат гидроксильные группы в 3-м и 4-м положении ароматического кольца.
Синаптические пузырьки в адренергических синапсах по данным электронной микроскопии имеют гранулярное строение и поэтому получили название «гранулы».
В гранулах норадреналин депонирован в связи с АТФ и белком хромогранином. В составе гранул обнаружены также ферменты и модулирующие нейропептиды (энкефалины, нейропептид Y).
Норадреналин синтезируется из аминокислоты тирозина. Превращение фенилаланина в тирозин является неспецифическим процессом и происходит в печени. Обе аминокислоты содержатся в больших количествах в твороге, сыре, шоколаде, бобовых.
Тирозин активным транспортом поступает в адренергические окончания. В их аксоплазме он приобретает второй гидроксил-радикал в 3-м положении ароматического кольца и превращается в диоксифенилаланин (ДОФА). Эту реакцию катализирует тирозингидроксилаза митохондрий. Затем ДОФА декарбоксилазой ароматических L-аминокислот декарбоксилируется в дофамин. Дофамин из аксоплазмы транспортируется в гранулы. На последнем этапе дофамин приобретает третий гидроксил в р-положении боковой цепи при участии дофамин- р-гидроксилазы.
В мозговом слое надпочечников норадреналин выходит из гранул и в цитоплазме метилируется в гормон адреналин под действием ^метилтрансферазы (донатором метильных групп служит S-аденозил-метионин) (рис. 9-1). Образование адреналина повышают глюкокортикоиды, эстрогены и тироксин. Глюкокортикоиды, поступая в мозговой слой по воротной системе надпочечников, активируют тирозингидроксилазу, дофамин- р- гидроксилазу и ^метилтрансферазу. У некоторых видов акул корковый и мозговой слои надпочечников представляют собой изолированные железы, поэтому у них адреналин не синтезируется, а единственным гормоном хромаффинных клеток является норадреналин.
После диссоциации комплекса «норадреналин-адренорецептор» медиатор инактивируется в течение 2-3 мин при участии ряда механизмов.
• Нейронального захвата (захвата-1) - активного транспорта вначале через пресинаптическую мембрану (сопряжен с выходом ионов натрия), а затем через мембрану гранул под влиянием протонной АтФазы (при входе в гранулу одной молекулы норадреналина в аксоплазму выходят 2 протона).
Экстранейронального захвата (захвата-2) нейроглией, фибробластами, кардиомиоцитами, клетками эндотелия и миоцитами сосудистой стенки.
Рис. 1. Биосинтез адреналина
Около 80% норадреналина подвергается нейрональному захвату и по 10% - экстранейрональному захвату и ферментативному расщеплению. Необходимость нейронального захвата диктуется дефицитом субстратов и большой потребностью в энергии для синтеза норадреналина из тирозина.
Для сохранения адреналина основное значение имеет экстранейрональный захват.
Ферменты инактивации катехоламинов - МАО и катехол-О-метил-трансфераза (КОМТ). МАО, локализованная на внешней мембране митохондрий и в гранулах, осуществляет окислительное дезаминирование катехоламинов с образованием биогенных альдегидов. Затем альдегиды окисляются НАД-зависимой альдегиддегидрогеназой в кислоты или восстанавливаются альдегидредуктазой в гликоли.
Цитоплазматический фермент КОМТ катализирует присоединение метильной группы к гидроксилу в 3-м положении ароматического кольца (только при наличии гидроксила в 4-м положении). Донатором метильных групп служит S-аденозилметионин. Метилированные продукты в 200-2000 раз (по результатам разных тестов) менее активны, чем норадреналин и адреналин. мембрана тирозин адренергический синапс
Адренорецепторы
В 1948 г. английский фармаколог Рассел Алквист выдвинул гипотезу о двух типах адренорецепторов. а- Адренорецепторы суживают сосуды, наиболее чувствительны к эпинефрину, меньше реагируют на норэпинефрин и очень слабо воспринимают действие изопреналина (изопропилнорадреналина). р- Адренорецепторы расширяют сосуды, обладают максимальной чувствительностью к изопреналину, в 10-50 раз слабее реагируют на эпинефрин и норэпинефрин.
Адренорецепторы обнаружены на постсинаптической, пресинаптической мембранах и в клетках, не получающих адренергической иннервации. Постсинаптические адренорецепторы имеют индексы 1 или 2, пресинаптические и внесинаптические адренорецепторы обозначаются индексом 2. Внесинаптические адренорецепторы активируются циркулирующими в крови норадреналином и адреналином. р- Адренорецепторы жировой ткани имеют индекс 3.
Все адренорецепторы характеризуются сходной последовательностью аминокислот (у а!- и а2- адренорецепторов идентичны 30% аминокислот, у рг и р2-адренорецепторов - 60%).
В сосудах и внутренних органах расположены а- и р-адренорецепторы различных типов. Например, в сосудах легких обнаружено 30% ргадренорецепторов и 70% р,,-адренорецепторов.
Адренорецепторы являются гликопротеинами, ассоциированы с G-белками и имеют такое же строение, как и другие рецепторы этого типа. Их белковая цепь состоит из семи гидрофобных доменов в виде трансмембранной спирали, Домены соединены гидрофильными петлями, расположенными попеременно по обе стороны мембраны. вконец белковой молекулы адренорецептора расположен внеклеточно, С-конец - внутри клетки. Активный центр адренорецептора представляет собой карман, образованный высококонсервативными аминокислотами, расположенными в средней и во внеклеточной третях гидрофобных трансмембранных спиралей. Аминогруппа катехоламинов соединяется ионной связью с карбоксилом аспарагиновой кислоты в третьем трансмембранном домене. Гидроксилы катехоламинов образуют водородную связь с остатками серина в пятом и седьмом доменах, что необходимо для активации адренорецепторов.
Сведения о механизмах функционирования, чувствительности к агонистам и антагонистам, физиологической роли адренорецепторов представлены в табл. 9-2-9-4.
Таблица 2. Адренорецепторы и их эффекторные системы
а-Адренорецепторы
Постсинаптические а-|-адренорецепторы (типы А, В, D) активируют мембранные фосфолипазы и увеличивают проницаемость кальциевых каналов. В гладких мышцах ионы кальция активируют
Примечания. Э - эпинефрин; НЭ - норэпинефрин; И - изопреналин.
кальмодулинзависимую киназу легких цепей миозина, что необходимо для образования актомиозина и сокращения. Только в желудке и кишечнике а-|-адренорецепторы, открывая кальцийзависимые калиевые каналы, вызывают гиперполяризацию сарколеммы и расслабление гладких мышц. Эффекты активации аг адренорецепторов следующие:
• сокращение радиальной мышцы радужки с расширением зрачков (мидриаз, от греч. ату^оэ - «темный, неясный»);
• сужение сосудов кожи, слизистых оболочек, органов пищеварения, почек и головного мозга;
• повышение АД;
• сокращение капсулы селезенки с выбросом депонированной крови в циркуляторное русло;
• сокращение сфинктеров пищеварительного тракта и мочевого пузыря;
• подавление моторики и снижение тонуса желудка и кишечника. а2-Адренорецепторы (типы А, В, С) локализованы на постсинаптической, пресинаптической мембранах и вне синапсов.
Пресинаптические а2-адренорецепторы ингибируют аденилатциклазу и тормозят синтез цАМФ, увеличивают проницаемость мембран для К+ с развитием гиперполяризации, блокируют кальциевые каналы. По принципу отрицательной обратной связи они тормозят выделение норадреналина из адренергических окончаний при избыточной активации адренорецепторов.
Постсинаптические а2-адренорецепторы суживают сосуды кожи и слизистых оболочек, угнетают моторику желудка и кишечника, подавляют секрецию кишечного сока.
Внесинаптические а2-адренорецепторы суживают сосуды кожи и слизистых оболочек, угнетают моторику желудка и кишечника, секрецию инсулина, повышают агрегацию тромбоцитов.
в-Адренорецепторы
в-Адренорецепторы, активируя аденилатциклазу, вызывают превращение АТФ в цАМФ - активатор цАМФ- зависимых протеинкиназ. Протеинкиназа А транспортируется в ядро клеток и фосфорилирует фактор транскрипции - ДНК-связывающий белок. Этот белок регулирует активность цАМФ-чувствительного элемента в промоторном участке гена, в результате активируется синтез в-адренорецепторов.
Для постсинаптических вгадренорецепторов характерны следующие эффекты:
• стимуляция сердечной деятельности: тахикардия, ускорение проведения возбуждения по проводящей системе, усиление сокращений миокарда, увеличение потребности в кислороде (вгадренорецепторы при участии Эз-белков стимулируют фосфорилирование кальциевых каналов, что сопровождается их открытием, входом в саркоплазму Са2+ и мобилизацией этого иона из саркоплазматического ретикулума; также фосфорилируется белок фосфоламбан, способствующий депонированию Са2+ в саркоплазматическом ретикулуме);
• стимуляция секреции ренина;
• угнетение моторики кишечника.
Постсинаптические и внесинаптические в2-адренорецепторы расслабляют гладкие мышцы и вызывают гипергликемию. В гладких мышцах они при участии цАМФ снижают активность киназы легких цепей миозина, в печени и скелетных мышцах активируют фермент гликогенолиза фосфорилазу, ингибируют гликогенсинтазу. Кроме того, в гладких мышцах блокируются кальциевые каналы и активируются калиевые каналы. Типичные эффекты в2-адренорецепторов следующие:
• расширение сосудов сердца, легких и скелетных мышц;
• снижение АД;
• расширение бронхов и угнетение секреторной функции бронхиальных желез;
• угнетение моторики желудка и кишечника;
• расслабление желчного пузыря, мочевого пузыря, матки;
• усиление цАМФ-зависимого гликогенолиза и глюконеогенеза;
• активация гликогенолиза в скелетных мышцах;
• стимуляция секреции инсулина.
Пресинаптические р2-адренорецепторы осуществляют обратную связь, стимулируя выделение норадреналина при недостаточной активации адренорецепторов.
р3-Адренорецепторы усиливают цАМФ-зависимый липолиз в жировых депо с повышением в крови содержания свободных жирных кислот. Полиморфизм гена р3-адренорецептора создает предрасположенность к развитию ожирения и сахарного диабета 2-го типа.
р-Адренорецепторы подвергаются гомологической и гетерологической десенситизации. Гомологическая десенситизация развивается только к действию р-адреномиметиков. Под их влиянием медленно фосфорилируется специфическая цАМФ-независимая протеинкиназа - киназа р-адренорецепторов. Этот фермент фосфорилирует комплекс "р-адренорецепто-рЛ-адреномиметик". В дальнейшем присоединяется белок р-аррестин, нарушающий связь регуляторного домена р-адренорецепторов с G-белком. Инактивированный комплекс подвергается интернализации в цитоплазму и деградации в лизосомах.
При гетерологической десенситизации в ответ на действие р-адреномиметиков ослабляется реакция на многие вещества, повышающие синтез цАМФ. Она обусловлена быстрым (в течение миллисекунд) фосфорилированием р-адренорецептора протеинкиназой А с последующей утратой способности передавать сигнал на эффекторные системы.
Классификация лекарственных средств, влияющих на адренергические синапсы
В табл. 9-5 перечислены основные лекарственные средства, влияющие на адренергические синапсы.
Таблица 5. Лекарственные средства, влияющие на адренергические синапсы
Размещено на Allbest.ru
...Подобные документы
Точки приложения действия адренергических средств. Локализация адренорецепторов. Классификация адренергических средств. Схема адренергического синапса. Влияние адреналина на артериальное давление. Действие фентоламина при эссенциальной гипертензии.
презентация [312,8 K], добавлен 20.10.2013Строение и функции адренергического синапса и классификации лекарственных средств, влияющих на него. Фармакологические эффекты, показания к применению и сравнительная характеристика препаратов: адреномиметики, адренолитики, адреноблокаторы, симпатолитики.
презентация [1,5 M], добавлен 22.09.2015Системы кроветворения. Характеристика лекарственных средств, влияющих на гемопоэз. Фармакологическая характеристика некоторых лекарственных средств, содержащих железо, фолиевую кислоту и цианокобаламин. Эритропоэтин и колониестимулирующие факторы.
реферат [28,9 K], добавлен 23.03.2011Адренергические лекарственные средства природного и синтетического происхождения. Процесс биосинтеза норадреналина. Фармакологическое воздействие на адренергическую передачу нервных импульсов. Классификация адреноблокаторов, адренергических средств.
презентация [717,7 K], добавлен 23.10.2013Понятие биологической доступности лекарственных средств. Фармако-технологические методы оценки распадаемости, растворения и высвобождения лекарственного вещества из лекарственных препаратов различных форм. Прохождение лекарственных веществ через мембраны.
курсовая работа [2,2 M], добавлен 02.10.2012Проблема синаптической связи между нервом и процессором протеза при имплантации различных искусственных органов. Строение и физиология различных синапсов. Механизм передачи нервного импульса. Структура электрического и химического видов синапса.
реферат [4,1 M], добавлен 09.08.2015Общая характеристика микозов. Классификация противогрибковых лекарственных средств. Контроль качества противогрибковых лекарственных средств. Производные имидазола и триазола, полиеновые антибиотики, аллиламины. Механизм действия противогрибковых средств.
курсовая работа [162,8 K], добавлен 14.10.2014Роль упаковочных материалов и тары в формировании потребительского спроса. Сохранение количественных и качественных характеристик товара в процессе товарного обращения. Влияние упаковки лекарственных средств на потребительские предпочтения покупателей.
курсовая работа [814,7 K], добавлен 26.08.2017Пути введения лекарственных средств. Всасывание, распределение в организме, депонирование, химические превращения лекарственных средств. Основные виды лекарственной терапии. Формула для расчета скорости клубочковой фильтрации (клиренса креатинина).
презентация [447,0 K], добавлен 20.10.2013Рассмотрение физико-химического действия лекарственных средств на мембраны клеток. Основы механизма транспорта веществ в биологических мембранах; изменение транспорта ионов антиаритмическими, противосудорожными препаратами, средствами для общего наркоза.
доклад [833,1 K], добавлен 07.01.2015Анализ классификации лекарственных средств, группирующихся по принципам терапевтического применения, фармакологического действия, химического строения, нозологического принципа. Системы классификации лекарственных форм по Ю.К. Траппу, В.А. Тихомирову.
контрольная работа [28,4 K], добавлен 05.09.2010Исследование источников получения лекарственных средств. Классификация медикаментов по Машковскому. Характеристика систем создания, производства, аптечного и промышленного производства, распределения лекарственных препаратов и других аптечных товаров.
презентация [217,9 K], добавлен 02.04.2019Виды и механизмы взаимодействия лекарственных средств. Клиническое значение фармакинетического и фармакодинамического взаимодействия лекарственных средств. Классификация нарушений ритма сердца. Клиническая фармакология калийсберегающих диуретиков.
контрольная работа [37,1 K], добавлен 18.01.2010Структура и функции контрольно-разрешительной системы. Проведение доклинических и клинических исследований. Регистрация и экспертиза лекарственных средств. Система контроля качества изготовления лекарственных средств. Валидация и внедрение правил GMP.
реферат [88,2 K], добавлен 19.09.2010Характеристика препаратов, применяемых при нарушении секреторной функции желудка, 12-перстной кишки и поджелудочной железы. Анализ групп лекарственных препаратов: их фармакологическое действие, дозы, применение и формы выпуска, нежелательные реакции.
курсовая работа [54,2 K], добавлен 30.10.2011Проведение исследований лекарственных средств. Решение о принятии или отклонении продукта. Прием, обработка, защита, хранение, сохранение и удаление образца. Условия эксплуатации и хранения образцов каждой партии. Уничтожение образцов безопасным способом.
презентация [106,0 K], добавлен 27.05.2015Общая характеристика лекарственных средств, их классификация и характеристика. Особенности их производства, маркировки, упаковки, хранения и уничтожения. Проведение маркетингового исследования лекарственных средств и лечебно-косметических товаров.
курсовая работа [81,8 K], добавлен 12.04.2012Виды эфферентных (центробежных) нервов. Передача возбуждения в синапсах с помощью нейромедиаторов. Принцип действия и показания к применению лекарственных средств, стимулирующих и тормозящих периферические холинергические и адренергические процессы.
реферат [32,5 K], добавлен 13.04.2012Классификация фальсифицированных лекарственных средств. Изучение их видов, способов и путей изготовления. Распространение контрафактной продукции в России. Выявление фальсифицированных лекарственных средств и защита легально произведенной продукции.
дипломная работа [233,0 K], добавлен 16.03.2015Раздражимость как основное свойство живых клеток. Физиология возбудимых клеток. Строение и основные свойства клеточных мембран и ионных каналов. Физиология нервной ткани и синапсов. Классификация антиадренергических средств, механизм их действия.
курсовая работа [194,6 K], добавлен 02.03.2014