Роль рентгенологического обследования при наличии хирургической патологии
Методы и способы исследования рентгеном. Применение рентгеновского излучения в медицине для изучения строения и функции различных органов и систем и распознавания заболеваний. Роль медицинской сестры при подготовке пациента с различными видами патологий.
Рубрика | Медицина |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 30.07.2017 |
Размер файла | 2,7 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство здравоохранения Саратовской области
Государственное автономное образовательное учреждение среднего профессионального образования «Балаковский медицинский колледж»
Выпускная квалификационная работа
Роль рентгенологического обследования при наличии хирургической патологии
Специальность:34.02.01.Сестринское дело
Студент
Калган Феликс Рафаэлевич
Руководитель Хрусталёва Светлана Николаевна
Балаково 2017 г.
ВВЕДЕНИЕ
Огромную роль в современной медицине играет рентгеновское излучение, история открытия рентгена берет свое начало еще в 19 веке. Рентгеновское излучение представляет собой электромагнитные волны, которые образуются при участии электронов. При сильном ускорении заряженных частиц создается искусственное рентгеновское излучение. Оно проходит через специальное оборудование:
· рентгеновские трубки;
· ускорители заряженных частиц.
Рентген представляет собой проверенный временем и при этом вполне современный способ исследования внутренних органов пациента с высокой степенью информативности. Рентгенография может быть главным или одним из методов исследования больного с целью установления правильного диагноза или выявления начальных стадий некоторых заболеваний, протекающих без симптомов.
Рентген - медицинское не инвазивное исследование, которое заключается в получении изображения анатомических структур человеческого тела путем прохождения через него рентгеновских лучей на специальную пленку или другую поверхность. Рентгенография позволяет исследовать строение и деятельность органов и систем человеческого тела с целью выявления признаков заболеваний. Суть получения изображения органов заключается в том, что разные по структуре и плотности ткани и органы по-разному пропускают рентгеновские лучи.[6]
История рентгенографии насчитывает более ста лет. За этот период разработаны различные виды, методы и способы исследования, совершенствующие результат с целью более точной диагностики.
Главной целью рентгенографии является выявление патологий в организме человека. В некоторых случаях обследованию подлежат и здоровые люди. В таком случае исследование помогает выявить бессимптомные или начинающиеся заболевания. С этой целью практически каждое медицинское учреждение обладает местом, где делается рентгенография. Во многих случаях рентгенологическое обследование помогает выявить или подтвердить наличие хирургической патологии у пациентов различной возрастной категории это и подчёркивает актуальность выпускной квалификационной работы.
Цель исследования: определить рольрентгенологического обследования пациентов при наличии хирургической патологии.
Объект исследования: пациенты с хирургической патологией, которым выполнялось рентгенологическое исследование.
Предмет исследования:медицинская документация регистрации рентгенологических исследований пациентов.
Задачи исследования:
1. Изучить современную литературу по данной теме;
2. Выявить разновидность рентгенологического обследования;
3. Обобщить и систематизировать данные литературных источников;
4. Провести исследовательскую работу на базе ГУЗ СО «ГБ г.Балаково»;
5. Провести анализ данных, полученных в ходе исследования;
6. Создать памятку для подготовки пациентов к одному из видов рентгенологического исследования с применением контраста.
ГЛАВА 1. Теоретические значение
рентген медицинский орган система
1.1 История развития
В 1894 г немецкий физик В. К. Рентген (1845 - 1923) приступает к экспериментальным исследованиям электрических разрядов в стеклянных вакуумных трубках (Приложение 1). Под действием этих разрядов в условиях сильно разреженного воздуха образуются лучи, известные как катодные.
Занимаясь их изучением, В.К. Рентген случайно обнаружил свечение в темноте флюоресцирующего экрана (картона, покрытого платиносинеродистым барием) под действием катодного излучения, исходящего из вакуумной трубки. Чтобы исключить воздействие на кристаллы платиносинеродистого бария видимого света, исходящего от включенной трубки, ученый обернул ее в черную бумагу.
Свечение продолжалось, как и тогда, когда ученый отодвинул экран почти на два метра от трубки, поскольку предполагалось, что катодные лучи проникают слой воздуха только в несколько сантиметров. В.К. Рентген сделал заключение, что либо ему удалось получить катодные лучи, обладающие уникальными способностями, либо он открыл действие неизвестных лучей.
Около двух месяцев ученый занимался исследованием новых лучей, которые он назвал Х-лучами. В процессе изучения взаимодействия лучей с разными по плотности предметами, которые В.К. Рентген подставлял по ходу излучения, он обнаружил проникающую способность этого излучения. Степень ее зависела от плотности предметов и проявлялась в интенсивности свечения флюоресцирующего экрана. Это свечение то ослабевало, то усиливалось и не наблюдалось вовсе, когда была подставлена свинцовая пластинка.
В конце концов, ученый подставил по ходу лучей собственную кисть и увидел на экране яркое изображение костей кисти на фоне более слабого изображения ее мягких тканей. Для фиксации теневых изображений предметов В.К. Рентген заменил экран фотопластинкой. В частности, он получил на фотопластинке изображение собственной кисти, которую облучал в течение 20 минут.
В.К. Рентген занимался исследованием Х-лучей с ноября 1895 г по март 1897 г. За это время ученый опубликовал три статьи с исчерпывающим описанием свойств рентгеновского излучения. Первая статья «О новом типе лучей» появилась в журнале Вюрцбургского физико-медицинского общества 28 декабря 1895 г.[6]
Таким образом, было зарегистрировано изменение фотопластинки под воздействием Х-лучей, что положило начало развитию будущей рентгенографии.
Следует отметить, что многие исследователи занимались изучением катодных лучей до В.К. Рентгена. В 1890 г в одной из американских лабораторий был случайно получен снимок с рентгеновским изображением лабораторных предметов. Есть сведения, что изучением тормозного излучения занимался Никола Тесла и зафиксировал результаты этого исследования в дневниковых записях в 1887 г. В 1892 году Г. Герц и его ученик Ф. Ленард, а так же разработчик катодно-лучевой трубки В. Крукс в своих экспериментах отмечали действие катодного излучения на почернение фотопластинок.
Но все эти исследователи не придавали серьезного значения новым лучам, не занимались их дальнейшим изучением и не публиковали свои наблюдения. Поэтому открытие Х-лучей В. Рентгеном можно считать независимым.
Заслуга В. Рентгена еще и в том, что он сразу понял важность и значимость открытых им лучей, разработал метод их получения, создал конструкцию рентгеновской трубки с алюминиевым катодом и платиновым анодом для производства интенсивного рентгеновского излучения.
За это открытие в 1901 г В. Рентгену была присуждена Нобелевская премия по физике, первая в этой номинации.
Революционное открытие Рентгена совершило переворот в диагностике. Первые рентгеновские аппараты были созданы в Европе уже в 1896 г. В этом же году компания KODAK открыла производство первых рентгеновских пленок. [2]
С 1912 г начинается период стремительного развития рентгенодиагностики во всем мире, и рентгенология начинает занимать важное место в медицинской практике.
1.2 Вклад России в развитие рентгенологии
Первый рентгеновский снимок в России был сделан в 1896 г. В этом же году по инициативе российского ученого А. Ф. Иоффе, ученика В. Рентгена, впервые было введено название «рентгеновские лучи».
В 1918 г в России открылась первая в мире специализированная рентгенологическая клиника, где рентгенография применялась для диагностики все большего числа заболеваний, особенно легочных.
В 1921 г в Петрограде начинает работу первый в России рентгено-стоматологический кабинет.
В СССР правительство выделяет необходимые средства на развитие производства рентгеновского оборудования, которое выходит на мировой уровень по качеству. В 1934 г был создан первый отечественный томограф, а в 1935 г - первый флюорограф.[3]
Сегодня рентгенодиагностика получает новое развитие. Используя вековой опыт традиционных рентгенологических методик и вооружившись новыми цифровыми технологиями, лучевая диагностика по-прежнему лидирует в диагностической медицине.
1.3 Рентгеновские излучение
Рентгеновское излучение (синоним рентгеновские лучи) -- это электромагнитное излучение с широким диапазоном длин волн (от 8·10-6 до 10-12 см). Было выявлено, что жесткие рентгеновские лучи способны проникать сквозь разные материалы, а также мягкие ткани человека. Последний факт быстро нашел применение в медицине.
Открытие рентгеновских лучей привлекло в то время внимание ученых всего света. В следующем после их обнаружения году было опубликовано огромное количество работ по их изучению и использованию.Многими учеными изучались свойства рентгеновских лучей.
Дж. Стокс предсказал их электромагнитную природу, что было подтверждено экспериментально Ч. Баркла, который открыл также и поляризацию. Немецкие физики Книппинг, Фридрих, Лауэ выявили дифракцию (явления, связанные с отклонением от прямолинейного распространения). В 1913 году независимо друг от друга Брэгг и Вульф обнаружили простую зависимость между длиной волны, углом дифракции и расстоянием между близлежащими атомными плоскостями на кристалле. Все вышеописанные работы легли в основу структурного рентгеновского анализа. Использование спектров для элементного материального анализа началось в 20-х годах. В развитии изучения и применения излучения большая роль принадлежит Физико-техническому институту, который был основан А. Ф. Иоффе.[2]
Наиболее распространенным источником лучей является рентгеновская трубка. Однако источниками могут быть отдельные радиоактивные изотопы. При этом одни непосредственно испускают рентгеновские лучи, а у других ядерные излучения (а-частицы или электроны) бомбардируют испускающую излучение металлическую мишень. Трубка обладает значительно большей интенсивностью излучения, нежели изотопные источники. Вместе с этим, габариты, стоимость, вес у изотопных источников несравнимо меньше, чем у установки с трубкой.
Источниками мягкого рентгеновского излучения могут стать синхротроны и электронные накопители. Интенсивность излучения синхротронов на два-три порядка превосходит излучение трубки в определенной области спектра.
В соответствии с механизмом возникновения спектры и сами излучения могут быть характеристическими (линейчатыми) и тормозными (непрерывными).
Посредством рентгеновского спектра испускаются быстрые частицы (заряженные) вследствие их торможения в процессе взаимодействия с атомами мишени.
Когда было сделано открытие, ученый-физик Рентген не мог и представить, насколько опасно его изобретение. В былые времена все устройства, которые продуцировали излучение, были далеки от совершенства и в итоге получались большие дозы выпущенных лучей. Люди не понимали опасности такого излучения. Хотя некоторые ученые уже тогда выдвигали версии о вреде рентгеновских лучей. Х-лучи, проникая в ткани, оказывают на них действие биологического характера. Единица измерения дозы радиации -- рентген в час. Основное влияние оказывается на ионизирующие атомы, которые находятся внутри тканей. Действуют эти лучи непосредственно на структуру ДНК живой клетки. К последствиям неконтролируемого излучения можно отнести:
1. мутация клеток;
2. появление опухолей;
3. лучевые ожоги;
4. лучевая болезнь.
Противопоказания к проведению рентгенологических исследований:
1. Больные в тяжелом состоянии.
2. Период беременности из-за негативного влияния на плод.
3. Больные с кровотечением или открытым пневмотораксом.
Помимо выявления переломов костей, рентгеновские лучи широко применяются и в лечебных целях. Специализированное применение х-лучей заключается в достижении следующих целей:
1. Для уничтожения раковых клеток.
2. Для уменьшения размера опухоли.
3. Для снижения болевых ощущений.
Например, радиоактивный йод, применяемый при эндокринологических заболеваниях, активно используется при раке щитовидной железы, тем самым помогая многим людям избавиться от этой страшной болезни.
В настоящее время для диагностики сложных заболеваний рентгеновские лучи подключаются к компьютерам, в итоге появляются новейшие методы исследования, такие как компьютерная томография и компьютерная осевая томография. Такое сканирование предоставляет врачам цветные снимки, на которых можно увидеть внутренние органы человека. Для выявления работы внутренних органов достаточно небольшой дозы излучения. Также широкое применение рентгеновские лучи нашли и в физиопроцедурах.
Основные свойства рентгеновских лучей:
1. Проникающая способность. Все тела для рентгеновского луча прозрачны, и степень прозрачности зависит от толщины тела. Именно благодаря этому свойству луч стал применяться в медицине для выявления работы органов, наличия переломов и инородных тел в организме.
2. Они способны вызывать свечение некоторых предметов. Например, если на картон нанести барий и платину, то, пройдя через сканирование лучами, он будет светиться зеленовато-желтым. Если поместить руку между трубкой рентгена и экраном, то свет проникнет больше в кость, чем в ткани, поэтому на экране высветится ярче всего костная ткань, а мышечная менее ярко.
3. Действие на фотопленку. Х-лучи могут подобно свету делать пленку темной, это позволяет фотографировать ту теневую сторону, которая получается при исследовании рентгеновскими лучами тел.
4. Рентгеновские лучи могут ионизировать газы. Это позволяет не только находить лучи, но и выявлять их интенсивность, измеряя ток ионизации в газе.
5. Оказывают биохимическое воздействие на организм живых существ. Благодаря этому свойству рентгеновские лучи нашли свое широкое применение в медицине: они могут лечить как кожные заболевания, так и болезни внутренних органов. В этом случае выбирается нужная дозировка излучения и срок действия лучей. Длительное и чрезмерное применение такого лечения весьма вредно и губительно для организма.[4]
1.4 Методы исследования рентгеном
Электронно-оптическое усиление (ЭОУ). Работа электронно-оптического преобразователя (ЭОП) основана на принципе преобразования рентгеновского изображения в электронное с последующим его превращением в усиленное световое. Яркость свечения экрана усиливается до 7 тыс. раз. Применение ЭОУ позволяет различать детали величиной 0,5 мм, т.е. в 5 раз более мелкие, чем при обычном рентгеноскопическом исследовании. При использовании этого метода может применяться рентгенокинематография, т.е. запись изображения на кино- или видеопленку.
Рентгенография - фотосъемка посредством рентгеновских лучей. При рентгенографии снимаемый объект должен находиться в тесном соприкосновении с кассетой, заряженной пленкой. Рентгеновское излучение, выходящее из трубки, направляют перпендикулярно на центр пленки через середину объекта (расстояние между фокусом и кожей больного в обычных условиях работы 60-100 см). Необходимым оснащением для рентгенографии являются кассеты с усиливающими экранами, отсеивающие решетки и специальная рентгеновская пленка. Кассеты делаются из светонепроницаемого материала и по величине соответствуют стандартным размерам выпускаемой рентгеновской пленки (13 ? 18 см, 18 ? 24 см, 24 ? 30 см, 30 ? 40 см и др.).[4]
Усиливающие экраны предназначены для увеличения светового эффекта рентгеновых лучей на фотопленку. Они представляют картон, который пропитывается специальным люминофором (вольфрамо-кислым кальцием), обладающий флюоресцирующим свойством под влиянием рентгеновых лучей. В настоящее время широко применяются экраны c люминофорами, активированными редкоземельными элементами: бромидом окиси лантана и сульфитом окиси гадолиния. Очень хороший коэффициент полезного действия люминофора редкоземельных элементов способствует высокой светочувствительности экранов и обеспечивает высокое качество изображения. Существуют и специальные экраны - Gradual, которые могут выравнивать имеющиеся различия в толщине и (или) плотности объекта съемки. Использование усиливающих экранов сокращает в значительной степени время экспозиции при рентгенографии.
Для отсеивания мягких лучей первичного потока, который может достигнуть пленки, а также вторичного излучения, используются специальные подвижные решетки. Обработка заснятых пленок проводится в фотолаборатории. Процесс обработки сводится к проявлению, полосканию в воде, закреплению и тщательной промывке пленки в текучей воде с последующей сушкой. Сушка пленок проводится в сушильных шкафах, что занимает не менее 15 мин. или происходит естественным путем, при этом снимок бывает готовым на следующий день. При использовании проявочных машин снимки получают сразу после исследования. Преимущество рентгенографии: устраняет недостатки рентгеноскопии. Недостаток: исследование статическое, отсутствует возможность оценки движения объектов в процессе исследования.
Электрорентгенография. Метод получения рентгеновского изображения на полупроводниковых пластинах. Принцип метода: при попадании лучей на высокочувствительную селеновую пластину в ней меняется электрический потенциал. Селеновая пластинка посыпается порошком графита. Отрицательно заряженные частицы порошка притягиваются к тем участкам селенового слоя, в которых сохранились положительные заряды, и не удерживаются в тех местах, которые потеряли заряд под действием рентгеновского излучения. Электрорентгенография позволяет в 2-3 минуты перенести изображение с пластины на бумагу. На одной пластине можно произвести более 1000 снимков. Преимущество электрорентгенографии:
1. Быстрота.
2. Экономичность.
Недостаток: недостаточно высокая разрешающая способность при исследовании внутренних органов, более высокая доза излучения, чем при рентгенографии. Метод применяется, в основном, при исследовании костей и суставов в травмопунктах. В последнее время применение этого метода все более ограничивается.[4]
Компьютерная рентгеновская томография (КТ) (Приложение 2). Создание рентгеновской компьютерной томографии явилось важнейшим событием в лучевой диагностике. Свидетельством этого является присуждение Нобелевской премии в 1979 г. известным ученым Кормаку (США) и Хаунсфилду (Англия) за создание и клиническое испытание КТ.
КТ позволяет изучить положение, форму, размеры и структуру различных органов, а также их соотношение с другими органами и тканями. Основой для разработки и создания КТ послужили различные модели математической реконструкции рентгеновского изображения объектов. Успехи, достигнутые с помощью КТ в диагностике различных заболеваний, послужили стимулом быстрого технического совершенствования аппаратов и значительного увеличения их моделей. Если первое поколение КТ имело один детектор, и время для сканирования составляло 5-10 мин, то на томограммах третьего - четвертого поколений при наличии от 512 до 1100 детекторов и ЭВМ большой емкости время для получения одного среза уменьшилось до миллисекунд, что практически позволяет исследовать все органы и ткани, включая сердце и сосуды. В настоящее время применяется спиральная КТ, позволяющая проводить продольную реконструкцию изображения, исследовать быстро протекающие процессы (сократительную функцию сердца).[1]
КТ основана на принципе создания рентгеновского изображения органов и тканей с помощью ЭВМ. В основе КТ лежит регистрация рентгеновского излучения чувствительными дозиметрическими детекторами. Принцип метода заключается в том, что после прохождения лучей через тело пациента они попадают не на экран, а на детекторы, в которых возникают электрические импульсы, передающиеся после усиления в ЭВМ, где по специальному алгоритму они реконструируются и создают изображение объекта, который из ЭВМ подается на телемонитор. Изображение органов и тканей на КТ, в отличие от традиционных рентгеновских снимков, получается в виде поперечных срезов (аксиальных сканов). При спиральной КТ возможна трехмерная реконструкция изображения (3D-режим) с высоким пространственным разрешением. Современные установки позволяют получить срезы толщиной от 2 до 8 мм. Рентгеновская трубка и приемник излучения движутся вокруг тела больного. КТ обладает рядом преимуществ перед обычным рентгенологическим исследованием:
1. Прежде всего, высокой чувствительностью, что позволяет дифференцировать отдельные органы и ткани друг от друга по плотности в пределах до 0,5%; на обычных рентгенограммах этот показатель составляет 10-20% .
2. КТ позволяет получить изображение органов и патологических очагов только в плоскости исследуемого среза, что дает четкое изображение без наслоения лежащих выше и ниже образований.
3. КТ дает возможность получить точную количественную информацию о размерах и плотности отдельных органов, тканей и патологических образований.
4. КТ позволяет судить не только о состоянии изучаемого органа, но и о взаимоотношении патологического процесса с окружающими органами и тканями, например, инвазию опухоли в соседние органы, наличие других патологических изменений.
5. КТ позволяет получить топограммы, т.е. продольное изображение исследуемой области наподобие рентгеновского снимка, путем смещения больного вдоль неподвижной трубки. Топограммы используются для установления протяженности патологического очага и определения количества срезов.
6. КТ незаменима при планировании лучевой терапии (составление карт облучения и расчета доз).
Данные КТ могут быть использованы для диагностической пункции, которая может с успехом применяться не только для выявления патологических изменений, но и для оценки эффективности лечения и, в частности, противоопухолевой терапии, а также определение рецидивов и сопутствующих осложнений.
Диагностика с помощью КТ основана на прямых рентгенологических признаках, т.е. определении точной локализации, формы, размеров отдельных органов и патологического очага и, что особенно важно, на показателях плотности или абсорбции. Показатель абсорбции основан на степени поглощения или ослабления пучка рентгеновского излучения при прохождении через тело человека. Каждая ткань, в зависимости от плотности атомной массы, по-разному поглощает излучение, поэтому в настоящее время для каждой ткани и органа в норме разработан коэффициент абсорбции (HU) по шкале Хаунсфилда. Согласно этой шкале,HUводы принимают за 0; кости, обладающие наибольшей плотностью - за +1000, воздух, обладающий наименьшей плотностью, - за -1000.
Минимальная величина опухоли или другого патологического очага, определяемого с помощью КТ, колеблется от 0,5 до 1 см при условии, что HU пораженной ткани отличается от такового здоровой на 10 - 15 ед.
Как в КТ, так и при рентгенологических исследованиях возникает необходимость применения для увеличения разрешающей способности методики “усиления изображения”. Контрастирование при КТ производится с водорастворимыми рентгеноконтрастными средствами.[5]
Методика “усиления“ осуществляется перфузионным или инфузионным введением контрастного вещества.
Такие методы рентгенологического исследования называются специальными. Органы и ткани человеческого организма становятся различимыми, если они поглощают рентгеновские лучи в различной степени. В физиологических условиях такая дифференциация возможна только при наличии естественной контрастности, которая обусловливается разницей в плотности (химическом составе этих органов), величине, положении. Хорошо выявляется костная структура на фоне мягких тканей, сердца и крупных сосудов на фоне воздушной легочной ткани, однако камеры сердца в условиях естественной контрастности невозможно выделить отдельно, как и органы брюшной полости, например. Необходимость изучения рентгеновыми лучами органов и систем, имеющих одинаковую плотность, привело к созданию методики искусственного контрастирования. Сущность этой методики заключается во введении в исследуемый орган искусственных контрастных веществ, т.е. веществ, имеющих плотность, различную от плотности органа и окружающей его среды.
Рентгеноконтрастные средства (РКС) принято подразделять на вещества с высоким атомным весом (рентгено-позитивные контрастные вещества) и низким (рентгено-негативные контрастные вещества). Контрастные вещества должны быть безвредными.
Контрастные вещества, которые интенсивно поглощают рентгеновские лучи (позитивные рентгеноконтрастные средства) это:
1. Взвеси солей тяжелых металлов - сернокислый барий, применяемый для исследования ЖКТ (он не всасывается и выводится через естественные пути).
2. Водные растворы органических соединений йода - урографин, верографин, билигност, ангиографин и др., которые вводятся в сосудистое русло, с током крови попадают во все органы и дают, кроме контрастирования сосудистого русла, контрастирование других систем - мочевыделительной, желчного пузыря и т.д.
3. Масляные растворы органических соединений йода - йодолипол и др., которые вводятся в свищи и лимфатические сосуды.
Неионные водорастворимые йодсодержащие рентгеноконтрастные средства: ультравист, омнипак, имагопак, визипак характеризуются отсутствием в химической структуре ионных групп, низкой осмолярностью, что значительно уменьшает возможность патофизиологических реакций, и тем самым обусловливается низкое количество побочных эффектов. Неионные йодсодержащие рентгеноконтрастные средства обусловливают более низкое количество побочных эффектов, чем ионные высокоосмолярные РКС.
Рентгенонегативные или отрицательные контрастные вещества - воздух, газы “не поглощают” рентгеновские лучи и поэтому хорошо оттеняют исследуемые органы и ткани, которые обладают большой плотностью.
Искусственное контрастирование по способу введения контрастных препаратов подразделяется на:
1. Введение контрастных веществ в полость исследуемых органов (самая большая группа). Сюда относятся исследования ЖКТ, бронхография, исследования свищей, все виды ангиографии.
2. Введение контрастных веществ вокруг исследуемых органов - ретропневмоперитонеум, пневморен, пневмомедиастинография.
3. Введение контрастных веществ в полость и вокруг исследуемых органов. Сюда относится париетография. Париетография при заболеваниях органов ЖКТ заключается в получении снимков стенки исследуемого полого органа после введения газа вначале вокруг органа, а затем в полость этого органа. Обычно проводят париетографию пищевода, желудка и толстой кишки.
4. Способ, в основе которого лежит специфическая способность некоторых органов концентрировать отдельные контрастные препараты и при этом оттенять его на фоне окружающих тканей. Сюда относятся выделительная урография, холецистография.
Флюорография - способ массового поточного рентгенологического обследования, состоящий в фотографировании рентгеновского изображения с просвечивающего экрана на пленку фотоаппаратом.
Томография (обычная) - для устранения суммационного характера рентгеновского изображения. Принцип: в процессе съемки рентгенологическая трубка и кассета с пленкой синхронно перемещаются относительно больного. В результате на пленке получается более четкое изображение только тех деталей, которые лежат в объекте на заданной глубине, в то время как изображение деталей, расположенных выше или ниже, становится нерезким, «размазывается».
Полиграфия - это получение нескольких изображений исследуемого органа и его части на одной рентгенограмме. Делается несколько снимков (в основном 3) на одной пленке через определенное время.
Рентгенокимография - это способ объективной регистрации сократительной способности мышечной ткани функционирующих органов по изменению контура изображения. Снимок производится через движущуюся щелевидную свинцовую решетку. При этом колебательные движения органа фиксируются на пленку в виде зубцов, имеющих характерную форму для каждого органа.
Дигитальная рентгенография - включает в себя детекцию лучевой картины, обработку и запись изображения, представление изображения и просмотр, сохранение информации. При этой технологии детектор преобразует рентгеновское излучение после его прохождения через исследуемый объект в электрический сигнал, который в аналого-цифровом преобразователе «превращается» в числовые значения. Компьютерная обработка получаемого цифрового изображения служит созданию такого изображения, которое оптимально пригодно для анализа результата обследования.
Рентгенодиапевтика - лечебно-диагностические процедуры. Имеются в виду сочетанные рентгеноэндоскопические процедуры с лечебным вмешательством. Например: при механической желтухе с дренированием желчных путей и введением медикаментов непосредственно в желчный пузырь. К рентгенодиапевтике (интервенционной радиологии) относят рентгеноэндоваскулярные вмешательства: рентгеноэндоваскулярная окклюзия и рентгеноэндоваскулярная дилатация».[4]
В конечном итоге, предметом изучения в рентгенологии является теневое изображение. Особенностями теневого рентгеновского изображения является:
1. Изображение, складывающееся из многих темных и светлых участков - соответственно областям неодинакового ослабления рентгеновых лучей в разных частях объекта.
2. Размеры рентгеновского изображения всегда увеличены (кроме КТ) по сравнению с изучаемым объектом, и тем больше, чем дальше объект находится от пленки, и чем меньше фокусное расстояние (отстояние пленки от фокуса рентгеновской трубки).
3. Когда объект и пленка не в параллельных плоскостях, изображение искажается.
4. Изображение суммационное (кроме томографии). Следовательно, рентгеновские снимки должны быть произведены не менее, чем в двух взаимно перпендикулярных проекциях.
5. Негативное изображение при рентгенографии и КТ.
Каждая ткань и патологические образования, выявляемые при лучевом исследовании, характеризуются строго определенными признаками, а именно: числом, положением, формой, размером, интенсивностью, структурой, характером контуров, наличием или отсутствием подвижности, динамикой во времени.
1.5 Применение в медицине
Рентгенография применяется для диагностики: Рентгенологическое исследование (далее РИ) органов позволяет уточнить форму данных органов, их положение, тонус, перистальтику, состояние рельефа слизистой оболочки.
· РИ желудка и двенадцатиперстной кишки (дуоденография) важно для распознавания гастрита, язвенных поражений и опухолей.
Рентгенологическое исследование двенадцатиперстной кишки является важным вспомогательным методом диагностики патологических изменений общего желчного протока и большой дуоденальный сосочек (БДС). Более четко патологический процесс удается выявить при проведении рентгенологического исследования двенадцатиперстной кишки в условиях ее релаксации, получившего название релаксационной, или гипотонической дуоденографии. Этот метод исследования двенадцатиперстной кишки высоко оценен отечественными и зарубежными исследователями.
Релаксационная дуоденография позволяет диагностировать опухолевый процесс БДС двенадцатиперстной кишки, а также головки поджелудочной железы и подтвердить механическую причину развившейся желтухи. У больных, у которых операция на желчных путях, закончилась формированием билиодуоденальных анастомозов, она дает представление о функции сформированного соустья и выявляет патологические процессы в печеночно-желчном протоке, которые обусловливают рецидивы страдания.
РИ желчного пузыря (холецистография) и желчевыводящих путей (холеграфия) проводят для оценки контуров, размеров, просвета внутри- и внепеченочных желчных протоков, наличие или отсутствие конкрементов, уточняют концентрационную и сократительную функции желчного пузыря.
Холецистография -- это метод рентгенологического исследования желчного пузыря с помощью контрастного вещества. Перед холецистографии производят обзорный рентгеновский снимок правой половины брюшной полости. За 12--15 часов до холецистографии больной принимает билитраст или другое контрастное вещество, запивая его сладким чаем. Накануне вечером и за 2 часа до исследования больному с помощью клизмы очищают кишечник. После просвечивания производят несколько снимков желчного пузыря в разных проекциях при вертикальном и горизонтальном положениях исследуемого. Затем больной съедает специальный завтрак (яичные желтки, сливочное масло) и ему производят еще несколько снимков с интервалом 15--20 мин.[2]
Холецистография позволяет определять положение, форму, величину, смещаемость желчного пузыря, его способность концентрировать желчь и сокращаться после приема жирной пищи. Холецистография может быть произведена в стационарных и амбулаторных условиях для распознавания функциональных или органических поражений и в особенности камней желчного пузыря, которые видны на холецистограммах в виде дефектов заполнения.
· РИ толстой кишки (ирригоскопия) применяется для распознавания опухолей, полипов, дивертикулов и кишечной непроходимости.
Ирригоскопия -- рентгенологическое исследование толстой кишки при ретроградном заполнении ее рентгеноконтрастной взвесью. Ирригоскопия применяется для уточнения диагноза заболеваний толстой кишки (пороки развития, опухоли, хронический колит, дивертикулез, свищи, рубцовые сужения и др.).
Ирригоскопия дает возможность получения информации о морфологических изменениях толстой кишки, что в плане диагностики нозологических форм представляется более ценным. Ирригоскопия нередко является решающим методом диагностики опухолей, дивертикулов толстой кишки. Увеличивает диагностические возможности ирригоскопии методика двойного контрастирования. В отношении таких заболеваний как колиты, туберкулез могут быть получены лишь косвенные признаки.
· Рентгенограмфия органов грудной клетки -- классическое проекционное рентгенографическое исследование грудной клетки, применяемое для диагностики патологических изменений грудной клетки, органов грудной полости и близлежащих анатомических структур. Рентгенография грудной клетки является одним из наиболее распространённых рентгенографических исследований.[3]
Как и при других рентгенологических исследованиях, для получения рентгенограммы грудной клетки используется один из видов ионизирующего излучения -- рентгеновское излучение.
Рентгенография грудной клетки способствует выявлению патологических изменений мягких тканей, костей грудной клетки и анатомических структур, расположенных в грудной полости (лёгких, плевры, средостения). Наиболее часто при рентгенографии диагностируются пневмония и застойная сердечная недостаточность. Наряду с диагностическими целями, рентгенография грудной клетки используется в качестве скринингового метода для оценки состояния лёгочной ткани, в частности, у лиц с профессиональными вредностями (например, шахтёров).
При некоторых заболеваниях органов грудной клетки рентгенография хороша в качестве скринингового метода, однако имеет недостаточную диагностическую ценность; в этих случаях проводятся дополнительные исследования (компьютерная томография, бронхоскопия и т. д.).[4]
Следует учитывать, что в некоторых случаях рентгенография грудной клетки может быть не информативна (то есть, демонстрировать ложно-отрицательный результат). Такие ситуации могут быть обусловлены проекционным наслоением тени патологического очага на тень нормальной анатомической структуры (например, диафрагмы, средостения), малой интенсивностью очага (например, начальными воспалительными проявлениями), неадекватной проекцией исследования (особенно, в случае патологии средостения или переломов рёбер, грудины).
· позвоночника -- дегенеративно-дистрофические (остеохондроз, спондилёз, искривления), инфекционные и воспалительные (различные виды спондилитов), опухолевые заболевания.
· различных отделов периферического скелета -- на предмет различных травматических (переломы, вывихи), инфекционных и опухолевых изменений.
· брюшной полости -- перфорации органов, функции почек (экскреторная урография) и другие изменения.
Экскреторная_урография_рентгенологический метод_исследования мочевыводящих путей, основанный на способности почки выделять (экскретировать)определённые рентгеноконтрастные вещества, введённые в организм, в результате чего на рентгенограммах получается изображение почек и мочевых путей. В качестве рентгеноконтрастного вещества используют йодсодержащие концентрированные (60-80 %) растворы сергозина, урографина, уротраста и др. Препарат вводят внутривенно струйно медленно (в течение 2-3 мин). Количество контраста рассчитывается на вес.
Серия рентгенограмм, выполненных: первая на 5-7-й, вторая на 12-15-й, третья на 20-25 минуте, в случае задержки выведения контрастного вещества делают отсроченные снимки на 45 и 60 минуте.Исследование позволяет составить практически полное представление о выделении контрастного вещества почками и его продвижении по мочевыводящим путям. Количество снимков определяется видом патологии.[2]
При анализе экскреторных урограмм оцениваются: положение, форма, размеры, контуры почек, функциональное состояние почек, форма и контуры мочеточников и мочевого пузыря.
· Метросальпингография (МСГ) - это один из самых часто применяемых методов гинекологического исследования при бесплодии, позволяющий выявить непроходимость маточных труб и перитубарные спайки. Самым современным, наименее травматичным и наиболее информативным методом оценки проходимости труб сегодня является селективная метросальпингография (введение контраста осуществляется со стороны полости матки прицельно в устья маточных труб). Селективная МСГ предполагаетвозможность выполнения реканализции (восстановления проходимости) маточных труб при нарушении проходимости интерстициальных (начальных) отделов труб. Процедура селективной МСГ не сопровождается болезненными ощущениями и не требует использования наркоза. Как правило, достаточно приема накануне выполнения процедуры спазмолитиков и стандартных обезболивающих таблеток.
· Ортопантомография
Рентгенологическое исследование в стоматологии, ЛОР, челюстно-лицевой хирургии, косметологии и т.д., позволяющее получать развёрнутое изображение всех зубов с челюстями, прилежащими отделами лицевого скелета. Является первичным рентгенологическим исследованием.
Ортопантомография (ОПТГ) бывает цифровой и плёночной. Однако в последние годы плёночная ОПТГ почти не применяется. Преимущество цифровой ОПТГ:
· снижение времени и дозы облучения пациента;
· получение качественного изображения, подверженного последующим графическим обработкам;
· возможность записи на магнитные носители с созданием электронных архивов.
Выявление поражений:
1. Твёрдых тканей зуба. Воспаление (кариес), нарушение целостности зуба (перелом, дефект участка), наличие дополнительного канала или инструментов в канале, новообразования в тканях и костях кости и пр.
2. Изменений периодонта.
3. Костей челюстей и прилежащего лицевого скелета. Переломы (травматические, патологические) костей челюсти и лицевого скелета, новообразования, воспалительные процессы (остеомиелит, периостит), состояние полостей в костях (околоносовых пазух)и пр.
4. Мягких тканей челюстей. Травмы, новообразования, воспалительные процессы, инородные тела, состояние перед и после внедрения импланта и пр.
5. Контроль этапов лечения и динамики течения заболеваний (качество пломбировки канала, штифты, импланты и пр.).[4]
ОПТГ способствует точной постановке диагноза, контролю за лечением и помогает избежать многочисленных осложнений.
· РИ молочной железы
Маммография - это особый вид обследования молочных желез, который основан на использовании рентгеновского излучения низкой дозы. Снимок, полученный при маммографическом исследовании (маммограмма), применяется для диагностики и выявления заболеваний молочных желез у женщин на ранних стадиях.
Рентгенологическое исследование представляет собой неинвазивную диагностическую методику, которая помогает врачам обнаруживать и лечить различные заболевания. При этом те или иные части тела подвергаются воздействию небольшой дозы ионизирующего излучения, что позволяет получить их снимок - рентгенограмму. Рентгенологическое исследование является самым старым методом визуализации и используется в диагностике чаще всего.
Двумя недавними достижениями в области маммографического обследования стало появление цифровой маммографии и систем компьютерного обнаружения патологических изменений.
Выводы по главе 1
Рентгенологическое исследование -- применение рентгеновского излучения в медицине для изучения строения и функции различных органов и систем и распознавания заболеваний. Рентгенологическое исследование основано на неодинаковом поглощении рентгеновского излучения разными органами и тканями в зависимости от их объема и химического состава. Чем сильнее поглощает данный орган рентгеновское излучение, тем интенсивнее отбрасываемая им тень на экране или пленке.
Рентгенологическое исследование позволяет изучать морфологию и функцию различных систем и органов в целостном организме без нарушения его жизнедеятельности. Оно дает возможность рассматривать органы и системы в различные возрастные периоды, позволяет выявлять даже небольшие отклонения от нормальной картины и тем самым ставить своевременный и точный диагноз ряда заболеваний.
Итогом рентгенологического исследования является формулировка заключения, в котором указывают диагноз болезни или при недостаточности полученных данных наиболее вероятные диагностические возможности.
При соблюдении правильной техники и методики РИ является безопасным и не может причинить вреда обследуемым. Большую роль в РИ играет медицинская сестра. Именно медицинская сестра осуществляет подготовку пациента к исследованию. Она проводит беседу о предстоящей процедуре, уточняет ранее проводимые рентгенологические исследования, психологически настраивает пациента и получает его согласие на проведение процедуры.Наблюдает после процедуры за пациентом и выполняет назначения врача.
ГЛАВА 2. ПРОВЕДЕНИЕ ИССЛЕДОВАНИЯ
Исследование проводилось на базе ГУЗ СО «Городская больница г. Балаково» в рентгенологическом отделении в два этапа. На первом этапе был проведен анализ статистических данных. На втором этапе рассматривалась роль медицинской сестры при подготовке пациента к одному из видов рентгенологического исследования.
2.1 Анализ статистических данных проведения рентгенологического исследования на примере рентгенологического отделения ГУЗ СО «Городская больница г. Балаково»
Рентгенологическое исследование направленно на выявление у граждан признаков патологии. Особенно распространен данный вид исследования в отношении пациентов с хирургической патологией. Иногда интерпретация рентгеновского снимка позволяет дифференцировать диагноз.
Для решения задач исследовательской работы была проанализирована статистика рентгенологического отделения за 2015-2016 год.
Согласностатистическим данным за 2015 год в рентгенологическом отделении было исследовано 30453 человек, а за 2016 год 31901 человек(см. рис. 1).
Рис.1 Всего исследований за 2015-2016 год
Вывод:из представленных данных мы видим, что в 2016 году возросло количество рентгенологических исследований это связанно с тем, что увеличилось количество обращений пациентов с различными видами патологий, для диагностики которых необходимо проводить данный метод исследования
За 2015 год в рентгенологическом отделении было исследовано30453 человек по следующим направлениям: хирургия -16992 человека, терапия -11938, а в неврологии -1523 человека (см. рис. 2).
Рис.2 разделения по направлениям в 2015 году
Вывод: из представленных данных мы видим, что услугами рентгенологического отделения пользуются пациенты с хирургической патологией это можно объяснить высокими цифрами травматизма. Дифференциальная диагностика перелома кости основывается на результатах рентгенологического исследования. Так же у пациентов хирургических отделений часто наблюдаются осложнения со стороны дыхательной системы. Для своевременной диагностики такого осложнения как пневмония необходимо выполнить рентгенографию органов грудной полости.
На 2016 год в рентгенологическом отделении было исследовано31901 человек по следующим направлениям хирургия -18345 человек, терапия -11876, а в неврологии -1680 человек (см. рис. 3).
Рис.3 разделение по направлениям в 2016 году
Вывод: из представленных данных мы видим, что сохраняется тенденция, прослеживаемая в 2015 году, тем самым подтверждается выше изложенный вывод.
Далее были рассмотрены результаты исследований на примере хирургических отделений по выявленным патологиям органов и систем за 2016 год. Результаты оказались следующими:
Среди пациентов с хирургической патологией 40% составляют лица женского пола, 60% - мужского (см. рис. 4).
Рис.4 распределение пациентов по полу
Вывод: мы видим, что лица мужского пола преобладают. Это связанно с тем, что наиболее часто мужчины ведут активный образ жизни, являются участниками дорожного движения, тем самым подвержены получению травмы.
Возрастной состав пациентов с хирургической патологией: 11% - это люди в возрасте 0-18 лет, 28% в возрасте 18-30 лет, 39% в возрасте 30-60 лет, 22% - 60 и старше (см. рис. 5).
Рис.5 распределение пациентов по возрасту
Вывод: по данным диаграммы видно, что услугами пользуются лица трудоспособного возраста. Медицинским работникам необходимо обратить на это внимание и проводить профилактические беседы с населением на темы: профилактика травматизма, о своевременности прохождения флюорографического исследования, о профилактике заболеваний органов брюшной полости.
В ходе исследования выяснилось, что 37% пациентов обследовались с патологией грудной клетки; 17% - с заболеваниями органов ЖКТ, с патологией КСС -39% и 7 % - прочее(см. рис. 6).
Рис.6 распределение рентгенологических исследований по системам
Вывод: среди пациентов преобладают лица, которым проводилось исследование костно-суставной системы. Это ещё раз подтверждает связь представленных данных с травматизмом.
Существуют рентгенологические исследованияв ходе которых применют контраст.При анализе данных цифры распределились следующим образом: 75% пациентоввыполнялась внутривенная урография,5% цистоуретрография, по 1% уретрография и интеградная урография, 3% - холецистография через дренаж,9% - холлецистохолангиография (в операционной), 6% фистулография полостная (см.рис. 7).
Рис.7 распределение спец. исследований с применением контраста
Вывод: наиболее распространённым методом рентгенологического исследования с контрастом является в/в урография. Она выполняется при различной хирургической патологии органов мочевыделительной системы.
Количество проведённых специальныхметодов рентгенологического исследования без применения контраста распределилось следующим образом: 67% томография гортани, 19% рентгенография височных костей, 9% метросальпингография, 4% пневмогастрография, 1% пневмоэцефалография (см.рис. 8).
Рис.8 Распределение спец. исследований без контраста
Вывод: наиболее востребованным методом специализированного рентгенологического исследования без применения контраста является томография гортани.
Количество проведённых рентгенологическихисследований с применением компьютерной томографии распределилось следующим образом: исследования черепа - 62%, конечностей - 1%, позвоночника - 8%, почек - 2%, брюшной полости - 4%, грудной клетки - 22%, органов малого таза и прочее - 1% (см.рис. 9).
Рис.9 Распределения при компьютерной томографии
Вывод: рентгенологические исследования с применением компьютерной томографии преимущественно используется при патологии черепа. Это связанно с тем, что по результатам КТ можно наиболее точно диагностировать имеющуюся патологию, что в свою очередь позволяет определиться с тактикой лечения пациента.
2.2 Роль медицинской сестры при подготовке пациента к одному из видов рентгенологического исследования
В подготовке пациентов к рентгенологическому исследованию принимают участие медицинские сестры отделений. Наиболее тщательная подготовка пациента необходима к такому рентгенологическому исследованию как КТ органов брюшной полости. Далее рассматривалась роль медицинской сестры при подготовке пациента к данному виду исследования.
Подготовка к КТ (компьютерной томографии) брюшной полости с контрастированием -- необходимый этап исследования при подозрении на онкологический процесс в области брюшной полости, ведь только при правильно проведенных предварительных процедурах можно получить достоверные результаты.
Прежде всего контрастирование выполняют при КТ органов брюшной полости, т. к., например, компьютерной томографии головного мозга, грудной клетки, поджелудочной железы, желчного пузыря и его протоков, брюшной артерии и нижней половой вены особой подготовки не требуется.
Компьютерная томография - наиболее современный метод исследования.
Во время проведения томографии проводится трехмерная визуализация органа брюшной полости, получается его «срез», что помогает рассмотреть не только форму, но и структуру.
Этим томография отличается от рутинного рентгенологического исследования.
КТ брюшной полости назначается при диагностике заболеваний органов пищеварительной и мочевыводящей систем, органов малого таза и забрюшинных лимфатических узлов.
Обычно к нему прибегают при выявлении заболеваний органов, лежащих за брюшиной, или полых органов, меняющих свою форму под влиянием других рядом расположенных образований.
Особую роль в подготовке КТ брюшной полости играет медсестра которая проводит беседы с пациентом о необходимости соблюдения диеты. Это связанно с тем, что одной из основных целей при подготовке является максимальное улучшение визуализации органов брюшной полости.
Серьезной помехой к этому могут быть переполненные, раздутые газами петли кишки. Поэтому чтобы правильно подготовить пациента к проведению компьютерной томографии, медсестра информирует ,что за 2 - 3 суток назначается особая диета с целью уменьшения газообразования и очищения кишечника от каловых масс.
Такой рацион показан не только перед КТ органов пищеварительной системы, но и перед исследованием анатомических образований, лежащих в забрюшинном пространстве.
К запрещенным продуктам относятся:
1. овощи, увеличивающие газообразование: бобовые, свежая либо квашеная капуста;
2. фрукты, некоторые ягоды (черника);
3. сухофрукты (орехи, чернослив);
4. изделия из муки высшего и первого сорта, содержащие дрожжи: хлеб, сдобу, а также макаронные изделия и сладости. Эти продукты замедляют перистальтику и способствуют возникновению запоров;
5. каши (манная и рисовая);
6. крепкий чай, кофе, шоколад, газированные напитки и соки;
7. алкоголь;
8. если у пациента лактозная непереносимость, то в обязательном порядке исключается цельное молоко и его производные.
Рекомендуется включить в рацион:
· блюда из нежирных сортов мяса или рыбы, приготовленные на пару или в духовке, например, запеканки, суфле, тефтели;
· отварные овощи и овощные супы;
· обезжиренный творог;
· сухари из белого хлеба либо галетное печенье.
Некоторые аспекты подготовки к компьютерной томографии.
...Подобные документы
Общее понятие и виды эндоскопии - осмотра внутренних органов при помощи эндоскопа. Роль медсестры в уходе за оборудованием. Подготовка постовой медицинской сестрой пациента к эндоскопии. Оценка эффективности эндоскопических методов исследования.
курсовая работа [901,5 K], добавлен 14.03.2017Открытие Х-лучей Вильгельмом Рентгеном, история и значение данного процесса в истории. Устройство рентгеновской трубки и взаимосвязь ее главных элементов, принципы работы. Свойства рентгеновского излучения, его биологическое воздействие, роль в медицине.
презентация [3,5 M], добавлен 21.11.2013Анатомия и физиология органов дыхания. Клинические симптомы и методы исследования бронхита. Хроническая обструктивная болезнь легких. Лечение заболеваний верхних дыхательных путей, бронхов. Деятельность медицинской сестры в пульмонологическом отделении.
дипломная работа [201,7 K], добавлен 14.04.2017История открытия рентгеновских лучей немецким физиком Вильгельмом Рентгеном. Процесс получение рентгеновского излучения, его применение в медицинских исследованиях. Современные разновидности рентгенодиагностики. Компьютерная рентгеновская томография.
презентация [1,1 M], добавлен 22.04.2013Рентгенологическая диагностика - способ изучения строения и функций органов и систем человека; методы исследований: флюорография, дигитальная и электрорентгенография, рентгеноскопия, компьютерная томография; химическое действие рентгеновского излучения.
реферат [30,5 K], добавлен 23.01.2011Этиология, клиника, классификация, гнойно-воспалительных заболеваний органов брюшной полости, принципы и подходы к их диагностике. Организация работы хирургического отделения. Предоперационная подготовка при гнойном перитоните, роль медицинской сестры.
курсовая работа [36,5 K], добавлен 16.06.2015Изучение анатомии и физиологии дыхательной системы. Основные виды, симптомы, методы лечения и профилактика бронхолегочных заболеваний. Выявление факторов риска развития бронхолегочных заболеваний у различных возрастных групп по результатам спирометрии.
курсовая работа [341,4 K], добавлен 16.02.2016Понятие процесса дыхания в медицине. Описание особенностей органов дыхания, краткая характеристика каждого из них, строение и функции. Газообмен в легких, профилактика заболеваний органов дыхания. Особенности строения органов дыхания у детей, роль ЛФК.
статья [639,4 K], добавлен 05.06.2010Особенности костной системы у детей дошкольного и школьного возраста. Обзор заболеваний при нарушениях осанки. Принципы лечения и специфика профилактики этой патологии у детей дошкольного и школьного возраста. Роль медицинской сестры в этом процессе.
курсовая работа [126,0 K], добавлен 11.12.2014Теоретические аспекты заболеваний органов пищеварения: общее понятие, этиология и патогенез, клинические проявления, диагностика, лечение. Сестринский уход за пациентами с заболеванием органов пищеварения. Диспепсические расстройства, питание пациента.
курсовая работа [37,2 K], добавлен 27.04.2018Общая характеристика и отличительные признаки различных методик обследования пациентов, используемых в современной медицине. Порядок и инструментарий для проведения обследования. Понятие и причины, разновидности одышки, направления ее исследования.
реферат [25,9 K], добавлен 12.02.2013Изучение видов и способов передачи инфекционных заболеваний дыхательной системы. Описание гриппа, острых респираторных инфекций, ангины, дифтерии, кори, коклюша. Профилактика данных заболеваний, а также оказание доврачебной помощи медицинской сестрой.
курсовая работа [4,1 M], добавлен 30.10.2014Предмет изучения отоларингологии. Место системы дыхания в жизнедеятельности организма. Основные функции слухового аппарата. Специфика анатомического строения носоглотки. Возрастные изменения, свойственные ЛОР-органам, закономерности их заболеваний.
презентация [2,3 M], добавлен 02.04.2014Методика и отличительные особенности рентгенологического исследования двенадцатиперстной, толстой и тонкой кишки, используемое при этом оборудование и принцип его действия. Порядок и признаки патологий внутренних органов при данном исследовании.
реферат [15,4 K], добавлен 28.04.2011Должностная инструкция, определяющая обязанности, права и ответственность операционной медицинской сестры. Участие медсестры в подготовке к проведению операции. Особенности санэпидрежима. Сестринская деятельность по обучению и консультированию пациентов.
курсовая работа [139,0 K], добавлен 21.12.2010Деятельность медицинской сестры при лечении и уходе за пациентами с пневмонией. Классификация пневмонии, этиология и факторы риска, клиника. Методы диагностики, особенности лечения. Роль медицинской сестры в организации ухода и лечения при пневмонии.
дипломная работа [871,2 K], добавлен 19.09.2022Роль математического образования в медицине. Вооружение студентов математическими знаниями и умениями, необходимыми для изучения специальных дисциплин базового уровня. Применение математических методов в медицине. Особенности медицинской статистики.
презентация [775,9 K], добавлен 25.09.2014Применение радиоактивного излучения в медицине и промышленности. История открытия радиоактивности французским физиком А. Беккерелем. Использование радиации для диагностики и лечения различных заболеваний. Сущность и особенности радиационной стерилизации.
презентация [883,2 K], добавлен 28.10.2014Понятие инструментальных методов исследования в медицине. Описание некоторых из них, применяющихся для обследования сердца. Фонокардиография, особенности рентгенологического исследования. Эхокардиография, радионуклидное исследование. MP-томография сердца.
презентация [2,2 M], добавлен 24.04.2014Особенности состояния здоровья детей в дошкольных учреждениях. Оздоровление детей с использованием комплекса медико-профилактического оборудования. Исследование и анализ роли медицинской сестры детского дошкольного учреждения в профилактике заболеваний.
курсовая работа [85,1 K], добавлен 16.09.2011