Физиологические особенности системы кровообращения

Характеристика главных физиологических свойств сердечной мышцы. Методы исследования механической активности сердца. Сфигмография — регистрация движения артериальной стенки, возникающей при повышении давления в аорте в момент систолы левого желудочка.

Рубрика Медицина
Вид контрольная работа
Язык русский
Дата добавления 14.09.2017
Размер файла 153,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Такие реакции со стороны сердца имеют место лишь на фоне низкого исходного кровенаполнения сердца и незначительной величины давления крови в устье аорты и коронарных сосудах. При переполнении кровью камер сердца и высоком давлении в устье аорты растяжение венозных приемников в сердце угнетает сокращение миокарда. Это сопровождается уменьшением выброса крови в аорту и затруднением притока крови из вен. Такие реакции имеют важное значение в стабильном обеспечении кровенаполнения артериальной системы.

Внутрисердечные рефлексы, в отличие от гетеро- и гомеометрических видов регуляции, существенно сглаживают и «смягчают» гемодинамические сдвиги, вызванные, в том числе, и миогенной ауторегуляцией. Имеется в виду возможное резкое увеличение энергии сердечного сокращения при гетерометрических и гомеометрических формах ауторегуляции (например, при внезапном повышении венозного притока - в момент струйного переливания крови или кровозаменителей или быстром повышении артериального давления, связанного с какими- либо экстремальными ситуациями: стресс, физическая нагрузка и т.д.).

Чрезмерное увеличение наполнения камер сердца притекающей кровью, а также значительное повышение давления в аорте вызывают уменьшение силы сокращения миокарда за счет внутрисердечных периферичеких рефлексов. Сердце при этом выбрасывет меньше крови в момент систолы. Задержка в желудочках сердца даже небольшого дополнительного объема крови сопровождается повышением давления в них, а это вызывает уменьшение венозного притока. Излишний объем крови, который мог бы оказать отрицательное влияние на артериальное давление, задерживается в венозной системе. Опасность может возникнуть и при уменьшении сердечного выброса в результате критического падения артериального давления. Внутрисердечные рефлексы предупреждают возникновение такой опасности. Эти рефлексы, в отличие от истинных рефлексов осуществляемых с участием ЦНС, имеют меньший латентный период, т.е. реагируют быстро и обеспечивают «оперативную» регуляцию сократительной активности миокарда.

Хотя такие основополагающие регуляторные механизмы деятельности сердца как автоматизм и внутрисердечные регуляторные механизмы обеспечивают главные кардио-гемодинамические функции, но они подвержены экстракардиальным влияниям.

Внесердечные (экстракардиальные) регуляторные механизмы.

Эта форма регуляции работы сердца в свою очередь может быть разделена на следующие виды:

1) рефлекторная: а) безусловные рефлексы, б) условные рефлексы.

2) гуморальная: а) медиаторная, б) гормональная, в) электролитная, г) метаболическая (за счет продуктов обмена или их компонентов).

Рефлекторная регуляция.

Какая бы нервно-рефлекторная форма (условно- или безусловно рефлекторная) регуляции работы сердца не осуществлялась, а эфферентными (центробежными) нервами, изменяющими деятельность сердца, являются блуждающие и симпатические нервы. По этим нервам из ЦНС к сердцу поступают импульсы и вызывают либо активацию, либо угнетение работы сердца. Эфферентные нервы сердца, как и все вегетативные нервы, состоят из 2 нейронов. Тела первых нейронов блуждающих нервов расположены в продолговатом мозге. Отростки этих нейронов заканчиваются в интрамуральных ганглиях сердца и являются преганглионарными нейронами. В интрамуральных ганглиях находятся вторые нейроны, от которых постганглионарные нейроны идут к проводящей системе сердца и коронарным сосудам. Правый блуждающий нерв преимущественно иннервирует сино-атриальный узел и его влияние проявляется в уменьшении частоты сердечных сокращений. Левый блуждающий нерв в основном иннервирует атрио-вентрикулярный узел и уменьшает скорость проведения импульса через этот узел. Большинство исследователей считает, что рабочий миокард желудочков не иннервируется блуждающими нервами. Однако есть и такие работы, где утверждается, что эти нервы иннервируют и миокард желудочков.

Первые нейроны симпатического отдела нервной системы, участвующие в передаче импульсов из ЦНС к сердцу, расположены в боковых рогах пяти верхних грудных сегментов спинного мозга. Отростки этих нейронов заканчиваются в шейных и верхних грудных симпатических узлах. В этих узлах расположены вторые нейроны, длинные постгаглионарные отростки которых идут к сердцу. Большая часть симпатических нервов идет к сердцу от звездчатого узла. Симпатические нервы, в отличие от блуждающих нервов, иннервируют все участки сердца (как проводящую систему сердца, так и рабочий миокард, коронарные сосуды и другие структуры сердца). Влияние блуждающих нервов на сердце впервые изучили братья Вебер (1845). Ими было установлено тормозящее (вплоть до остановки) влияние раздражения блуждающих нервов на сердце. До открытия братьями Вебер тормозящего влияния блуждающего нерва на сердце были известны лишь возбуждающие влияния других нервов на органы. Это был первый факт обнаружения тормозящего влияния нервов.

Под влиянием центробежных нервов сердца (вагуса и симпатикуса) изменяется частота (хронотропное влияние), сила (инотропное влияние) сердечных сокращений, возбудимость (батмотропное влияние) и проводимость (дромотропное влияние).

Блуждающие нервы оказывают отрицательное хроно-, ино-, батмо- и дромотропное влияние, т.е. уменьшается частота, сила, возбудимость и проводимость. Если правый блуждающий нерв преимущественно влияет на сино-атриальный узел и вызывает отрицательный хронотропный эффект, то левый блуждающий нерв преимущественно влияет на атриовентрикулярный узел. Этот нерв обладает выраженным влиянием на автоматизм, возбудимость и проводимость атрио-вентрикулярного узла.

Симпатические нервы оказывают положительное влияние, т.е. увеличивают частоту, силу, возбудимость и проводимость. Эти факты впервые были получены братьями Цион (1867). В 80-х годах 19 века И.П.Павловым было показано, что в составе симпатических нервов сердца, кроме увеличивающих частоту сердечных сокращений, имеются волокна, раздражение которых приводит только к увеличению силы сокращения (инотропное влияние). Павлов эти нервы назвал трофическими, а затем они получили название «усиливающий нерв Павлова». В условиях эксперимента раздражение усиливающего симпатического нервного волокна нормализует сократимость сердца при таком резком нарушении этой функции как альтернация сердечных сокращений. Явления альтернации проявляются в том, что одно «нормальное» сокращение сердца чередуется со «слабым» сокращением (при этом сила сокращения настолько слаба, что кровь в аорту не поступает). «Усиливающий нерв» не только увеличивает силу сокращения, но и устраняет альтернацию и восстанавливает силу сокращения до нормальных величин. Раздражение ваго-симпатического ствола на шее (у теплокровных животных блуждающий и симпатический нервы расположены вместе) сопровождается вначале вагусным эффектом, а после прекращения раздражения проявляется симпатический эффект (симпатическое последействие).

При длительном раздражении блуждающего нерва отмечается ускользание сердца из-под влияния блуждающего нерва. Такой же эффект может возникнуть при применении больших доз в-адреноблокаторов и резко выраженной брадикардии. Суть этих изменений заключается в том, что частота сердечных сокращений (несмотря на продолжающееся раздражение блуждающего нерва в эксперименте) начинает возрастать, хотя и остается замедленным по сравнению с контролем. Механизм возникновения феномена «ускользания» до конца не выяснен, но многие исследователи считают, что это является проявлением компенсаторного усиления симпатических влияний на сердце. Не исключено, однако, что при этом происходит изменение проницаемости мембраны кардиомиоцитов для ионов калия и натрия.

Передача возбуждения с блуждающего и симпатического нервов происходит за счет химических веществ (медиаторов или посредников), выделяющихся на окончаниях этих нервов. На окончаниях блуждающих нервов выделяется ацетилхолин, а на окончаниях симпатических нервов -- норадреналин. Химическая передача возбуждения с вагуса на сердце была установлена Леви (1921). Он раздражал нерв изолированного сердца лягушки, а затем жидкость из этого сердца переносил в другое сердце (которое не раздражалось), в результате чего работа второго сердца изменялась также, как и первого. Что лежит в основе механизма действия медиаторов? Считается, что под влиянием ацетилхолина происходит повышение проницаемости возбудимых мембран для калия, а это препятствует деполяризации. Медленная диастолическая деполяризация в сино-атриальном узле запаздывает, укорачивается потенциал действия миокарда предсердий. Подобные же изменения происходят в атриовентрикулярном узле.

В результате этих изменений проявляется отрицательное хроно-, ино-, батмо-, дромотропное действие ацетилхолина (и блуждающего нерва).

Симпатические нервы и их медиатор норадреналин усиливают медленный входящий кальциевый ток (т.е. повышают кальциевую проницаемость). Это приводит к усилению сокращений сердца. Норадреналин (а также гормон мозгового вещества надпочечников адреналин) действуют на б и в-адренорецепторы. В сердце эти вещества действуют преимущественно на в-адренорецепторы.

Таким образом, любые влияния ЦНС (т.е. рефлекторные) на сердце происходят через вышеописанные эфферентные нервы (поэтому при изложении соответствующих видов регуляции эти вопросы повторно освещаться не будут).

Безусловно-рефлекторная регуляция деятельности сердца

Эта форма регуляции сердечной деятельности осуществляется при раздражении различных рецепторов. Особое значение имеют рецепторы, расположенные в некоторых участках сосудистой системы, получивших название «главных сосудистых рефлексогенных зон». К основным рефлексогенным зонам относятся начальный отдел аорты и каротидный синус, т.е. область разветвления общей сонной артерии на наружную и внутреннюю. В этих сосудистых областях располагаются барорецепторы (или прессорецепторы), а раздражителем для них служит изменение артериального давления (АД). Барорецепторы можно подразделить на 3 группы. Первую группу барорецепторов составляют рецепторы, которые воспринимают ритмические колебания АД, связанные с систолой и диастолой сердца, т.е. эти рецепторы возбуждаются ритмически. Вторая группа рецепторов воспринимает постоянную, непрерывную нагрузку. Третья группа барорецепторов воспринимает вибрационные колебания столба жидкости в сосуде. Все эти формы влияния имеются в сосудах. Ритмические колебания давления в пределах 120/80 мм рт.ст.; постоянная, непрерывная нагрузка в виде среднего давления -- 90-100 мм рт.ст.; вибрацию создают вихревые движения крови. Отдельные барорецепторы, воспринимающие давление ниже 80 и выше 120 мм рт.ст., в нормальных условиях практически не реагируют на изменение давления. Эти барорецепторы настроены на возможные случаи снижения или повышения АД и тогда они возбуждаются. При значительном и стабильном повышении АД, рецепторы в норме возбуждающиеся при ритмических колебаниях давления (систола и диастола) в пределах 80-120 мм рт.ст., перестают реагировать и посылать импульсы в ЦНС. Если нет патологической гипертензии, то такое явление имеет положительное, адаптивное значение, например при мышечной работе. Если в основе повышения АД лежит патологический процесс (например, гипертоническая болезнь), то отсутствие реакции со стороны «ритмическсих» барорецепторов оказывает отрицательное влияние, т.к. рефлекс, ослабляющий работу сердца и понижающий АД не проявляется.

Афферентными нервами, проводящими возбуждение от рецепторов дуги аорты, являются депрессорные нервы (нерв Циона-Людвига), а от каротидного синуса импульсы передаются по синусному нерву (нерв Геринга). Возбуждение, которое возникает в барорецепторах и указанных нервах при повышении давления в сосудах, передается в продолговатый мозг, затем переключается на центр блуждающего нерва и это сопровождается возникновением брадикардии (вагусный эффект), расширением сосудов и снижением АД. При снижении АД и уменьшении величины пульсовых колебаний, как правило, возникает тахикардия, увеличение минутного объема крови и это приводит к восстановлению давления. Но кроме сердечного компонента возникает при этом вазоконстрикторный эффект, обусловленный возбуждением симпатических сосудосуживающих нейронов.

Участие афферентных нервов в передаче возбуждения от рассматриваемых рефлексогенных зон было установлено путем раздражения депрессорного и синусного нервов, их перерезки, а также записи импульсной активности (биотоков) с этих нервов. Запись потенциала действия с этих нервов показала, что импульсная активность возрастает в них в момент систолы и снижается в момент диастолы. Барорефлексы с дуги аорты и каротидного синуса участвуют в саморегуляции работы сердца и АД и вносят существенный вклад в сохранении постоянства этих показателей. Рефлексы с аортально-каротидной зоны по мнению большинства исследователей обеспечивают постоянство артериального давления, но правильнее было бы говорить об оптимизации кровообращения в целом. Такая оптимизация непременно нужна при многих экстремальных условиях (физическая нагрузка, гипоксия, эмоциональный стресс, боль и т.д.). Это сопровождается тахикардией и повышением АД и носит приспособительный характер, а после прекращения этих воздействий происходит быстрая нормализация. Таким образом, барорефлексы не просто сохраняют постоянство гемодинамики, а принимают участие в адаптации организма к конкретным условиям.

Рефлексы на сердце с хеморецепторов аортальной и синокаротидной зон возникают с тех же участков сосудистой системы, что и барорефлексы. Отличие заключается в том, что хеморецепторы расположены в каротидном клубочке, т.е. вне магистрального сосуда. Основными раздражителями для этих рецепторов являются изменение парциального давления кислорода и углекислого газа, а также концентрация водородных ионов (рН) в крови. Снижение содержания кислорода в крови (гипоксемия) сопровождается тахикардией, но эти сердечно-сосудистые реакции на гипоксию могут зависеть от гиперпноэ. Однако есть факты, свидетельствующие о возникновении тахикардии, которые имеют все же рефлекторную природу. Так, у человека тахикардия возникает уже при снижении кислорода во вдыхаемом воздухе всего на 3%, когда влияние гипоксии на дыхание еще не проявляется.

В регуляции дыхания синокаротидные хеморецепторы играют значительно большую роль, чем аортальные. В реакциях же сердечно-сосудистой системы роль аортальных хеморецепторов является более значимой. Для стимуляции аортальных хеморецепторов типична тахикардия.

Рефлексы с хеморецепторов каротидного синуса и дуги аорты на сердце по механизму происхождения являются гуморальными, а по механизму реализации типичным висцеро-висцеральным (сосуды - сердце) рефлексом. Рефлекторный путь от хеморецепторов каротидного синуса и дуги аорты такой же, как и для барорецепторных рефлексов с этих сосудистых зон (нерв Циона-Людвига с аорты, нерв Геринга с каротидного синуса, затем продолговатый мозг, оттуда тормозящие - ингибирующие влияния на сердце идут по блуждающим нервам, а активирующие -- возбуждающие по симпатическим нервам).

Рефлекторное изменение работы сердца наблюдается при раздражении механорецептров, расположенных в правом предсердии и в устьях полых вен. Эти рецепторы (некоторые авторы эти рецепторы относят к волюморецепторам, т.е. воспринимающим объем крови, что вряд ли правомерно с точки зрения классической физиологии о рецепторах, потому что при этом происходит растяжение стенок полых вен, это и есть воздействие на механорецепторы) возбуждаются при растяжении указанных областей сердца и сосудов и зависят от величины венозного возврата. Чем больше объем (больше венозный возврат) поступающей крови, тем больше растягиваются полые вены и правое предсердие. В результате этих изменений рефлекторно усиливается и учащается работа сердца (рефлекс Бейнбриджа).

Рефлекторные влияния на сердце осуществляются и с других рецепторов внутренних органов (например, с желудка и брюшины -- замедляют работу сердца), со скелетных мышц -- усиливают и учащают, боль вызывает резко выраженную тахикардию. Эти рефлекторные влияния являются быстро проходящими и вскоре исчезают после прекращения раздражения.

К вагальным рефлексам относятся рефлекс Гольца и глазо-сердечный рефлекс Данини-Ашнера. Рефлекс Гольца, в виде брадикардии, возникает при легком ударе по животу (опыты на лягушках). У человека этот рефлекс (до полной остановки сердца и даже летального исхода) может быть при ударе в область солнечного сплетения (например, при нарушении правил ведения бокса боксерами).

Условнорефлекторная регуляция работы сердца.

Все условные рефлексы являются приобретенными в процессе жизни каждого организма и формируются они с участием коры больших полушарий. Трудно, а может быть даже и невозможно выработать условный рефлекс, который бы проявлялся изолированным изменением только деятельности сердца. В целостном организме изменения функций носят системный характер, т.е. наблюдается одновременное изменение ряда показателей. Например, предстартовое изменение ряда функций организма имеет несомненно условнорефлекторный характер, но при этом усиливается не только работа сердца, а происходит повышение АД, гипервентиляция, повышение активности ЦНС, вегетативной нервной системы, увеличение количества эритроцитов и гемоглобина, усиление функций желез внутренней секреции. Все эти изменения необходимы для достижения полезного приспособительного результата, а в данном случае -- высокого спортивного результата. Или другой пример, который также имеет приобретенный, т.е. условнорефлекторный характер. Изменение функционального состояния перечисленных систем четко проявляется у студентов и школьников во время сдачи экзаменов. Причем уровень психо-эмоционального возбуждения неодинаковый в разные периоды предэкзаминационного напряжения, чем больше дефицит информации, тем больше выраженность реакций (перед взятием билета, начало ответа и т.д.). Уровень мотиваций, выраженность эмоционального компонента имеют чрезвычайно важное значение для выработки условных рефлексов. Поэтому все эти сложные поведенческие реакции протекают с участием не только коры головного мозга, но и подкорковых, и прежде всего лимбических и гипоталамических структур мозга. Роль коры при этом заключается, главным образом, в оценке путей реализации и правильности результата действия.

Условные рефлексы могут быть натуральными (естественными -- вышеприведенные примеры относятся к этой категории рефлексов) и искусственными, т.е. выработанные в лабораторных условиях на какие-то ранее индифферентные раздражители. Например, в качестве условного сигнала используется «свет», а подкреплением является болевое раздражение (которое сопровождается в частности тахикардией и повышением АД и т.д.). После выработки условного рефлекса условный сигнал «свет» будет вызывать такие же изменения, как и боль.

Гуморальная регуляция работы сердца.

Как уже отмечалось выше, гуморальными агентами, вызывающими изменение работы сердца, могут быть медиаторы, гормоны, электролиты и продукты метаболизма. О влиянии медиаторов парасимпатической и симпатической системы говорили выше.

Гормональная регуляция работы сердца, прежде всего, осуществляется катехоламинами (адреналином и норадреналином) -- гормонами мозгового вещества надпочечников). Катехоламины оказывают действие на сердце подобно симпатической нервной системе, т.е. положительное хроно-, ино -, батмо-, дромотропное. Выделение этих гормонов значительно увеличивается при боли, отрицательных эмоциях (гнев, ярость, страх), эмоциональном стрессе, физической нагрузке, гипоксии и т.д. Усиление работы сердца, повышение АД и изменение других функциональных параметров организма при этом имеют адаптационно-приспособительное значение.

В основе механизма действия катехоламинов на сердце лежит усиление медленного входящего кальциевого тока, т.е. они повышают кальциевую проницаемость и это приводит к увеличению силы сокращения. Катехоламины увеличивают частоту сердечных сокращений. При этом происходит уменьшение продолжительности как периода систолы, так и периода диастолы. Ускорение диастолы сердца связывают со стимуляцией поступления кальция во внутриклеточные депо. Катехоламины влияют на сердце за счет возбуждения адренорецепторов (преимущественно в-адренорецепторов). Эти влияния могут быть существенно ослаблены или полностью выключены в-адреноблокаторами. Это приводит к дозозависимой брадикардии, т.е. с увеличением дозы адреноблокатора степень выраженности брадикардии возрастает и синоатриальный узел может быть даже полностью заблокирован.

На сократительную функцию сердца оказывают влияние не только гормоны мозгового вещества надпочечников, но и гормоны коркового вещества. Глюкокортикоиды увеличивают силу сокращения, т.е. оказывают «кардиотоническое» влияние.

Опосредованное влияние на сердце оказывают глюкагон и инсулин, простагландины, усиливая его работу.

Гормоны щитовидной железы -- тироксин и трииодтиронин вызывают учащение и усиление сокращений сердца. Такие явления четко проявляются у больных с гипертиреозом, а снижение функции щитовидной железы протекает явлениями брадикардии и ослабления силы сокращения сердца.

Существенное влияние на силу и частоту сердечных сокращений оказывают ионы калия и кальция. Повышение содержания калия в наружной среде (внеклеточный калий) приводит: а) к снижению потенциала покоя вследствие уменьшения градиента концентрации калия, б) к увеличению проницаемости возбудимых мембран для калия (как при действии ацетилхолина на миокард предсердий). Увеличение концентрации калия вдвое, т.е. до 8 ммоль/л (при норме 4 ммоль/л), приводит к незначительной деполяризации и очень слабому повышению возбудимости и скорости проведения, что вызывает подавление гетеротопных очагов возбуждения. При возрастании концентрации калия выше 8 ммоль/л возбудимость, скорость проведения и длительность потенциала действия падают, в результате чего уменьшается сила сокращения, синоатриальный узел перестает функционировать как водитель ритма сердца. Дальнейшее повышение концентрации калия сопровождается резко выраженной брадикардией и остановкой сердца в период диастолы.

Снижение концентрации внеклеточного калия ниже 4 ммоль/л приводит к повышению активности пейсмекера, активируются гетеротопные и эктопические очаги возбуждения. Все это приводит к нарушению ритма сердца (экстрасистолия, мерцание и трепетание предсердий и желудочков) и возможны очень тяжелые последствия вплоть до летального исхода из-за нарушения ритма сердца. Отсюда напрашивается вывод, что как значительное увеличение, так и уменьшение концентрации внеклеточного калия могут вызвать критическое состояние больного (особенно с патологией сердца).

Снижение возбудимости под действием растворов с высокой концентрацией калия (кардиоплегические растворы) используют в хирургии сердца, чтобы вызвать временную его остановку, а кровообращение в этих условиях поддерживается аппаратом искусственного кровообращения. При лечении ряда заболеваний сердца (в том числе аритмий) широко используются препараты (или растворы), содержащие калий. Таким больным назначается специальная диета с повышенным содержанием калия в пищевых продуктах.

Увеличение содержания кальция во внеклеточной жидкости сопровождается увеличением силы и частоты сердечных сокращений, а удаление кальция из внеклеточной жидкости (в эксперименте) вызывает прекращение сокращений сердца. Ряд веществ обладает способностью блокировать вход кальция во время потенциала действия и это сопровождается таким же эффектом, как и удаление кальция из внеклеточной жидкости. Такие вещества получили название антагонисты кальция (например, широко используется в кардиологии верапамил).

Деятельность сердца изменяется при изменении рН крови. Так, слабый ацидоз усиливает, а более выраженный ацидоз угнетает работу сердца. Алколоз сопровождается увеличением силы сокращения сердца.

Таким образом, механизмы регуляции работы сердца многокомпонентны. Вовлечение их в процесс регуляции может иметь как одновременный характер (ряда компонентов), так и последовательный характер. Благодаря этому обеспечивается высокая надежность и адаптируемость сердца к различным физиологическим и экстремальным условиям.

6. Функции сосудистой системы

Основные принципы гемодинамики.

Сердечно-сосудистая система человека состоит из двух последовательно соединенных отделов: а) большой круг кровообращения, насосом для этого отдела служит левый желудочек. б) малый (легочный) круг кровообращения. Насосом этого круга является правый желудочек. Соответственно в эти желудочки кровь поступает из левого и правого предсердий. Между двумя кругами кровообращения имеются принципиальные функциональные различия. Объем крови, выбрасываемый в большой круг кровообращения, должен быть распределен по всем органам и тканям; разные органы имеют различную потребность в кровоснабжении как в покое, так и особенно при их деятельности. Что касается легочного (малого) круга, то через эти сосуды проходит такое же количество крови (так как систолический и минутный объемы левого и правого желудочков одинаковые), но к правому сердцу предъявляются относительно постоянные требования и для регуляции легочного кровотока требуется менее сложная система, чем для большого круга.

Основным фактором обеспечивающим кровоток по сосудистой системе является разность (градиент) давлений между различными отделами сосудистой системы. Этот градиент давления является силой, преодолевающей гидродинамическое сопротивление, которое зависит от архитектуры сосудистого русла (например, числа, длины, диаметра, и степени ветвления сосудов) и вязкости крови.

Скорость кровотока.

Различают линейную и объемную скорость кровотока.

Линейная скорость отражает скорость продвижения частиц крови вдоль сосуда в единицу времени. Она различна для частиц крови, продвигающихся в центре потока и у сосудистой стенки. В центре сосуда она максимальна, а около стенки сосуда минимальна, т.к. велико трение частиц крови о стенку. Линейная скорость кровотока снижается от аорты к капиллярам, а затем вновь возрастает в венах. Она составляет в: аорте около 50 см/с, крупных артериях 40-45, капиллярах -- 0,05-0,07 см/с, венах -- 10-25 см/с, полых венах -- 30-33 см/с. Линейная скорость кровотока зависит от суммарного просвета кровеносных сосудов. Чем больше суммарный просвет, тем меньше скорость кровотока. Наименьшая скорость кровотока в капиллярах. Это объясняется тем, что суммарный просвет капилляров примерно в 500-600 раз больше просвета аорты. Медленный ток крови в капиллярах обеспечивает нормальные обменные процессы между кровью и тканями. В венах скорость кровотока вновь возрастает, так как при слиянии вен суммарный просвет их уменьшается (например, зависимость скорости течения воды от ширины русла реки очень четко прослеживается. При одном и том же объеме воды через узкое русло реки она течет быстро, а через широкое -- медленно). Линейная скорость кровотока в аорте и легочной артерии увеличивается в момент систолы и становится несколько ниже в момент диастолы сердца. В капиллярах и венах скорость постоянна.

Линейная скорость кровотока неодинакова в толще текущей крови, т.к. в физиологческих условиях наблюдается ламинарное, или слоистое, течение крови. Все частицы крови перемещаются только параллельно оси сосуда. Слой, прилегающий к стенке сосуда как бы «прилипает» к ней и остается неподвижным. По этому слою скользит второй слой, по нему третий и т.д. Максимум скорости наблюдается в центре сосуда. Особенностью ламинарного кровотока является и то, что чем крупнее частицы крови, тем ближе они располагаются к оси сосуда и имеют наибольшую скорость кровотока. В центральном (осевом потоке) в основном располагаются эритроциты, образуя компактный цилиндр внутри оболочки из плазмы.

При определенных условиях ламинарное течение может превратиться в турбулентное. Для этого вида течения характерны завихрения, а течение крови происходит не только параллельно оси сосуда, но и перпендикулярно. Эти завихрения увеличивают внутреннее трение, что приводит к некоторому снижению градиента давления. Локальные завихрения могут быть у разветвления сосудов. В период изгнания крови из желудочков в аорту и легочную артерию наблюдается физиологическое турбулентное движение крови в этих сосудах. Принято считать, что в предсердиях происходит также турбулентное движение крови. Такое движение, по-видимому, необходимо для перемешивания (в частности левом предсердии) и равноменрного распределения оксигенированной крови.

Объемная скорость кровотока -- показатель, характеризующий перемещение определенного объема крови через поперечное сечение сосуда в единицу времени (выражается в мл/с). Объем крови, протекающий в 1 мин через аорту или полые вены и через легочную артерию или легочные вены, одинаковый. Отток крови от сердца соответствует ее притоку. Стало быть, объем крови, протекающий в 1 мин через всю артериальную и всю венозную систему большого и малого круга кровообращения, одинаков (при нарушении этого явления может наблюдаться застой в каких-то отделах сосудистой системы). Это, однако, не значит, что региональный (органный) кровоток всегда постоянен. При повышении активности органа (например, мышц при физической нагрузке) объемная скорость кровотока может многократно увеличиться. Увеличение органного кровотока обеспечивается как за счет перераспределения, так и за счет увеличения минутного объема крови.

Сопротивление кровотоку.

Многие закономерности течения крови по сосудам можно объяснить базируясь на основных законах гидродинамики, согласно которым, количество жидкости (Q), протекающее через любую трубку, прямо пропорционально разности давлений в начале (Р1) и в конце (Р2) трубки и обратно пропорционально сопротивлению (R) току жидкости. Применительно к кровеносным сосудам следует иметь в виду, что вместе впадения полых вен в сердце давление близко к нулю и уравнение будет выглядеть так:

Q = P:R,

где Q -- количество крови, выброшенное сердцем в сосуды в 1 минуту; Р - величина среднего давления в аорте, R - величина сосудистого сопротивления. Давление в аорте (Р) и минутный объем крови (Q) можно измерить непосредственно. Зная эти величины, вычисляют периферическое сопротивление, которое является важнейшим показателем состояния сосудистой системы. Периферическое сопротивление сосудистой системы складывается из множества отдельных сопротивлений каждого сосуда. Теоретически можно было бы предполагать, что наибольшее сопротивление должны были бы создавать капилляры, т.к. они имеют наименьший диаметр (5-7 мкм), а суммарная их длина составляет около 100.000 км (т.е. 3 раза можно обогнуть землю по экватору). Фактически суммарное сопротивление капилляров меньше, чем артериол. Основное сопротивление току крови возникает в артериолах. Это сосуды сопротивления или резистивные сосуды. Большое сопротивление в артериолах объясняется тем, что они имеют толстый слой циркулярно расположенных мышц. Сокращение этих мышц может существенно повысить сопротивление кровотоку и привести к значительному повышению системного артериального давления, а расширение этих сосудов сопровождается снижением артериального давления. Артериолы являются основным регулятором уровня общего артериального давления. И.М. Сеченов назвал их «кранами сердечно-сосудистой системы». Изменение органного сопротивления и на продвижение крови по артериолам и капиллярам тратится 85% энергии, затраченной сердцем на изгнание крови.

Гемодинамическое сопротивление зависит также от вязкости крови, т.е. от трения между слоями жидкости и между жидкостью и стенками сосудов. Вязкость часто выражают в относительных единицах, принимая вязкость воды за 1. Вязкость крови составляет 3-5 (плазмы -- 1,9-2,3) относительных единиц, она преимущественно зависит от форменных элементов крови. При низкой скорости кровотока вязкость увеличивается, а при значительном снижения скорости вязкость возрасает до 1000 относительных единиц. В физиологических условиях эти эффекты могут проявляться лишь в очень мелких сосудах и вязкость может возрасать до 10 относит. единиц. В патологии уменьшение скорости кровотока может сопровождаться существенным повышением вязкости и объясняется это обратимой агрегацией эритроциов, которые образуют скопления в виде монетных столбиков. физиологический сердечный сосудистый аорта

Давление в кровеносной системе.

Основными факторами, определяющими величину артериального давления, являются: работа сердца (чем больше сила сердечных сокращений, тем большее давление создается при изгнании крови из желудочков и наоборот); сопротивление кровотоку (чем выше тонус сосудов, тем больше сопротивление; чем больше вязкость крови, тем больше сопртивление); объем циркулирующей крови (больше объем - выше давление).

Различают систолическое (пик давления в момент систолы), диастолическое (минимальное давление в диастолу), пульсовое (разница между систолическим и диастолическим давлением), среднее (равняется сумме диастолического и половины пульсового давления). Систолическое давление в плечевой артерии у здоровых людей в возрасте 15-50 лет равно примерно 110-125, в 60 лет и старше - 135-140, у новорожденных около 50 мм рт.ст, но уже через несколько дней становится 70, а к концу 1-го месяца жизни - 80 мм рт.ст. Диастолическое давление у людей среднего возраста в плечевой артерии в среднем равно 60-80 мм рт.ст.; пульсовое - около 40, среднее - около 100 мм рт.ст. В артериях малого диаметра систолич. давление составляет 80-90 мм рт.ст, в артериолах - 60 - 70, в артериальном конце капилляров - 30-35, в венозном конце капилляров 10-17 (в капиллярах и венах кровь течет без пульсовых колебаний), в венах среднего калибра - 5-8, в полых венах - 1-3 мм рт.ст. (а в момент вдоха давление может быть отрицательное; для перевода мм рт.ст. в мм вод. ст. надо умножить на 13,6).

Давление в сосудах определяется либо кровавым методом, либо бескровным методом. В эксперименте на животных для прямой регистрации давления в артерию вводится канюля, которая соединяется с манометром и производится запись на самописце (или ленте кимографа по Людвигу). Различают волны 1 порядка - это пульсовые волны (соответствуют количеству сердечных сокращений), волны 2-го порядка - дыхательные волны и волны 3-го порядка- сосудодвигательные (зависят от тонуса сосудодвигательного центра).

Бескровные методы определения АД - метод Рива-Роччи (пальпаторный метод позволяет определить только систол. давление), метод Короткова (аускультативный метод -определяется систолическое и диастолич. давление); электронные приборы, дающие возможность определить систол, диастол. давление и частоту пульса.

Артериальный пульс.

Это ритмические колебаия стенки артерии, вызванные повышением давления и гемодинамическим ударом об стенку аорты (пульсовые волны от аорты распространяются по артерияим) в момент систолы сердца. Скорость распространения пульсовой волны не зависит от скорости кровотока. Наибольшая скорость кровотока по артериям не превышает 0,3-0,5 м/с, а скорость распространения пульсовой волны при нормальной эластчности сосудов в аорте равна 5,5-8 м/сек. Пульс исследуется пальпаторно в поверхностно расположенных артериях (лучевой, височной, наружной артерии стопы и т.д.) или производтся запись - сфигмография.

Основными физиологическими характеристиками пульса являются: частота - число пульсовых колебаний (соответствует частоте сердечных сокращений) в 1 минуту, ритмичность - пульсовые колебания сосуда через одинаковые интервалы времени (пульс аритмичный - разные интервалы, например при экстрасистолии), наполнение зависит от величины ударного объема (пульс может быть хорошего или слабого наполнения), а ударный или систолический объем зависит от силы сокращения сердца и величины венозного возврата, напряжение (твердый или мягкий пульс) определяют по величине усилия, приводящего к исченовению пульса дистальнее места надавливания, быстрота - оценивается по скорости нарастания пульсовой волны (быстрый пульс - крутая анакрота, медленный пульс - пологая анакрота), симметричность - сравнивается пульс в симметричных участках тела (например, при левостороннем эндартериите нижней конечности пульс может даже отсутствовать с этой стороны, а с противоположной стороны может быть нормальным).

Есть понятие «дефицит пульса», когда выслушиваются тоны сердца и одновременно пальпируется пульс, то число сокращений сердца (судя по тонам) оказывается больше в единицу времени, чем частота пульса.

Такое явление обусловлено тем, например, при экстрасистолах, что сила сокращения сердца при экстрасистоле оказывается недостаточной, чтобы произошло изгнание крови из левого желудочка в аорту, т.е. развиваемое сердцем давление оказывается ниже аортального давления и порция крови не поступает в аорту (пульсовая волна не возникает, а I-й тон выслушивается, т.к. происходит захлопывание атриовентрикулярных клапанов).

Размещено на Allbest.ru

...

Подобные документы

  • Пульсовая волна - распространяющаяся по аорте и артериям волна повышенного (над атмосферным) давления, вызванная выбросом крови из левого желудочка в период систолы. Изменение артериального давления в плечевой артерии. Периоды и фазы сердечного цикла.

    презентация [856,0 K], добавлен 09.04.2015

  • Общая характеристика системы кровообращения в организме человека. Рассмотрение строения сердца. Изучение теории мышечного сокращения "скользящих нитей". Описание правил сопряжения сердечной мышцы, фаз сердечного цикла, особенностей функций миокарда.

    презентация [4,1 M], добавлен 25.11.2015

  • Методы лучевого исследования сердца. Рентгеновская анатомия сердца. Основные симптомы патологии сердца. Методы диагностики гипертрофий. Признаки гипертрофии левого и правового желудочков и миокарда. Разграничение гипертрофии и дилятации левого желудочка.

    презентация [1,6 M], добавлен 06.04.2015

  • Общая характеристика сосудистой системы и методы ее исследования. Частота, ритм и качество артериального пульса. Наполнение артерий. Величина и форма пульсовой волны. Напряжение артериальной стенки. Сфигмография. Исследование артериального давления.

    реферат [57,8 K], добавлен 12.01.2016

  • Сердце как мышечный орган, его строение и физиологические свойства мышцы. Общая характеристика сердечной недостаточности, ее развитие и проявление. Особенности сосудистой недостаточности и артериальной гипотонии. Ритм сердца и причины его нарушения.

    реферат [29,7 K], добавлен 16.01.2011

  • Изучение связей между электрофизиологическими и клинико-анатомическими процессами живого организма. Электрокардиография как диагностический метод оценки состояния сердечной мышцы. Регистрация и анализ электрическй активности центральной нервной системы.

    презентация [225,3 K], добавлен 08.05.2014

  • Характеристика методов исследования механической активности сердца - апекскардиографии, баллистокардиографии, рентгенокимографии и эхокардиографии. Их основное значение, точность измерения и особенности применения. Принцип и режимы работы УЗ прибора.

    презентация [2,8 M], добавлен 13.12.2013

  • Инвазивные электрофизиологические методы исследования сердца. Компоненты ЭКГ и их нормальные величины. Основы векторной теории электрокардиографии. Основные части электрокардиографа. Регистрация сигналов при постепенном изъятии зонда из правого желудочка.

    презентация [976,2 K], добавлен 28.12.2013

  • Строение сердца человека - центрального органа кровеносной системы, понятие автоматии сердечной мышцы. Характерные анатомические и физиологические особенности иннервации сердца. Компоненты и функции проводящей системы сердца. Сердечный цикл, его фазы.

    реферат [9,9 M], добавлен 25.07.2010

  • Роль сердца: ритмическое нагнетание крови в сосуды; генератор давления; обеспечение возврата крови. Сосуды малого и большого круга кровообращения. Физиологические свойства сердечной мышцы. Потенциал действия кардиомиоцита желудочков и градиент автоматии.

    лекция [454,7 K], добавлен 27.05.2014

  • Постинфарктное ремоделирование левого желудочка и дефицит полиненасыщенных жирных кислот. Особенности жирнокислотного статуса мембран эритроцитов и выраженность диссинхронизма при различных типах постинфарктного ремоделирования левого желудочка.

    статья [601,5 K], добавлен 10.02.2012

  • Причины сердечной недостаточности. Ослабление работы левого желудочка, повышение давления в малом круге кровообращения, пропотевание жидкости из расширенных капилляров в альвеолы. Тромбоэмболия легочной артерии. Первая медицинская помощь больному.

    презентация [809,6 K], добавлен 11.03.2014

  • Анатомия и физиология сердца. Основные физиологические свойства сердечной мышцы. Осложнения и методы лечения инфаркта миокарда. Лечение в сестринском процессе: диетотерапия, режимы двигательной активности, последствия и профилактика заболевания.

    курсовая работа [1,1 M], добавлен 16.04.2017

  • Клинические проявления артериальной гипертензии. Основные признаки гипертрофии левого желудочка, стенокардии напряжения и поражения головного мозга. Медикаментозное лечение артериальной гипертензии. Выписной эпикриз больного при гиперхолестеринемии.

    история болезни [37,7 K], добавлен 28.10.2009

  • Характеристика недостаточности митрального клапана - порока сердца, при котором из-за поражения митрального клапана во время систолы не происходит полного смыкания его створок, что приводит к регургитации крови из левого желудочка в левое предсердие.

    реферат [27,6 K], добавлен 09.09.2010

  • Развитие сердца, особенности строения сердечной мышечной ткани. Гистологическое строение сердечной стенки. Сердечная мышца называется миокардом. Клапанный аппарат сердца: трехстворчатый, легочный, митральный или двустворчатый и аортальный клапаны.

    реферат [1,5 M], добавлен 05.06.2010

  • Жалобы при поступлении, общее обследование пациента. Обоснование диагноза - ишемическая болезнь сердца, гипертоническая болезнь II стадии, гипертрофия левого желудочка. Этиология и патогенез данных заболеваний. Назначение фармакотерапии, ее эффективность.

    история болезни [100,9 K], добавлен 22.04.2013

  • Изменения клапанного аппарата, вызванные ревматическим эндокардитом. Порок сердца, при котором из-за поражения митрального клапана во время систолы не происходит полного смыкания его створок. Регургитация крови из левого желудочка в левое предсердие.

    презентация [1,5 M], добавлен 04.12.2014

  • Физиологические свойства сердечной мышцы. Границы анатомического расположения сердца, его свойства проводимости. Потенциал действия клеток водителя ритма сердца. Особенности саморегуляции и сократимости миокарда. Оценка автоматии по частоте пульса.

    презентация [2,0 M], добавлен 16.01.2014

  • Особенности состава и свойств крови у детей. Состав периферической крови в первые дни после рождения. Симптомы малокровия и его профилактика. Роль воспитателя. Анатомические особенности органов кровообращения. Работа сердца. Тренировка детского сердца.

    контрольная работа [17,4 K], добавлен 19.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.