Характеристика системы свертывания и нервной регуляции дыхания. Водно-солевой обмен в организме животного. Физиология родов

Свертывание крови, механизм и значение. Рассмотрение особенностей нервной регуляции дыхания. Превращение белка в преджелудках жвачных животных. Водно-солевой обмен в организме, его регуляция. Роль нервной системы и гормонов в регуляции физиологии родов.

Рубрика Медицина
Вид контрольная работа
Язык русский
Дата добавления 17.11.2017
Размер файла 788,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МОСКОВСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ

ВЕТЕРИНАРНОЙ МЕДИЦИНЫ И БИОТЕХНОЛОГИИ ИМ. К.И. СКРЯБИНА

ФАКУЛЬТЕТ ВЕТЕРИНАРНОЙ МЕДИЦИНЫ

КОНТРОЛЬНАЯ РАБОТА

по дисциплине:

“Физиология и этология животных”

Характеристика системы свертывания и нервной регуляции дыхания. Водно-солевой обмен в организме животного. Физиология родов

Студента III курса

Группы 6

Сысоева Максима Олеговича

Обучение на базе ХГЗВА

Харьков 2008

План

нервный животное солевой гормон

1. Свертывание крови, механизм и значение. Факторы, которые влияют на скорость свертывания

2. Как осуществляется нервная регуляция дыхания. Где находятся нервные центры, которые регулируют дыхание. Опишите значение блуждающего нерва в регуляции дыхания

3. Превращение белка в преджелудках жвачных животных. Почему жвачные менее чувствительны к недостаче в кормах незаменимых аминокислот

4. Водно-солевой обмен в организме, его регуляция

5. Физиология родов. Роль нервной системы и гормонов в регуляции этого процесса

1. Свертывание крови, механизм и значение. Факторы, которые влияют на скорость свертывания.

Характеристика системы свертывания

Гемостаз (лат. heama- кровь, statis- остановка) - это механизмы, останавливающие кровотечения, а также направленные на сохранение крови в сосудах в жидком состоянии, препятствующие кровоточивости и восстанавливающие кровоток в том случае, если просвет сосуда окажется закупоренным тромбом. Чтобы двигаться по сосудам и выполнять свои основные функции, кровь должна быть жидкой. Но одновременно кровь должна обладать способностью свертываться, чтобы не произошло ее потери из поврежденного сосуда: при травмах и родах, при усиленном функционировании скелетных мышц и других органов (микротравмы капилляров). Единство свертывающей и противосвертывающей систем составляет сущность гемостаза. Время свертывания является видовым признаком, оно может изменяться в ту или другую сторону.

У насекомых свертывание крови происходит в 2 этапа: коагуляция плазмы и агглютинация гемоцитов. У саранчи свертывание сопровождается ультраструктурными изменениями коагулоцитов: раздувается и становится шаровидным ядро, исчезают рибосомы, через 5 мин. Исчезают фибриллярные гранулы, заполнявшие всю цитоплазму клетки. У позвоночных коагуляционная активность крови в филогенезе повышается. Время свертывания у рыб составляет около 1. 5 часа, но может сокращаться до 1 мин. При попадании слизи с поверхности чешуи, которая имеет тромбопластические свойства. У амфибий кровь свертывается 6 - 12 мин., у рептилий от 5 мин. До 3 часов. Среди позвоночных наибольшая скорость свертывания отмечается у млекопитающих: максимальная(1 - 3 мин.) - у грызунов; 5 - 6 мин. - у овец, коз, собак и кошек; минимальная(8 - 10 мин.) - у лошадей и КРС.

Кровь циркулирует в кровеносном русле в жидком состоянии. При травме, когда нарушается целостность кровеносных сосудов, кровь должна свертываться. За все это в организме человека отвечает система РАСК - регуляции агрегатного состояния крови. Эта регуляция осуществляется сложнейшими механизмами. При пониженной способности крови к свертыванию возникают кровотечения, при повышенной - кровь свертывается внутри сосудов, закупоривая их тромбом.

К факторам, поддерживающим кровь в жидком состоянии, относятся следующие: 1) внутренние стенки сосудов и форменные элементы крови заряжены отрицательно; 2) эндотелий сосудов секретирует простациклин ПГИ-2 - ингибитор агрегации тромбоцитов, антитромбин III, активаторы фибринолиза; 3)факторы свертывающей системы крови находятся в сосудистом русле в неактивном состоянии; 4) наличие антикоагулянтов; 5) большая скорость кровотока.

Факторы свертывания

В свертывающую систему входят около 15 веществ (факторов) свертывания, содержащихся в плазме (табл.1). По своей природе они относятся к белкам -- протеазам и неферментным белкам. Неотъемлемым фактором свертывания являются ионы кальция и третий тромбоцитарный фактор.

Факторы свертывания крови вырабатываются организмом в неактивном состоянии. Если факторы из неактивных (проферментов) становятся активными ферментами, к их обозначению добавляется буква “а” (например, Х -- неактивная форма фактора свертывания X, Ха- его активная форма). Если активным действием начинает обладать один из фрагментов фактора, к нему тоже добавляется буква “а”.

Физиологически активные вещества, принимающие участие в свертывании крови и находящиеся в плазме, называются плазменными факторами свертывания крови. Они обозначаются римскими цифрами в порядке их хронологического открытия. Некоторые из факторов имеют название, связанное с фамилией больного, у которого впервые обнаружен дефицит соответствующего фактора. К плазменным факторам свертывания крови относятся: Iф - фибриноген, IIф - протромбин, IIIф - тканевой тромбопластин, IVф - ионы кальция, Vф - Ас-глобулин (ассеlеrаnсе - ускоряющий), или проакцелерин, VIф - исключен из номенклатуры, VIIф - проконвертин, VIIIф - антигемофильный глобулин А, IXф - антигемофильный глобулин В, или фактор Кристмаса, Xф - фактор Стюарта - Прауэра, XIф - плазменный предшественник тромбопластина, или антигемофильный глобулин С, XIIф - контактный фактор, или фактор Хагемана, XIIIф - фибринстабилизирующий фактор, или фибриназа, XIVф - фактор Флетчера (прокалликреин), XVф - фактор Фитцджеральда - Фложе (высокомолекулярный кининоген - ВМК).

Большинство плазменных факторов свертывания крови образуется в печени.

Для синтеза некоторых из них (II, VII, IX, X) необходим витамин К, содержащийся в растительной пище и синтезируемый микрофлорой кишечника.

При недостатке или снижении активности факторов свертывания крови может наблюдаться патологическая кровоточивость. Это может происходить при тяжелых и дегенеративных заболеваниях печени, при недостаточности витамина К.

Витамин К является жирорастворимым витамином, поэтому его дефицит может обнаружиться при угнетении всасывания жиров в кишечнике, например при снижении желчеобразования.

Эндогенный дефицит витамина К наблюдается также при подавлении кишечной микрофлоры антибиотиками.

Ряд заболеваний, при которых имеется дефицит плазменных факторов, носит наследственный характер.

Примером являются различные формы гемофилии, которыми болеют только мужчины, но передают их женщины.

Международная номенклатура факторов свертывания крови

Название фактора

Количество в 1 мл крови (активность)

Достаточный для гемостаза минимум

Период полужизни

Избыток

I. Фибриноген

300 (170-450) мг

50 мг

100 ч.

3-6 раз

II. Протромбин

200мкг/70-130%

80 мкг/40%

72 - 96 ч.

2-3 раза

III. Тромбопластин

-

-

-

-

IV. Ионы Са++

0,8 - 1,32 ммоль/л

-

-

-

V. АС-глобулин

25мкг/80-110%

2,5-4мкг/10-15%

12 - 15 ч.

8-10раз

VII. Проконвертин

2 мкг/ 70-130%

0,2 мкг / 10%

2 - 6 ч.

10 раз

VIII. Антигемофильный глобулин

50мкг/ 80-120%

5-7мкг/ 10-15%

?

3-5 раз

IX. Кристмас-фактор

3-4 мкг/ 70-130%

4-6мкг / 20-30%

20 - 30 ч.

4-5 раз

X. фактор Стюарта-Прауэра

6-8 мкг/ 70-140%

0,15мкг/ 20%

20 - 40 ч.

5 раз

XI. Предшественник тромбопластина

7 мкг/ 70-130%

15 мкг/ 15-20%

10 - 20 ч.

4-5 раз

XII. фактор Хагеманна

40 мкг

не установлено

50 - 70 ч.

неизв.

XIII. Фибриназа Фибринстабилизирующий фактор.

не установлено

10%

100 ч.

10 раз

Витамин "К"- зависимые факторы: II, VII, IX, X.

Чувствительные к тромбину факторы: I, V, VIII, XIII.

Факторы контакта: XII, XI, BM-кининоген, прекалликреин.

Факторы-сериновые протеазы: XII,XI,X,IX, X, VII, II, Плазмин

Фактор I -- фибриноген -- гликопротеин с молекулярной массой около 340000 дальтон, состоящий из 2946 последовательных аминокислот, и представляет собой димер, в каждой единице которого содержатся три полипептидные цепи, соединенные дисульфидными мостиками.

Фактор I в том виде, в каком он вырабатывается паренхиматозными клетками печени и поступает в кровь, называется фибриногеном А, в отличие от фибриногена В, который осаждается из плазмы витамином. Под действием тромбина фибриноген превращается в нерастворимый в крови фибриллярный белок -- фибрин, основное вещество (субстрат) тромба (сгустка).

В результате увеличения концентрации фибриногена в крови резко повышается вязкость крови, но не усиливается гемокоагуляция. Уменьшением количества фибриногена А ниже 1 г/л иногда обусловлены кровотечения только из-за недостатка фибриногена (гипофибриногенемия).

Гипо- и афибриногенемия (полное отсутствие фибриногена в крови) бывают врожденными и приобретенными. Встречается и дисфибриногенемия - состояние, когда под действием тромбина фибриноген крови не превращается в фибрин вследствие функциональной неполноценности молекулы фибриногена. Фибриноген под влиянием тромбина превращается в фибрин по типу протеолитического дробления молекулы фибриногена. Вначале тромбин отщепляет от молекулы фибриногена 2 пептида А, образуя дез-А-мономеры фибрина (неполноценные мономеры фибрина). Затем отщепляются 2 пептида В и возникают дез-АВ-мономеры, или полные мономеры фибрина.

Оставшаяся молекула фибриногена -- фибрин-мономер. Эта молекула приобретает способность соединяться с себе подобными и образовывать фибрин-полимер, который представляет гель (или сгусток). Сборка мономеров фибрина проходит этапы формирования димеров, из которых при продольном и поперечном сшивании образуются полимеры фибрина -- протофибриллы, а затем нити фибрина. Тромб из такого фибрина легко растворяется фибринолизином и потому не может обеспечить полноценный гемостаз. Это нередко бывает причиной кровоточивости и плохого заживления ран. Подобный фибрин называется растворимым (фибрин S, soluble). Полноценным, то есть устойчивым к фибринолизину, он может стать под действием фибриназы (фактора XIIIa). Образовавшийся фибрин называется нерастворимым фибрином (фибрин I, insoluble).

Фактор II-- протромбин -- относится к эуглобулинам. Под действием протромбиназы образуются a-, b- и g - тромбины. a - тромбин обладает сильной свертывающей активностью в отношении фибриногена, но быстро нейтрализуется антитромбином III. B -тромбин резистентен по отношению к гепарину. g - тромбин не имеет свертывающей активности, но ему присуще фибринолитическое действие.

Фактор II синтезируется в печени при участии витамина К. Если нарушается функция печени, концентрация протромбина в крови снижается. Уровень протромбина, или его функция, снижается при эндо- или экзогенной недостаточности витамина К, когда синтезируется неполноценный протромбин.

Скорость свертывания крови нарушается лишь при уменьшении концентрации протромбина ниже 40 % фибринолиз.

Существенной особенностью факторов протромбинового комплекса является зависимость их активности от участия в их синтезе витамина К (рис.1).

Рисунок 1

При его участии вырабатываемые в печени факторы имеют гамма-карбоксигруппировки, которые осуществляют реакцию с отрицательными группами тромбопластина через кальциевые мостики. Такая реконфигурация неактивного фактора обеспечивает ему раскрытие собственного активного центра и таким образом происходит превращение их в активную форму.

Фактор III -- тканевый тромбопластин (неактивная тканевая протромбиназа, апопротеин С--термостабильный липопротеид). Разрушается при 75 °С. Его много в легких, тканях мозга, сердца, кишечника, матки, в эндотелии. Он, в основном, участвует в локальном гемостазе. При контакте с плазменными факторами (VIIa, IV) способен активировать фактор Х (это внешний путь формирования протромбиназы). Из форменных элементов тканевый тромбопластин могут синтезировать только моноциты.

Фактор IV -- ионы кальция -- имеет первостепенное значение для активации протромбиназы и превращения протромбина в тромбин. Ускоряет фибриноген-фибриновую реакцию. Ионы кальция необходимы для взаимодействия факторов свертывания с фосфолипидной поверхностью клеток. У здоровых людей фактор IV определяется в концентрации 0,8--1,75 ммоль/л.

Кальций способен связывать гепарин, благодаря чему свертывание крови ускоряется. Без кальция нарушается агрегация тромбоцитов и ретракция кровяного сгустка. Ионы кальция ингибируют фибринолиз.

Фактор V -- проакселерин, лабильный фактор, или Ас-глобулин,-- образуется в печени, но, в отличие от других печеночных факторов протромбинового комплекса (II, VII, IX и X), его синтез не зависит от витамина К. Проакцелерин плохо сохраняется в консервированной крови. Он необходим для образования внутренней (кровяной) протромбиназы, при этом заметно активирует фактор X, и для превращения протромбина в тромбин, когда в комплекс включаются фактор Ха, Са2+и фосфолипид. Во время свертывания крови фактор потребляется, как и фактор II, поэтому в сыворотке не обнаруживается. В случаях дефицита фактора V в различной степени нарушаются внешний и внутренний пути образования протромбиназы. Это выражается удлинением протромбинового времени (снижением протромбинового индекса). Тромбиновое время остается в пределах нормы.

Фактор VI -- акселерин, или сывороточный Ас-глобулин, - активная форма фактора V. В связи с тем, что отдельным фактором признается только неактивная, профакторная, форма коагулянта, акселерин исключен из употребления и номенклатуры факторов свертывания.

Фактор VII -- проконвертин, или конвертин, -- синтезируется в печени при участии витамина К. Долго остается в стабилизированной крови, хорошо переносит нагревание, поэтому называется стабильным фактором. Факторы ХII, Ха, калликреин могут превращать фактор VII в VIIa. В основном способствуют образованию тканевой протромбиназы и превращению протромбина в тромбин. Фактор VII в циркулирующей крови активирует фактор X. Это действие усиливается после активации проконвертина тканевым тромбопластином. Врожденным недостатком фактора VII обусловлено развитие геморрагического диатеза. Фактор VII, подобно факторам ХIIа, XI, X, IX, IIа и калликреину, является сериновой протеазой с аргинин-эстеразной активностью.

Фактор VIII -- антигемофильный глобулин А, или плазменный тромбопластический фактор А,-- относится к сложным гликопротеидам. Место его синтеза точно не установлено. Доказан синтез фактора VIII в печени, селезенке, клетках эндотелия, лейкоцитах, почках. В крови этот фактор циркулирует в виде комплекса из трех субъединиц, обозначаемых VIIIK(коагулирующая единица), VIII-АГ (основной антигенный маркер) и VIII-фВ (фактор Виллебранда, связанный с VIII-АГ). VIII-фВ регулирует синтез коагулянтной части антигемофильного глобулина--VIIIK.

При свертывании крови фактор VIII остается в неактивном состоянии.

Фактор IX -- Кристмас-фактор, антигемофильный глобулин В, плазменный тромбопластиновый компонент (plasma thromboplastin component-- РТС). Фактор IX образуется в печени, поэтому его содержание в крови больных гепатитами, циррозами печени уменьшено.

В процессе свертывания крови фактор IX не потребляется и остается в сыворотке еще в более активном состоянии, чем в плазме. Его гемостатический уровень (25 %) достаточен для выполнения хирургических вмешательств.

Фактор Х -- фактор Стюарта - Прауэра -- гликопротеин с массой молекулы 54200--56000. Вырабатывается в печени в неактивном состоянии при участии витамина К и состоит из двух полипептидных цепей: тяжелой (с молекулярной массой 38000), на которой находится активный центр, и легкой -- с остатком карбоксиглютаминовой кислоты, необходимой для присоединения к фосфолипидам. Уровень фактора Х в крови связан с протромбииовым временем. Так, если в крови фактора Х менее 1 %, то протромбиновое время будет более 90 с (при норме 12 - 14 с), если от 1 до 2 % -- около 70 - 90 с, если же от 2 до 5 % - 40 - 70 с, а если от 5 до 10 % -- 15 - 40 сек.

Фактор Х трансформируется в Ха под действием солевых растворов с высокой ионной силой.

Для приобретенного или врожденного недостатка фактора Х характерно удлинение протромбинового времени. Вследствие врожденного недостатка фактора X, наследуемого по неполному аутосомному типу, возникает болезнь Стюарта - Прауэра, которая встречается как у мужчин, так и у женщин. Наклонность к кровоточивости определяется только у гомозиготных особей.

Содержание фактора Х снижено в крови больных системным амилоидозом, миеломной болезнью, туберкулезом, с поражениями печени, недостатком витамина К, получающих непрямые антикоагулянты.

Фактор XI -- РТА (plasma thromboplastin anticedent) -- плазменный предшественник тромбопластина - гликопротеин с массой молекулы 160 000. В процессе свертывания крови не потребляется, поэтому обнаруживается в большом количестве в сыворотке. Активная форма этого фактора (ХIа) образуется при участии факторов ХIIа, Флетчера и Фитцджеральда - Фложе. Форма ХIа активирует фактор IX, который превращается в фактор IХа. Эта реакция осуществляется и трипсином в присутствии ионов кальция.

Врожденная недостаточность фактора XI наследуется по аутосомно-рецессивному типу. Эта недостаточность выявляется у мужчин и женщин. Кровоточивость в основном отмечается после травм и операций.

Фактор XII -- фактор контакта Хагемана -- соединение с массой молекулы 80 000. Фактор XII вырабатывается в неактивном состоянии. Место его синтеза не известно. В лабораторных условиях активируется при соприкосновении с поверхностью кварца и стекла, каолина, целита, асбеста, углекислого бария; а в организме -- при контакте с кожей, волокнами коллагена, хондроитинсерной кислотой, мицеллами насыщенных жирных кислот, бактериальными липополисахаридами, содержащими радикалы жирных кислот, эндотоксином, адреналином и норадреналином.

Фактор Хагемана -- “инициатор” внутрисосудистой коагуляции, активирует прекалликреины плазмы, которые превращаются в ферменты калликреины, освобождающие кинины, служит активатором фибринолиза. Калликреин активирует фактор XII в 10 раз сильнее, чем плазмин и фактор ХIа. В жидкой среде фактор Флетчера оказывается наиболее важным активатором фактора Хагемана.

В крови есть ингибитор активного фактора Хагемана.

Врожденный дефицит фактора XII наследуется по аутосомно-рецессивному типу. У больных с недостатком фактора XII в коагулограмме резко удлиняется время свертывания крови.

Фактор XIII -- фибринстабилизирующий фактор, фибриназа, фактор Лаки - Лоранда -- а2-гликопротеид с массой молекулы 300 000 -- 340 000.

Определяется в сосудистой стенке, тромбоцитах, эритроцитах, почках, легких, мышцах, плаценте. В плазме находится в виде профермента, соединенного с фибриногеном. Фактор XIII под влиянием тромбина превращается в активную форму (XIIIa).

Фактор Флетчера -- плазменный прекалликреин, участвующий в реакциях коагуляции в контактной фазе. Если фактора Флетчера нет в организме, нарушается общее время свертывания, хотя факторы I--XIII содержатся в крови в пределах нормы. Фактор Флетчера активирует факторы VII и IX. Тем самым он связывает внутреннюю и внешнюю системы активации фактора X. Прекалликреин трансформируется в калликреин под влиянием фактора XIIa.

Дефицит фактора Флетчера, подобно недостатку фактора Хагемана, клинически ничем не проявляется.

Фактор Фитцджеральда (Фитцджеральда - Фложе) -- высокомолекулярный кининоген плазмы (ВМ-кининоген), который переводится калликреином в кинин и участвует в активации фактора XI, ускоряя действие на последний фактора XIIa. В процессе свертывания крови этот фактор не потребляется. Его активность не снижается под влиянием непрямых антикоагулянтов. Если фактора Фитцджеральда нет в организме, нарушается активация внутренней системы каолином. Недостаток фактора Фитцджеральда обнаруживается у больных случайно, потому что у них не бывает геморрагического диатеза.

Фактор Виллебранда (VIII:FW, или VIII:фВ) - крупномолекулярный компонент фактора VIII с молекулярной массой 1 500000--2000000, вырабатывается в эндотелии, выделяется в кровоток, в котором объединяется с коагуляционной частью фактора VIII, образуя полноценный 2-молекулярный комплекс - фактор VIII свертывания, или антигемофильный глобулин А. Часть фактора Виллебранда из эндотелия перемещается в субэндотелий и соединяется там с коллагеновыми волокнами и микрофибриллами, в которых находятся центры для связывания фактора Виллебранда.

Все факторы организованы в систему, условно поделенную на внешний и внутренний путь формирования протромбина и тромбина (рис.2). Она имеет каскадное построение, что означает как многократное усиление ответа на первичный сигнал, так и строгую последовательность течения всего цикла реакций, когда продукт одной реакции служит катализатором другой (рис. 2).

Рисунок 2 Схема свертывания крови

Условно выделены “Внешний путь” образования тромбина, имеющий защитный характер при травме сосуда и “Внутренний путь”, который имеет многопричинную активацию и поэтому любые патологические состояния могут дать ему пусковой импульс.

Основным источником фосфолипидов для внешнего пути является тканевый тромбопластин - фосфолипопротеин, смешивающий с кровью при травме.

Белковыми участниками внешнего процесса являются факторы VII, IX, X и II (протромбин).

Основным источником фосфолипидов внутреннего пути являются тромбоциты и эндотелиоциты. Активаторами белковых участников этого пути - факторы XII и XI являются чужеродные поверхности, циркулирующие иммунокомплексы, калликреин-кининовая система, токсины, антифосфолипидные антитела и т.д. Независимо от начальной фазы оба пути затем вливаются в общий каскад, катализируемый факторами VIII и V.

Финальным этапом является превращение протромбина в тромбин с последующей этапной полимеризацией фибриногена. Как внешний, так и внутренний путь образования тромбина могут быть спровоцированы взаимодействием с измененной эндотелиальной выстилкой (рис.3).

Рисунок 3

Нарушение физической целостности или биохимического состояния участка эндотелия приводит к превращению атромбогенного сосуда в очаг тромбообразования через адгезию и агрегацию тромбоцитов и дополнительных порций образования тромбина. Однако этот процесс небеспеределен, несмотря на известную избыточность всех факторов свертывания, и останавливается он реакцией тромбина с тромбомодулином, имеющимся на неповрежденных участках эндотелия (рис.4). Особенно важным здесь является снижение активности факторов V и VIII через угнетение их протеином - С и протеином - S, активированных тромбомодулином, и снижение агрегации тромбоцитов.

Рисунок 4

Исключительно важной функцией не только в гемостазе, но и во всем гомеостазе наделен фактор XII (рис.5), играющий роль передающего механизма от системы свертывания к калликреин-кининовой системе, системам комплемента и фибринолиза.

Рисунок 5

В свою очередь появление брадикинина в какой-либо из зон сосудистого русла приводит к запуску системы свертывания по внутреннему пути через активацию фактора XII и фосфолипиды мембран агрегирующих тромбоцитов (рис.6). При этом также активируются системы комплемента и фибринолиза. Такое развитие событий в системе свертывания крови контролирует антитромбиновая система своими главными компонентами - ATIII и эндогенным гепарином.

Рисунок 6

Антитромбиновая активность крови представляется как система “плавающих ловушек” исключительно на тромбин. Если главный активатор свертывания еще только должен появиться в крови в результате каскада превращений, то антитромбин III всегда находится в кровотоке и его функция рассчитана на связывание активированного протромбина - т.е. тромбина (рис.7).

Рисунок 7

Несмотря на то, что в крови есть и другие сериновые протеазы-факторы свертывания - антитромбин III их не блокирует до тех пор, пока он не провзаимодействует с гепарином, который в небольших количествах (примерно 0,12-0,15 Ед./мл) всегда есть в кровотоке.

Сильным угнетающим действием на систему комплемента, а через нее на тучные клетки и систему фибринолиза обладает комплекс АТIII-гепарин.

Снижение антикоагулянта в крови приводит к снижению прессорной функции антитромбиновой системы практически на все факторы свертывания и снижает сопротивляемость системы свертывания активирующему воздействию со стороны других систем.

Если образование фибрина произошло, то в организме активируется тромбином через фактор XIIa фибринолитическая система. При этом из неактивного предшественника - плазминогена возникает фермент плазмин.

Ограничение литического действия образованного плазмина его ингибиторами возможно только до взаимодействия с субстратом, т.е. в свободном виде. Поэтому в естественных условиях растворение фибринового сгустка протекает в его толще, (изнутри кнаружи), куда нет свободного доступа антиплазминам и макроглобулинам и это существенно ограничивает эффект эмболизма лизирующегося сгустка в норме.

Тромбоциты, или кровяные пластинки - плоские клетки неправильной округлой формы диаметром 2 - 5 мкм. Главной функцией тромбоцитов является участие в гемостазе. Тромбоциты способны прилипать к чужеродной поверхности (адгезия), а также склеиваться между собой (агрегация) под влиянием разнообразных причин. Тромбоциты продуцируют и выделяют ряд биологически активных веществ: серотонин, адреналин, норадреналин, а также вещества, получившие название пластинчатых (тромбоцитарных) факторов свертывания крови (тромбоциты содержат 11 факторов свертывания пластинок).

Тромбоцитарные факторы

Фактор 1 -- тромбоцитарный акцелератор-глобулин, идентичен фактору V

Фактор 2 - акцелератор тромбина, фибринопластический фактор (ускоряет превращение фибриногена)

Фактор 3 -- тромбоцитарный тромбопластин, частичный тромбопластин

Фактор 4 -- антигепариновый фактор

Фактор 5 - свертываемый фактор (иммунологически идентичен фибриногену)

Фактор 6 -- тромбостенин

Фактор 7 -- тромбоцитарный котромбопластин

Фактор 8 - антифибринолизин

Фактор 9 -- фибринстабилизирующий фактор, по действию соответствует фактору XIII

Фактор 10 -- 5-гидрокситриптамин, серотонин

Фактор 11 - аденозиндифосфат (АДФ)

Фактор 1 представляет собой адсорбированный на поверхности тромбоцитов проакцелерин, или Ас-глобулин. С тромбоцитами связано около 5% всего проакцелерина крови.

Фактор 3 (тромбопластический) - один из важнейших компонентов свертывающей системы крови, необходимый, вместе с рядом факторов плазмы, для образования тромбина из протромбина.

Фактор 4 (антигепариновый) тормозит антитромбопластиновое и антитромбиновое действие гепарина связывая его и, тем самым ускоряет процесс гемокоагуляции. Кроме того, он активно участвует в агрегации тромбоцитов.

Фактор 5 (свертывающий), или фибриноген, определяет адгезию(клейкость) и агрегацию(скучивание) тромбоцитов.

Фактор 6 (тромбостенин) участвует в процессе ретракции фибрина, очень лабилен, обладает АТФ-азной активностью. Освобождается при склеивании и разрушении тромбоцитов в результате изменения физико-химических свойств поверхностных мембран.

Фактор 10 (сосудосуживающий) представляет собой серотонин, адсорбируемый тромбоцитами из крови. Это соединение суживает поврежденные сосуды и уменьшает кровопотерю.

Фактор 11 (агрегации) - по химической природе является АДФ и обеспечивает скучивание тромбоцитов в поврежденном сосуде. Помимо АДФ эту же задачу выполняет тромбоксан, который является самым мощным стимулятором агрегации. В эндотелии сосудов находится простациклин - самый мощный ингибитор агрегации. Баланс между этими веществами определяет скучивание кровяных пластинок.

Тромбоциты способны к передвижению за счет образования псевдоподий и фагоцитозу инородных тел, вирусов, иммунных комплексов, тем самым, выполняя защитную функцию. Тромбоциты содержат большое количество серотонина и гистамина, которые влияют на величину просвета и проницаемость капилляров, определяя тем самым состояние гистогематических барьеров.

Механизмы свертывания

Знание механизмов свертывания крови необходимо для понимания причин ряда заболеваний и возникновения осложнений, связанных с нарушением гемокоагуляции. Способность крови свертываться с образованием сгустка в просвете сосудов при их повреждении была известна с незапамятных времен. 1 - ая научная теория свертывания была создана в 1872 г. профессором А. А. Шмидтом. Вначале она сводилась к определению свертывания крови как ферментативного процесса, для которого необходимо наличие 3 - х веществ - фибриногена, фибринопластического вещества и тромбина. Дальнейшими исследованиями А. А. Шмидта и его школы, а также Моравицем, Гаммарстеном и др. было установлено, что образование фибрина происходит за счет лишь одного предшественника - фибриногена. Для процесса свертывания необходимы тромбокиназа тромбоцитов и ионы калия. В результате была сформулирована классическая ферментативная теория свертывания крови, получившая название теории Шмидта - Моравица.

В гемостатической реакции принимают участие: ткань, окружающая сосуд; стенка сосуда; плазменные факторы свертывания крови; все клетки крови, но особенно тромбоциты. Важная роль в свертывании крови принадлежит физиологически активным веществам, которые можно разделить на три группы:

· способствующие свертыванию крови;

· препятствующие свертыванию крови;

· способствующие рассасыванию образовавшегося тромба.

По современным представлениям в остановке кровотечения участвуют 2 механизма: сосудисто-тромбоцитарный и коагуляционный.

Сосудисто-тромбоцитарный гемостаз

Благодаря этому механизму происходит остановка кровотечения из мелких сосудов с низким артериальным давлением. При травме наблюдается рефлекторный спазм поврежденных кровеносных сосудов, который в дальнейшем поддерживается сосудосуживающими веществами (серотонин, норадреналин, адреналин), освобождающимися из тромбоцитов и поврежденных клеток тканей. Внутренняя стенка сосудов в месте повреждения изменяет свой заряд с отрицательного на положительный. Благодаря способности к адгезии под влиянием фактора Виллебранда, содержащегося в субэндотелии и кровяных пластинках, отрицательно заряженные тромбоциты прилипают к положительно заряженной раневой поверхности. Практически одновременно происходит агрегация - скучиванье и склеивание тромбоцитов с образованием тромбоцитарной пробки, или тромба. Сначала под влиянием АТФ, АДФ и адреналина тромбоцитов и эритроцитов образуется рыхлая тромбоцитарная пробка, через которую проходит плазма (обратимая агрегация). Затем тромбоциты теряют свою структурность и сливаются в однообразную массу, образуя пробку, непроницаемую для плазмы (необратимая агрегация). Эта реакция протекает под действием тромбина, образующегося в небольших количествах под действием тканевого тромбопластина. Тромбин разрушает мембрану тромбоцитов, что ведет к выходу из них серотонина, гистамина, ферментов, факторов свертывания крови. Пластинчатый фактор 3 дает начало образованию тромбоцитарной протромбиназы, что приводит к образованию на агрегатах тромбоцитов небольшого количества нитей фибрина, среди которых задерживаются эритроциты и лейкоциты. После образования тромбоцитарного тромба происходит его уплотнение и закрепление в поврежденном сосуде за счет ретракции кровяного сгустка. Ретракция осуществляется под влиянием тромбостенина тромбоцитов за счет сокращения актин-миозинового комплекса тромбоцитов. Тромбоцитарная пробка образуется в целом в течение 1 - 3 минут с момента повреждения, и кровотечение из мелких сосудов останавливается.

В крупных сосудах тромбоцитарный тромб не выдерживает высокого давления и вымывается. Поэтому в крупных сосудах гемостаз может быть осуществлен путем формирования более прочного фибринового тромба, для образования которого необходим ферментативный коагуляционный механизм.

Коагуляционный гемостаз

Свертывание крови - это цепной ферментативный процесс, в котором последовательно происходит активация факторов свертывания и образование их комплексов. Сущность свертывания крови заключается в переходе растворимого белка крови фибриногена в нерастворимый фибрин, в результате чего образуется прочный фибриновый тромб.

Процесс свертывания крови осуществляется в 3 последовательные фазы.

Первая фаза является самой сложной и продолжительной. Во время этой фазы происходит образование активного ферментативного комплекса - протромбиназы, являющейся активатором протромбина. В образовании этого комплекса принимают участие тканевые и кровяные факторы. В результате формируются тканевая и кровяная протромбиназы. Образование тканевой протромбиназы начинается с активации тканевого тромбопластина, образующегося при повреждении стенок сосуда и окружающих тканей. Вместе с VII фактором и ионами кальция он активирует X фактор. В результате взаимодействия активированного X фактора с V фактором и с фосфолипидами тканей или плазмы образуется тканевая протромбиназа. Этот процесс длится 5 - 10 секунд.

Образование кровяной протромбиназы начинается с активации XII фактора при его контакте с волокнами коллагена поврежденных сосудов. В активации и действии XII фактора участвуют также высокомолекулярный кининоген (ф XV) и калликреин (ф XIV). Затем XII фактор активирует XI фактор, образуя с ним комплекс. Активный XI фактор совместно с IV фактором активирует IX фактор, который, в свою очередь, активирует VIII фактор, Затем происходит активация X фактора, который образует комплекс с V фактором и ионами кальция, чем и заканчивается образование кровяной протромбиназы. В этом также участвует тромбоцитарный фактор 3. Этот процесс длится 5-10 минут.

Вторая фаза. Во время этой фазы под влиянием протромбиназы происходит переход протромбина в активный фермент тромбин. В этом процессе принимают участие факторы IV, V, X.

Третья фаза. В эту фазу растворимый белок крови фибриноген превращается в нерастворимый фибрин, образующий основу тромба. Вначале под влиянием тромбина происходит образование фибрин-мономера. Затем с участием ионов кальция образуется растворимый фибрин-полимер (фибрин “S”, soluble). Под влиянием фибринстабилизирующего фактора XIII происходит образование нерастворимого фибрин-полимера (фибрин “I”, insoluble), устойчивого к фибринолизу. В фибриновых нитях оседают форменные элементы крови, в частности эритроциты, и формируется кровяной сгусток, или тромб, который закупоривает рану.

После образования сгустка начинается процесс ретракции, т.е. уплотнения и закрепления тромба в поврежденном сосуде. Это происходит с помощью сократительного белка тромбоцитов тромбостенина и ионов кальция. Через 2 - 3 часа сгусток сжимается до 25 - 50% от своего первоначального объема и идет отжатие сыворотки, т.е. плазмы, лишенной фибриногена. За счет ретракции тромб становится более плотным и стягивает края раны.

Фибринолиз - это процесс расщепления фибринового сгустка, в результате которого происходит восстановление просвета сосуда. Фибринолиз начинается одновременно с ретракцией сгустка, но идет медленнее. Это тоже ферментативный процесс, который осуществляется под влиянием плазмина (фибринолизина). Плазмин находится в плазме крови в неактивном состоянии в виде плазминогена. Под влиянием кровяных и тканевых активаторов плазминогена происходит его активация. Высокоактивным тканевым активатором является урокиназа. Кровяные активаторы находятся в крови в неактивном состоянии и активируются адреналином, лизокиназами. Плазмин расщепляет фибрин на отдельные полипептидные цепи, в результате чего происходит лизис (растворение) фибринового сгустка,

Если нет условий для фибринолиза, то возможна организация тромба, т.е. замещение его соединительной тканью. Иногда тромб может оторваться от места своего образования и вызвать закупорку сосуда в другом месте (эмболия).

Факторы, ускоряющие процесс свертывания крови:

· разрушение форменных элементов крови и клеток тканей (увеличивается выход факторов, участвующих в свертывании крови);

· ионы кальция (участвуют во всех основных фазах свертывания крови);

· тромбин;

· витамин К (участвует в синтезе протромбина);

· тепло (свертывание крови является ферментативным процессом);

· адреналин.

Факторы, замедляющие свертывание крови:

· устранение механических повреждений форменных элементов крови (парафинирование канюль и емкостей для взятия донорской крови);

· цитрат натрия (осаждает ионы кальция);

· гепарин;

· гирудин;

· понижение температуры;

· плазмин.

Регуляция свертывания крови осуществляется с помощью нейрогуморальных механизмов. Возбуждение симпатического отдела вегетативной нервной системы, возникающее при страхе, боли, при стрессовых состояниях, приводит к значительному ускорению свертывания крови, что называется гиперкоагуляцией. Основная роль в этом механизме принадлежит адреналину и норадреналину. Адреналин запускает ряд плазменных и тканевых реакций.

На свертывание крови оказывают влияние высшие отделы ЦНС, в том числе и кора больших полушарий головного мозга, что подтверждается возможностью изменения гемокоауляции условно-рефлекторно. Она реализует свои влияния через вегетативную нервную систему и эндокринные железы, гормоны которых обладают вазоактивным действием. Импульсы из ЦНС поступают к кроветворным органам, к органам, депонирующим кровь, и вызывают увеличение выхода крови из печени, селезенки, активацию плазменных факторов. Это приводит к быстрому образованию протромбиназы. Затем включаются гуморальные механизмы, которые поддерживают и продолжают активацию свертывающей системы и одновременно снижают действия противосвертывающей. Значение условно-рефлекторной гиперкоагуляции состоит, видимо, в подготовке организма к защите от кровопотери.

2. Как осуществляется нервная регуляция дыхания. Где находятся нервные центры, которые регулируют дыхание. Опишите значение блуждающего нерва в регуляции дыхания

В соответствии с метаболическими потребностями дыхательная система обеспечивает газообмен О2 и СО2 между окружающей средой и организмом (рис. 8).

Рис. 8 Химические реакции, происходящие в плазме и эритроцитах пригазообмене в тканях (А) и лёгких (Б)

Эту жизненно важную функцию регулирует сеть многочисленных взаимосвязанных нейронов ЦНС, расположенных в нескольких отделах мозга и объединяемых в комплексное понятие "дыхательный центр". При воздействии на его структуры нервных и гуморальных стимулов происходит приспособление функции дыхания к меняющимся условиям внешней среды.

Структуры, необходимые для возникновения дыхательного ритма, впервые были обнаружены в продолговатом мозге. Перерезка продолговатого мозга в области дна IV желудочка приводит к прекращению дыхания. Поэтому под главным дыхательным центром понимают совокупность нейронов специфических дыхательных ядер продолговатого мозга (рис. 9).

Рис. 9 Проекция дыхательных ядер на дорсальную поверхность заднего мозга.. В ядрах продолговатого мозга цветом показаны скопления инспираторных нейронов, неокрашены - скопления экспираторных нейронов: I - перерезка мозга, не отражающаяся на дыхании; II - перерезк, ведущая к нарушению ритма; III - перерезка, ведущая к прекращению дыхания

Дыхательный центр управляет двумя основными функциями: двигательной, которая проявляется в виде сокращения дыхательных мышц, и гомеостатической, связанной с поддержанием постоянства внутренней среды организма при сдвигах в ней содержания 02 и СО2. Двигательная, или моторная, функция дыхательного центра заключается в генерации дыхательного ритма и его паттерна. Благодаря этой функции осуществляется интеграция дыхания с другими функциями. Под паттерном дыхания следует иметь в виду длительность вдоха и выдоха, величину дыхательного объема, минутного объема дыхания. Гомеостатическая функция дыхательного центра поддерживает стабильные величины дыхательных газов в крови и внеклеточной жидкости мозга, адаптирует дыхательную функцию к условиям измененной газовой среды и другим факторам среды обитания.

Локализация и функциональные свойства дыхательных нейронов

В передних рогах спинного мозга на уровне С3 - С5 располагаются мотонейроны, образующие диафрагмальный нерв. Мотонейроны, иннервирующие межреберные мышцы, находятся в передних рогах на уровнях Т2 - Т10 (Т2 - Т6 - мотонейроны инспираторных мышц, T8-T10 - экспираторных). Установлено, что одни мотонейроны регулируют преимущественно дыхательную, а другие - преимущественно познотоническую активность межреберных мышц.

Нейроны бульбарного дыхательного центра располагаются на дне IV желудочка в медиальной части ретикулярной формации продолговатого мозга и образуют дорсальную и вентральную дыхательные группы. Дыхательные нейроны, активность которых вызывает инспирацию или экспирацию, называются соответственно инспираторными и экспираторными нейронами. Между группами нейронов, управляющими вдохом и выдохом, существуют реципрокные отношения. Возбуждение экспираторного центра сопровождается торможением в инспираторном центре и наоборот. Инспираторные и экспираторные нейроны, в свою очередь, делятся на "ранние" и "поздние". Каждый дыхательный цикл начинается с активизации "ранних" инспираторных нейронов, затем возбуждаются "поздние" инспираторные нейроны. Также последовательно возбуждаются "ранние" и "поздние" экспираторные нейроны, которые тормозят инспираторные нейроны и прекращают вдох. Современные исследования показали, что в продолговатом мозге нет четкого деления на инспираторный и экспираторный отделы, а есть скопления дыхательных нейронов с определенной функцией (рис. 10).

Рис. 10 Нервная регуляция вдоха и выдоха: 1 - кривая дыхания (вдох-выдох); 2 - просвет альвеол; 3 - импульсация отводимая от одиночного афферентного волокна блуждающего нерва; 4 - тормозящие влияния центра выдоха на центр вдоха; 5 - импульсация от центра вдоха к дыхательным мышцам

Спонтанная активность нейронов дыхательного центра начинает появляться к концу периода внутриутробного развития. Возбуждение дыхательного центра у плода появляется благодаря пейсмекерным свойствам сети дыхательных нейронов продолговатого мозга. По мере формирования синаптических связей дыхательного центра с различными отделами ЦНС пейсмекерный механизм дыхательной активности постепенно теряет свое физиологическое значение.

В варолиевом мосту находятся ядра дыхательных нейронов, образующих пневмотаксический центр. Считается, что дыхательные нейроны моста участвуют в механизме смены вдоха и выдоха и регулируют величину дыхательного объема. Дыхательные нейроны продолговатого мозга и варолиева моста связаны между собой восходящими и нисходящими нервными путями и функционируют согласованно. Получив импульсы от инспираторного центра продолговатого мозга, пневмотаксический центр посылает их к экспираторному центру продолговатого мозга, возбуждая последний. Инспираторные нейроны тормозятся. Разрушение мозга между продолговатым мозгом и мостом удлиняет фазу вдоха (рис.11). Гипоталамические ядра координируют связь дыхания с кровообращением.

Рис. 11 Нервная цепь, регулирующая дыхательный ритм с обратной связью от рецепторов растяжения легких

Определенные зоны коры больших полушарий осуществляют произвольную регуляцию дыхания в соответствии с особенностями влияния на организм факторов внешней среды и связанными с этим гомеостатическими сдвигами.

Таким образом, мы видим, что управление дыханием - сложнейший процесс, осуществляемый множеством нейронных структур. В процессе управления дыханием осуществляется четкая иерархия различных компонентов и структур дыхательного центра.

Рефлекторная регуляция дыхания

Нейроны дыхательного центра имеют связи с многочисленными механорецепторами дыхательных путей и альвеол легких и рецепторов сосудистых рефлексогенных зон. Благодаря этим связям осуществляется весьма многообразная, сложная и биологически важная рефлекторная регуляция дыхания и ее координация с другими функциями организма.

Различают несколько типов механорецепторов: медленно адаптирующиеся рецепторы растяжения легких, ирритантные быстро адаптирующиеся механорецепторы и J-рецепторы - "юкстакапиллярные" рецепторы легких.

Медленно адаптирующиеся рецепторы растяжения легких расположены в гладких мышцах трахеи и бронхов. Эти рецепторы возбуждаются при вдохе, импульсы от них по афферентным волокнам блуждающего нерва поступают в дыхательный центр. Под их влиянием тормозится активность инспираторных нейронов продолговатого мозга. Вдох прекращается, начинается выдох, при котором рецепторы растяжения неактивны. Рефлекс торможения вдоха при растяжении легких называется рефлексом Геринга - Брейера. Этот рефлекс контролирует глубину и частоту дыхания. Он является примером регуляции по принципу обратной связи. После перерезки блуждающих нервов дыхание становится редким и глубоким.

Ирритантные быстро адаптирующиеся механорецепторы, локализованные в слизистой оболочке трахеи и бронхов, возбуждаются при резких изменениях объема легких, при растяжении или спадении легких, при действии на слизистую трахеи и бронхов механических или химических раздражителей. Результатом раздражения ирритантных рецепторов является частое, поверхностное дыхание, кашлевой рефлекс, или рефлекс бронхоконстрикции.

J-рецепторы - рецепторы легких находятся в интерстиции альвеол и дыхательных бронхов вблизи от капилляров. Импульсы от J-рецепторов при повышении давления в малом круге кровообращения, или увеличении объема интерстициальной жидкости в легких (отек легких), или эмболии мелких легочных сосудов, а также при действии биологически активных веществ (никотин, простагландины, гистамин) по медленным волокнам блуждающего нерва поступают в дыхательный центр - дыхание становится частым и поверхностным (одышка).

Важное биологическое значение, особенно в связи с ухудшением экологических условий и загрязнением атмосферы, имеют защитные дыхательные рефлексы - чихание и кашель.

Чихание. Раздражение рецепторов слизистой оболочки полости носа, например, пылевыми частицами или газообразными наркотическими веществами, табачным дымом, водой вызывает сужение бронхов, брадикардию, снижение сердечного выброса, сужение просвета сосудов кожи и мышц. Различные механические и химические раздражения слизистой оболочки носа вызывают глубокий сильный выдох - чихание, способствующее стремлению избавиться от раздражителя. Афферентным путем этого рефлекса является тройничный нерв.

Кашель возникает при раздражении механо- и хеморецепторов глотки, гортани, трахеи и бронхов. При этом после вдоха сильно сокращаются мышцы выдоха, резко повышается внутригрудное и внутрилегочное давление (до 200 мм рт. ст.), открывается голосовая щель, и воздух из дыхательных путей под большим напором высвобождается наружу и удаляет раздражающий агент. Кашлевой рефлекс является основным легочным рефлексом блуждающего нерва.

Рефлексы с проприорецепторов дыхательных мышц

От мышечных веретен и сухожильных рецепторов Гольджи, расположенных в межреберных мышцах и мышцах живота, импульсы поступают в соответствующие сегменты спинного мозга, затем в продолговатый мозг, центры головного мозга, контролирующие состояние скелетных мышц. В результате происходит регуляция силы сокращений в зависимости от исходной длины мышц и оказываемого им сопротивления дыхательной системы.

Рефлекторная регуляция дыхания осуществляется также периферическими и центральными хеморецепторами.

Гуморальная регуляция дыхания

Главным физиологическим стимулом дыхательных центров является двуокись углерода. Регуляция дыхания обусловливает поддержание нормального содержания СО2 в альвеолярном воздухе и артериальной крови. Возрастание содержания СО2 в альвеолярном воздухе на 0,17% вызывает удвоение МОД, а вот снижение О2 на 39-40% не вызывает существенных изменений МОД.

При повышении в замкнутых герметических кабинах концентрации СО2 до 5 - 8% у обследуемых наблюдалось увеличение легочной вентиляции в 7-8 раз. При этом концентрация СО2 в альвеолярном воздухе существенно не возрастала, так как основным признаком регуляции дыхания является необходимость регуляции объема легочной вентиляции, поддерживающей постоянство состава альвеолярного воздуха.

Деятельность дыхательного центра зависит от состава крови, поступающей в мозг по общим сонным артериям. В 1890 г. это было показано Фредериком в опытах с перекрестным кровообращением. У двух собак, находившихся под наркозом, перерезали и соединяли перекрестно сонные артерии и яремные вены. При этом голова первой собаки снабжалась кровью второй собаки и наоборот. Если у одной из собак, например у первой, перекрывали трахею и таким путем вызывали асфиксию, то гиперпноэ развивалось у второй собаки. У первой же собаки, несмотря на увеличение в артериальной крови напряжения СО2 и снижение напряжения 02, развивалось апноэ, так как в ее сонную артерию прступала кровь второй собаки, у которой в результате гипервентиляции снижалось напряжение СО2 в артериальной крови.

Двуокись углерода, водородные ионы и умеренная гипоксия вызывают усиление дыхания. Эти факторы усиливают деятельность дыхательного центра, оказывая влияние на периферические (артериальные) и центральные (модулярные) хеморецепторы, регулирующие дыхание.

Артериальные хеморецепторы находятся в каротидных синусах и дуге аорты. Они расположены в специальных тельцах, обильно снабжаемых артериальной кровью. Аортальные хеморецепторы на дыхание влияют слабо и большее значение имеют для регуляции кровообращения.

Артериальные хеморецепторы являются уникальными рецепторными образованиями, на которые гипоксия оказывает стимулирующее влияние. Афферентные влияния каротидных телец усиливаются также при повышении в артериальной крови напряжения двуокиси углерода и концентрации водородных ионов. Стимулирующее действие гипоксии и гиперкапнии на хеморецепторы взаимно усиливается, тогда как в условиях гипероксии чувствительность хеморецепторов к двуокиси углерода резко снижается. Артериальные хеморецепторы информируют дыхательный центр о напряжении 02 и СО2 в крови, направляющейся к мозгу.

После перерезки артериальных (периферических) хеморецепторов у подопытных животных исчезает чувствительность дыхательного центра к гипоксии, но полностью сохраняется реакция дыхания на гиперкапнию и ацидоз.

Центральные хеморецепторы расположены в продолговатом мозге латеральнее пирамид. Перфузия этой области мозга раствором со сниженным рН резко усиливает дыхание, а при высоком рН дыхание ослабевает, вплоть до апноэ. То же происходит при охлаждении или обработке этой поверхности продолговатого мозга анестетиками. Центральные хеморецепторы, оказывая сильное влияние на деятельность дыхательного центра, существенно изменяют вентиляцию легких. Установлено, что снижение рН спинномозговой жидкости всего на 0,01 сопровождается увеличением легочной вентиляции на 4 л/мин.

Центральные хеморецепторы реагируют на изменение напряжения СО2 в артериальной крови позже, чем периферические хеморецепторы, так как для диффузии СО^ из крови в спинномозговую жидкость и далее в ткань мозга необходимо больше времени. Гиперкапния и ацидоз стимулируют, а гипокапния и алкалоз - тормозят центральные хеморецепторы.

Для определения чувствительности центральных хеморецепторов к изменению рН внеклеточной жидкости мозга, изучения синергизма и антагонизма дыхательных газов, взаимодействия системы дыхания и сердечно-сосудистой системы используют метод возвратного дыхания. При дыхании в замкнутой системе выдыхаемый СОд вызывает линейное увеличение концентрации СО^ и одновременно повышается концентрация водородных ионов в крови, а также во внеклеточной жидкости мозга.

...

Подобные документы

  • Водно-солевой обмен как совокупность процессов поступления воды и солей (электролитов) в организм, их всасывания, распределения во внутренних средах и выделения. Основные заболевания, вызванные нарушением вазопрессина. Регуляция выделения натрия почкой.

    контрольная работа [30,2 K], добавлен 06.12.2010

  • Физиология дыхания и связь с нервной системой. Первые исследования гимнастики для легких. Влияние на эмоциональное состояние успокоения нервной системы. Особенности регуляции тонуса, работоспособности организма. Традиционные принципы упражнений в дыхании.

    реферат [26,0 K], добавлен 12.03.2010

  • Основные принципы функционирования центральной нервной системы. Два основных вида регуляции: гуморальный и нервный. Физиология нервной клетки. Виды связей нейронов. Строение синапса - места контакта между нейроном и получающей сигнал эффекторной клеткой.

    презентация [1,3 M], добавлен 22.04.2015

  • Понятие о физиологических функциях и их регуляции. Механизм и законы проведения возбуждения. Функциональное значение его структурных элементов нейрона. Особенности строения и функций вегетативной нервной системы. Строение и роль в организме надпочечников.

    контрольная работа [22,2 K], добавлен 14.01.2010

  • Изменением в распределении жидкости между внеклеточными и внутриклеточными секторами. Суточный диурез. Суточная потребность в воде. Регуляция почками водно-солевого обмена. Регуляция осмотического давления крови.

    лекция [4,7 K], добавлен 25.02.2002

  • Рассмотрение особенностей вегетативной нервной системы. Знакомство с основными путями и механизмами регуляции иммунного ответа. Анализ симпатического отдела вегетативной нервной системы. Общая характеристика биологически активных веществ головного мозга.

    презентация [2,8 M], добавлен 30.11.2016

  • Основные вопросы физиологии центральной нервной системы и высшей нервной деятельности в научном плане. Роль механизмов работы мозга, лежащих в основе поведения. Значение знаний по анатомии и физиологии ЦНС для практических психологов, врачей и педагогов.

    реферат [20,9 K], добавлен 05.10.2010

  • Роль нервной системы в регуляция мозгового кровотока. Роль парасимпатической системы в регуляции мозгового кровообращения. Роль ствола мозга в обеспечении адекватного кровотока. Регуляторные контуры: нейрогенный, гуморальный, метаболический и миогенный.

    реферат [16,7 K], добавлен 25.04.2009

  • Характеристика нервной регуляции внешнего дыхания. Структура и организация проводящей системы сердца, ее физиологическое значение. Автоматия сердца, существующие теории и понятие об убывающем градиенте автоматии. Особенность проводящей системы сердца.

    контрольная работа [27,4 K], добавлен 17.05.2009

  • Изучение физиологических особенностей дыхания, включающих деятельность периферических и центральных хеморецепторов в гуморальной регуляции вентиляции легких. Факторы регуляции кислородной ёмкости. Функциональная классификация нейронов спинного мозга.

    реферат [35,1 K], добавлен 23.12.2010

  • Понятие и структура автономной нервной системы, ее типы: симпатическая, парасимпатическая и метасимпатическая, отличительные признаки от соматической и функциональные особенности. Основные медиаторы. Принципы регуляции в катехоламинергическом синапсе.

    презентация [1,7 M], добавлен 08.01.2014

  • Взаимосвязь между нервной и эндокринной системами. Гуморальные связи между клетками. Группы химических посредников и регуляторов. Классификация типов гормонов. Механизмы нейроэндокринной регуляции клеток. Физиология гипоталамо-гипофизарной системы.

    презентация [1,2 M], добавлен 26.01.2014

  • Роль центральной нервной системы в интегративной, приспособительной деятельности организма. Нейрон как структурная и функциональная единица ЦНС. Рефлекторный принцип регуляции функций. Нервные центры и их свойства. Изучение видов центрального торможения.

    презентация [7,2 M], добавлен 30.04.2014

  • Физиология водно-солевого обмена. Электролитный состав организма. Факторы, влияющие на перемещение внеклеточной воды в нем. Нарушение электролитного баланса. Клиническая картина внеклеточной дегидратации. Соотношение растворов для инфузионной терапии.

    презентация [2,1 M], добавлен 05.02.2017

  • Значение дыхания для жизнедеятельности организма. Механизм дыхания. Обмен газов в легких и тканях. Регуляция дыхания в организме человека. Возрастные особенности и нарушения деятельности органов дыхания. Дефекты органов речи. Профилактика заболеваний.

    курсовая работа [30,1 K], добавлен 26.06.2012

  • Структура и основные элементы аппарата внешнего дыхания человека: воздухоносные пути и альвеолы легких, костно-мышечный каркас грудной клетки, малый круг кровообращения. Принципы регуляции дыхания. Механизм вдоха и выдоха. Закон Фика и его значение.

    презентация [3,0 M], добавлен 23.11.2010

  • Изучение анамнеза жизни и течения настоящей беременности. Исследование состояния органов кровообращения, дыхания, пищеварения, мочевыделения, нервной системы. Ведение родов в период раскрытия и в периоде изгнания. Ручное отделение и выделение последа.

    история болезни [24,8 K], добавлен 27.05.2013

  • Разновидности рецепторов бронхо-легочного аппарата, принимающих участие в регуляции дыхания. Рефлексы, возникающие в ответ на уменьшение объема (спадение) легких, их ателектаз и коллапс. Дыхание при пониженном барометрическом давлении (гипервентиляция).

    лекция [1,4 M], добавлен 08.01.2014

  • Понятие и значение нервной системы в приспособлении организма к условиям окружающей среды, регуляции жизненно важных функции внутренних органов и обеспечении их согласованной деятельности. Главные антенатальные факторы риска. Этапы развития мозга.

    презентация [2,6 M], добавлен 14.05.2015

  • Система регуляции агрегатного состояния крови. Свертывающая и противосвертывающая системы крови. Реакция стенки сосудов в ответ на их повреждение. Плазменные факторы свертывания крови. Роль сосудисто-тромбоцитарного гемостаза. Пути расщепления тромба.

    презентация [43,4 K], добавлен 15.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.