Эффективность свободных и клеточных форм аминогликозидов и фторхинолонов при экспериментальном пиелонефрите

Использование химиотерапевтических препаратов, обладающих мощным бактериостатическим и бактерицидным действием и достаточно широким антимикробным действием. Снижение токсичности и повышение эффективности химиотерапевтических препаратов при пиелонефрите.

Рубрика Медицина
Вид статья
Язык русский
Дата добавления 27.11.2017
Размер файла 81,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Эффективность свободных и клеточных форм аминогликозидов и фторхинолонов при экспериментальном пиелонефрите

Сипливый Г.В.

Сипливая Л.Е.

Кукурека А.В.

При инфекционной патологии и, в частности, при необструктивном гематогенном пиелонефрите широко используются химиотерапевтические препараты, обладающие мощным бактериостатическим и бактерицидным действием и достаточно широким антимикробным действием [1, 2]. Клинические наблюдения последних десятилетий свидетельствуют о значительном снижении эффективности антибиотиков [3]. Снижение токсичности и повышение эффективности химиотерапевтических препаратов возможно обусловлено селективным действием фармакологических средств на определенные клетки и органы [4]. Направленный транспорт лекарственных средств в охваченную патологическим процессом зону позволяет, наряду с созданием в ней высоких концентравводимого препарата максимально, уменьшить нежелательные реакции организма на медикаментозное воздействие, снизить терапевтическую дозу препарата и кратность введения [5]. химиотерапевтический бактерицидный пиелонефрит

Для достижения поставленной цели применяют микроконтейнеры, в качестве которых могут выступать липосомы, капсулы из человеческого альбумина, магнитные микросферы или аутоклетки крови [6]. Однако большинство известных носителей имеют ограничения по диапазону и количеству лекарств, которые они могут связывать, а также обладают токсичностью и иммуногенностью. Наиболее выгодным с точки зрения биологической совместимости считаются системы доставки, в которых используются собственные клетки организма. Реализация идеи направленного транспорта лекарств идет использования эритроцитов, лейкоцитов, тромбоцитов в качестве контейнеров для доставки лекарственных средств [7, 8, 9].

Цель работы - сравнительная оценка эффективности свободных и клеточных (эритроцитарных и лейкоцитарных) форм аминогликозидов и фторхинолонов при экспериментальном пиелонефрите.

Материалы и методы

Исследования проведены на крысах Вистар массой 180-200 г. Все животные содержались в одинаковых условиях на обычном пищевом режиме. Для получения статистически достоверных результатов группы формировали из 9 животных. В контрольные и опытные группы входили животные одного возраста. Разброс в группах по исходной массе не превышал ± 10%. Все исследования проводили в одно и то же время суток с 8.00 до 12.00 с соблюдением принципов, изложенных в Конвенции по защите позвоночных животных, используемых для экспериментальных и других целей (г. Страсбург, Франция, 1986).

Токсическое поражение почек, осложненное инфицированием (пиелонефрит), моделировали путем однократного внутрижелудочного введения ртути дихлорида в дозе 2 мг/кг и внутрибрюшинной инъекции предварительно оттитрованных доз суточной агаровой культуры Staphylococcus aureus, содержащих 1Ч108 микробных тел в 0,5 мл раствора. О состоянии выделительной функции почек судили по концентрации мочевины и креатинина в крови [10]. Активность ферментов в почках и количество клеток крови оценивали по методике В.В. Меньшикова [10]. В ходе приготовления гистологических препаратов использовалась окраска гематоксилином и эозином, при этом цитоплазма клеток окрашивалась в розовый цвет, ядра - в фиолетовый.

Для включения аминогликозидов или фторхинолонов в строму эритроцитов использовали метод гипоосмотического гемолиза, позволяющий ввести максимально возможное количество препаратов [11, 12]. Для получения аллогенных эритроцитов использовали 3 мл крови. После оседания эритроцитов удаляли плазму вместе с лейкоцитарной пленкой. Эритроциты крыс, выделенные из 3 мл крови, дважды отмывали изотоническим раствором натрия хлорида путем центрифугирования при 500 g в течение 5 мин. при 4°С. К осадку эритроцитов добавляли семикратный объем охлажденной до 0°С воды очищенной и центрифугировали при 1500 g в течение 25 мин. К полученной строме приливали пятикратный объем аминогликозида или фторхинолона, растворенного в охлажденной до 5°С очищенной воде. Концентрация препарата в инкубационной среде соответствовала их разовым дозам в пересчете на крысу. Взвесь инкубировали в течение 20 мин. при 4°С, затем добавляли 1/10 объема 10% натрия хлорида для восстановления целостности стромы и инкубировали в течение 30 мин. при 37°С. После включения препаратов в стромальные сферы последние дважды отмывали изотоническим раствором натрия хлорида, затем осаждали при 1500 g в течение 10 мин. (эритроцитарная форма).

Для получения суспензии лейкоцитов гепаринизированную кровь (25 ЕД/мл крови) смешивали с 3% желатином (0,1 мг/мл) и выдерживали 15-20 мин. при 37°С. После оседания эритроцитов слой плазмы, обогащенный лейкоцитами, переносили в силиконизированные пробирки. Клетки осаждали центрифугированием в течение 10 мин. при 1500 g. Количество клеток подсчитывали под микроскопом в камере Горяева. Для включения антибиотиков или фторхинолонов в лейкоцитарный носители (ЛН) использовали методику С.В. Лохвицкого [7]. В соответствии с методикой лейкоциты после выделения инкубировали с аминогликозидами или фторхинолонами в разовой дозе в течение 20 мин. при комнатной температуре и периодическом встряхивании (лейкоцитарная форма). Для повышения связывания антибиотиков или фторхинолонов лейкоцитами в инкубационную среду добавляли 0,5 мл 1% раствора АТФ [7].

Определение аминогликозидов в биоматериале проводили спектрофотометрической методикой [13]. Для определения фторхинолонов также была использована спектрофотометрическая методика [14].

В работе использовались: амикацин - раствор для инъекций, ампулы (500 мг - 2 мл), Болгария, Pharmachin Holding EAD Spharma; гентамицин - раствор для инъекций, ампулы (80 мг - 2 мл), Индия, Agio Pharmaceuticals Ltd; офлоксацин (офло) - раствор для инфузий 0,2% (200 мг - 100 мл), флаконы, Индия, Unique Pharmaceutical Laboratories; ципрофлоксацин 1% раствор в ампулах по 10 мл или раствор для инъекций 0,2% (200 мг - 100 мл), флаконы, Индия, Wockhardt Ltd.

Препараты и их клеточные формы вводили внутривенно, при этом использовали аллогенный перенос клеток. Используемые дозы препаратов соответствовали рекомендованным терапевтическим дозам, пересчитанным с учетом соотношения поверхности тела биологического объекта и его массы по общепринятой формуле межвидового переноса доз с применением коэффициента пересчета в зависимости от массы тела. Антибиотики вводили в хвостовую вену, без наркоза. Крысу помещали в специально сконструированную установку. Стеклянная коническая конструкция позволяла фиксировать крысу, при этом хвост находился вне установки. Перед введением препаратов хвост разогревали обработкой водой с повышенной температурой и этанолом. Для прокола хрящевого панциря использовали тонкую иглу и желательно инсулиновый шприц.

Статистическую обработку результатов исследования проводили путем вычисления средних арифметических изучаемых показателей (M) и их стандартных ошибок (m). Существенность различий средних величин оценивали по критериям Стьюдента и Вилкоксона-МаннаУитни [15, 16].

Результаты

Для отработки лабораторной технологии получения эритроцитарных форм антибактериальных препаратов изучены особенности включения гентамицина, амикацина, ципрофлоксацина и офлоксацина в эритроцитарные носители (ЭН) здоровых животных и животных с пиелонефритом. С этой целью ЭН здоровых крыс и крыс с пиелонефритом инкубировали с растворами препаратов в следующей концентрации: гентамицина 2 и 4 мг/мл (0,2%; 0,4%) и амикацина 12 и 24 мг/мл (1,2%; 2,4%), а фторхинолонов 3 и 6 мг/мл (0,3%; 0,6%) в течение 10, 30, и 60 минут при 40С. В начале инкубацию проводили с меньшей концентрацией, а затем концентрацию препаратов в инкубационной жидкости увеличивали в два раза. Устойчивость ЭН на десорбцию и выделение препаратов из ЭН определяли путем двукратного предварительного отмывания и инкубации их в аутологичной плазме при 370С в течение 30 минут.

Было установлено, что в ЭН здоровых доноров включается гентамицина 22,4% и 20,2% амикацина, а в ЭН крыс с пиелонефритом 20,1% и 18,2% для гентамицина и амикацина, соответственно (табл. 1). Определено, что в ЭН здоровых крыс включается 17,9% ципрофлоксацина и 16,4% офлоксацина, а в ЭН животных с пиелонефритом 14,5% и 12,3%, соответственно (табл. 1).

Таблица 1. Включение антибиотиков аминогликозидов или фторхинолонов в ЭН

Препарат

Включение в ЭН, %

Здоровые крысы

Крысы с пиелонефритом

1. Гентамицин

22,4±2,4

20,1±1,3

2. Амикацин

20,2±2,5

18,2±1,2

3. Ципрофлоксацин

17,9±1,3*1,2

14,5±0,9*1,2

4. Офлоксацин

16,4±0,4*1,2

12,3±0,9*1,2

Примечание. * и цифра рядом в этой и последующих таблицах указывают на достоверность различий между группами (p?0,05)

Доказано, что антибиотики аминогликозиды и фторхинолоны в большей степени включаются в ЭН здоровых доноров. Полученные результаты свидетельствовали о более высоком включении антибиотиков аминогликозидов в ЭН животных с пиелонефритом в сравнении с фторхинолонами.

Изучены особенности включения антибиотиков аминогликозидов или фторхинолонов в лейкоцитарные носители здоровых животных и животных с пиелонефритом.

С этой целью, выделенные из крови лейкоциты инкубировали с растворами препаратов в концентрации: гентамицина 2 и 4 мг/мл (0,2%; 0,4%), амикацина 12 и 24 мг/мл (1,2%; 2,4%), фторхинолонов 3 мг/мл и 6 мг/мл (0,3% и 0,6%) в течение 10, 20 и 60 минут при комнатной температуре (200С). Вначале инкубацию проводили с меньшей концентрацией, а затем концентрацию препаратов увеличивали в 2 раза. Устойчивость ЛН на десорбцию и выделение антибиотиков определяли путем двукратного предварительного отмывания и инкубации их в аутологичной плазме при 370 С в течении 30 минут. Отмечено более высокое включение препаратов в ЛН здоровых животных. Установлено, что введение АТФ в инкубационную среду повышает включение антибиотиков аминогликозидов и фторхинолонов в ЛН здоровых крыс (табл. 2). Инкубации с АТФ также способствует повышению включения антибиотиков аминогликозидов или фторхинолонов в ЛН крыс с пиелонефритом. Показано, что в присутствии АТФ препараты практически в одинаковом процентном соотношении включаются в ЛН как здоровых животных, так и животных с пиелонефритом (табл. 2).

Таблица 2. Включение антибиотиков аминогликозидов или фторхинолонов в ЛН

Препарат

Включение в ЛН, %

Здоровые крысы

Крысы с пиелонефритом

1. Гентамицин

18,3 ± 1,8

12,6 ± 1,2

2. Гентамицин+АТФ

28,3 ± 2,8*1

25,4 ± 2,6*1

3. Амикацин

19,1 ± 1,7

13,2 ± 1,4

4. Амикацин+АТФ

27,4 ± 2,7*3

26,1 ± 2,5*3

5. Ципрофлоксацин

12,6 ± 1,2

9,8 ± 0,8

6. Ципрофлоксацин+АТФ

24,8 ± 2,2*5

22,6 ± 2,3*5

7. Офлоксацин

13,4 ± 1,4

10,2 ± 0,9

8. Офлоксацин+АТФ

27,2 ± 2,6*7

25,8 ± 2,4*7

Изучение процессов десорбции аминогликозидов и фторхинолонов из ЭН и ЛН в плазму крови показало их достаточную устойчивость и тем самым подтвердило возможность использования эритроцитов и лейкоцитов для направленного транспорта антибактериальных препаратов.

Использование различных технологий введения лекарственных средств изменяет их фармакокинетику. При введении свободных антибиотиков отмечена их высокая пиковая концентрация в крови через один час, а через три часа концентрация антибиотика резко снижалась (табл. 3).

Таблица 3. Распределение антибиотиков аминогликозидов и фторхинолонов, включенных в клеточные носители в организме

Условия опыта

Время в часах

Количество препарата

Кровь (мкг/мл)

Почки (мкг/г)

1. Введение гентамицина

1

5,26±0,18

не определяется

3

не определяется

3,12±0,3

2. Введение офлоксацина

1

6,16±0,29

не определяется

3

не определяется

3,46±0,4

3. Введение гентамицина включенного в ЭН

1

0,63±0,06

4,98±0,4

3

0,48±0,04

4,24±0,4

4. Введение офлоксацина включенного в ЭН

1

0,56±0,04

5,21±0,5

3

0,39±0,03

4,99±0,5

5. Введение гентамицина включенного в ЛН

1

0,45±0,01

4,99±0,5

3

не определяется

4,17±0,4

6. Введение офлоксацина включенного в ЛН

1

0,38±0,02

6,23±0,6

3

не определяется

5,98±0,5

При введении гентамицина и офлоксацина, включенных в ЭН и ЛН, в крови через один час концентрация антибиотиков была незначительна. Концентрация препаратов в почечной ткани при введении их в ЭН была выше в 1,4 для гентамицина и в 1,5 раза - для офлоксацина, а введенных в ЛН была, соответственно, в 1,7 - для гентамицина и 1,9 раза - для офлоксацина выше, чем при введении свободных препаратов. Содержание препаратов в почечной ткани оставалось высоким в течение 24 ч (время наблюдения) и снижалось постепенно (табл. 3).

Важным условием применения клеточных форм антибактериальных препаратов являются их стабильность, сроки и условия хранения. Пригодность свободных ЭН и ЛН определяли по способности включать антибактериальные препараты, а ЭН и ЛН с включенными антибиотиками - по способности сохранять терапевтическую концентрацию лекарственных средств. В результате было установлено, что свободные ЭН и ЛН сохраняют способность включать антибактериальные препараты в течение 10 дней в условиях хранения при 5°С, а клеточные носители с включенными препаратами хранятся двух-трех суток.

Для выяснения эффективности антибактериальной терапии пиелонефрита методом направленного транспорта с использованием клеточных форм антибактериальных препаратов необходимо было создать его экспериментальную модель.

Нами выбрано введение ртути дихлорида и микробного агента.

Установлено, что введение ртути дихлорида совместно с микробным агентом вызывало развитие пиелонефрита, подтверждающееся клиническими показателями: гипертермия, снижение веса на 18%, нарушение выделительной функции почек (табл. 4). Анализ выделительной функции почек показал резкое повышение уровня в крови мочевины в 2,1 раза и креатинина в 3,2 раза, появление лейкоцитов и белка в моче (табл. 5).

Таблица 4. Изменение температуры и массы тела у животных с необструктивным пиелонефритом

Группа

Температура тела (oС)

Масса тела (г)

1. Контроль (здоровые крысы)

41,5±0,5

153,4±11,8

2. Введение ртути дихлорида и стафилококка

43,8±0,4

125,2±10,3

Таблица 5. Уровень мочевины и креатинина у животных с необструктивным пиелонефритом

Группа

Мочевина, моль/л

Креатинин, моль/л

1. Контроль (здоровые крысы)

132,4±13,2

153,4±11,8

2. Введение ртути дихлорида и стафилококка

278,2±27,1*1

125,2±10,3

Установлены изменения лейкоцитарной формулы - увеличение количества лейкоцитов на 35%, уменьшение количества лимфоцитов - на 24% и повышение количества нейтрофилов крови на 23%. В почках отмечено снижение активности сукцинатдегидрогеназы (СДГ) в 1,9 раза, глютаматдегидрогеназы (ГДГ) в 2,1 раза, щелочной фосфатазы (ЩФ) в 2,3 раза, на фоне высокой активности лактатдегидрогеназы (ЛДГ). Анализ патологических изменений в мозговом слое почек показал очаговые некрозы и очаговые скопления лейкоцитов (рис. 1).

Рис. 1. Морфологические изменения в препаратах почек при пиелонефрите. Окраска гематоксилином и эозином. Увеличение х 400

Полученные результаты свидетельствовали о развитии инфекционного воспалительного процесса в почках, весьма близкого к естественной картине пиелонефрита.

Для сравнительной оценки эффективности свободных и клеточных форм антибиотиков аминогликозидов и фторхинолонов при экспериментальном пиелонефрите использовали внутривенное введение разовых доз препаратов, пересчитанных по общепринятой методике на крысу. При этом температуру тела определяли один раз в сутки в одно и тоже время (9-10 ч) до ее полной нормализации и последующие два дня, выделительную функцию почек и массу тела определяли на четвертый и последующие дни. Лабораторные показатели определяли во всех группах на 10 сутки после развития пиелонефрита.

Установлено, что пятикратное введение животным с пиелонефритом гентамицина в дозе 2 мг/кг, амикацина в дозе 12 мг/кг ципрофлоксацина и офлоксацина в дозах 3 мг/кг нормализовало температуру тела на 10-12 сутки, выделительную функцию почек - на 12-14 сутки, при этом вес животных достоверно не изменялся. На 10 сутки в крови количество лейкоцитов было повышено в среднем на 10-12%, количество лимфоцитов снижено на 89%, количество нейтрофилов не изменялось, уменьшался, но не нормализовался дисбаланс активности ферментов в почках.

В отличие от этого однократное введение крысам с пиелонефритом эритроцитарных или лейкоцитарных форм антибактериальных препаратов в разовых дозах нормализовало температуру тела на 7-8 или 5-6 сутки, выделительную функцию почек на 8-9 или 5-6 сутки соответственно, на 10 сутки отмечена полная нормализация количества лейкоцитов, лимфоцитов, нейтрофилов в крови, активности ферментов в почках.

Обсуждение

Нами разработана лабораторная технология получения эритроцитарных и лейкоцитарных форм антибиотиков аминогликозидов и фторхиноонов, включающая выделение ЭН и ЛН, получение стандартизованных по количеству действующего вещества клеточных форм антибактериальных препаратов.

Установлены особенности включения отдельных представителей антибиотиков - аминогликозидов и фторхинолонов в эритроцитарные носители здоровых животных и крыс с пиелонефритом. Показано, что более высокое включение аминогликозидов и фторхинолонов происходит при использовании ЭН здоровых крыс. При использовании эритроцитарных носителей крыс с пиелонефритом наибольший процент включения отмечен при инкубации с антибиотиками аминогликозидами. Установлена достаточная устойчивость эритроцитарных носителей с включенными химиопрепаратами, что позволяет их использовать в качестве контейнеров для направленного транспорта антибиотиков аминогликозидов в органы и, в частности, в почки. При применении в качестве векторов для направленного транспорта в организм химиопрепаратов лейкоцитарных носителей установлена более высокая иммобилизация препаратов в лейкоцитарные носители здоровых доноров. Изучение процессов десорбции аминогликозидов и фторхинолонов из ЛН в плазму крови показало их достаточную устойчивость, и подтвердило возможность использования лейкоцитов в качестве векторов для направленного транспорта антибактериальных препаратов. Введение в инкубационную среду АТФ, по-видимому, за счет изменения микровязкости мембран клеток, увеличивает включение препаратов не только в лейкоцитарные носители здоровых доноров, но и лейкоцитарные носители крыс с пиелонефритом. Изучение фармакокинетики показало, что введение иммобилизованных в клеточные носители антибиотиков аминогликозидов или фторхинолонов увеличивает их содержание в почках в 1,5-1,8 раза, в крови концентрация препарата была незначительна.

Общеизвестно, что инфекционный воспалительный процесс в почках возникает при попадании микробного агента на фоне нарушения уроили гемодинамики почек [17].

Экспериментальный пиелонефрит моделировали введением токсического и микробного агентов: ртути дихлорида и стафилококка. Развитие экспериментального пиелонефрита подтверждалось клиническими показателями (гипертермия, снижение веса, нарушение выделительной активности), изменение лейкоцитарной формулы, появлением в почках микроабсцессов из скопления лейкоцитов, разбалансированием активности почечных ферментов. Механизм развития пиелонефрита в выбранной модели, по-видимому, можно объяснить нарушением внутрипочечного кровотока, который возникает за счет повреждающего действия на почечную ткань (ртути дихлорид), что приводит к фиксации микроорганизмов в почках. Оценка эффективности свободных и клеточных форм антибактериальных препаратов при экспериментальном пиелонефрите показало, что введение эритроцитарных и лейкоцитарных форм, в соответствующих их системному введению дозах, оказывало более существенный фармакологический эффект, что выражалось в более ранней нормализации (5-7 сутки) клинических, лабораторных, гематологических и морфологических показателей.

Выводы

1. Экспериментальное моделирование пиелонефрита подтверждено развитием клинических, лабораторных, гематологических признаков воспалительного процесса в почках, снижением в почках активности СДГ, ГДГ, ЩФ в 1,9-2,3 раза на фоне высокой активности ЛДГ.

2. Системное введение гентамицина (2 мг/кг), амикацина (12 мг/кг), ципрофлоксацина (3 мг/кг) и офлоксацина (3 мг/кг) 1 раз в сутки курсом 5 дней после моделирования пиелонефрита нормализовало температуру тела, выделительную функцию, гематологические показатели, активность ферментов в почках и морфологическую картину к 10-12 суткам наблюдения.

3. Однократное введение эритроцитарных и лейкоцитарных форм антибактериальных препаратов в дозах, соответствующих их системному однократному введению, оказывало более существенный фармакологический эффект по сравнению с традиционным способом, что выражалось в более ранней нормализации (на 5-7 сутки) клинических, лабораторных, морфологических показателей.

Литература

1. Зубков М.Н. Практическое руководство по клинической микробиологии и антимикробной терапии для врачей стационарной помощи. М.: МГУП. 2002. 272 с.

2. Рафальский В.В. Обоснование выбора антимикробных препаратов при амбулаторных инфекциях мочевыводящих путей: автореф. дис. ... д-ра мед. наук. Смоленск. 2004. 36 c.

3. Неймарк А.И., Гаткин М.Я. Использование криопреципитата в комплексном лечении острого гнойного пиелонефрита. Урология 2005;(4):42-48.

4. Неймарк А.И., Симашкевич А.В. Комплексное лечение больных острым пиелонефритом. В кн.: Современные принципы диагностики, профилактики и лечения инфекционно-воспалительных заболеваний почек, мочевыводящих путей и половых органов. М. 2007. С.88-91.

5. Кузменко В.В., Золотухин О.В., Аносова Ю.А. Антибактериальная терапия моделированного острого гнойного пиелонефрита у экспериментальных животных. Вестн. Воронежского гос. ун-та. Сер. Химия. Биология. Фармация 2009;(1):.53-57.

6. Аносова Ю.А. Направленный транспорт антибиотиков в лечении острого гнойного пиелонефрита у экспериментальных животных: автореф. дис… канд. мед наук. СПб. 2010.

7. Лохвицкий С.В. Направленный транспорт антибиотиков при лечении больных диабетической гнойной остеоартропатией. Сахарный диабет 1999;3(4):1-5.

8. Шевцова О.М., Денисова О.И. Применение плазмафереза в сочетании с экстракорпоральной инкубацией эритроцитарной массы с антибактериальными препаратами. В кн.: Труды 9-ой конференции Московского общества гемафереза. М. 2001. С.11.

9. Бельских А.Н., Потапчук В.Б. Совместное применение антибиотиков и экстракорпоральных методов детоксикации в гнойно-септической хирургии. В кн.: Сб. тр. 9-го ежегод. Санкт-Петербургского нефрологического семинара. СПб. ТНА. 2001. С.101-102.

10. Меньшиков В.В., Делекторская Л.Н., Золотницкая Р.П., Андреева З.М., Анкирская А.С., Балаховский И.С., и др. Лабораторные методы исследования в клинике: Справочник. М. Медицина. 1987. 368 с.

11. Генинг Т.П., Колкер И.И., Жумадилов Ж.Ш. Использование форменных элементов крови для направленной доставки химиотерапевтических и диагностических препаратов в очаг поражения. Антибиотики и химиотерапия 1988;33(11):867-870.

12. Жумадилов Ж.Ш., Макаренкова Р.В. Особенности включения некоторых антибиотиков в эритроцитарные тени - систему целенаправленной доставки химиотерапевтических препаратов. Антибиотики и химиотерапия 1990;35(11):54-56.

13. Кукурека А.В. Спектрофотометрическое определение лекарственных средств из группы аминогликозидных антибиотиков: автореф. дис… канд. фарм. наук. Курск. 2000. 18 c.

14. Карлов П.М. Исследование соединений групп фторхинолонов, иммобилизированных на различных носителях: автореф. дис… канд. фарм. наук. Курск. 2009, 23 c.

15. Гублер Е.В. Вычислительные методы анализа и распознавания патологических процессов. Л. Медицина. 1978. 294 с.

16. Лакин Г.Ф. Биометрия. М. Высшая школа. 1980. 293 с.

17. Есилевский Ю.М. Патогенез пиелонефрита. МЕДпресс-информ. 2007. 368 с.

Размещено на Allbest.ru

...

Подобные документы

  • Спектр активности антимикробных средств. Принцип действия антибактериальных, противогрибковых и антипротозойных препаратов. Способы получения антибиотиков. Структуры клетки, служащие мишенями для антибактериальных химиотерапевтических препаратов.

    презентация [1,1 M], добавлен 27.09.2014

  • Особенности заболеваний тканей пародонта у детей. Применение противовоспалительных и репаративных препаратов растительного происхождения. Принципы применения препаратов, обладающих обволакивающим, вяжущим действием. Лечение гипертрофического гингивита.

    реферат [658,7 K], добавлен 23.09.2012

  • История применения химиотерапевтических средств. Классификация антибактериальных средств и механизм действия антибиотиков. Основные свойства фторхинолонов. Побочные эффекты хинолонов и фторхинолонов. Препараты для лечения внекишечных гельминтозов.

    презентация [1,1 M], добавлен 08.05.2019

  • История открытия антибиотиков. Фармакологическое описание антибактериальных средств избирательного и неизбирательного действия как форм лекарственных препаратов. Принципы рациональной химиотерапии и свойства противомикробных химиотерапевтических средств.

    презентация [10,7 M], добавлен 28.04.2015

  • Характеристика групп антибактериальных препаратов в отношении основных возбудителей урогенитальных инфекций: бета-лактамные антибиотики, аминогликозиды, макролиды и хинолоны. Назначение антибактериальных препаратов при цистите, пиелонефрите и уретрите.

    реферат [21,7 K], добавлен 10.06.2009

  • Характеристика основных способов борьбы с вирусными заболеваниями. Ознакомление с действием химиотерапевтических средств на инфекционные заболевания. Причины возникновения аллергических реакций, побочных токсических эффектов и развития дисбактериоза.

    презентация [185,4 K], добавлен 06.12.2011

  • Этиология, патогенез и симптомы болезней, сопровождающихся нарушением деятельности центральной нервной системы. Назначение тонизирующих препаратов. Химический состав и морфолого-анатомические характеристики растений, обладающих тонизирующим действием.

    реферат [367,6 K], добавлен 18.09.2015

  • Патофизиологические механизмы шока, причины возникновения и методика оказания первой помощи. Фармакотерапия гемодинамических нарушений. Разновидности препаратов с положительным инотропным действием. Особенности воздействия на организм вазодилататоров.

    реферат [22,5 K], добавлен 05.09.2009

  • Обзор ряда препаратов генно-инженерной биологической терапии и их использование в лечении анкилозирующего спондилита. Анализ эффективности применения препаратов этой группы при клиническом течении некоторых ревматических воспалительных заболеваний.

    курсовая работа [165,2 K], добавлен 20.05.2015

  • Общая характеристика антимикробных препаратов. Классификация химиотерапевтических средств. Открытие пенициллина в 1928г. Механизмы развития антибиотикорезистентности. Механизм действия антибиотиков. Характеристика и применение антибактериальных средств.

    презентация [3,6 M], добавлен 23.01.2012

  • История открытия антибиотиков. Этиотропность антимикробных препаратов. Основные требования, предъявляемые к антибактериальным препаратам. Классификация химиотерапевтических средств. Механизм действия хинолонов. Основные классификации антибиотиков.

    реферат [1,1 M], добавлен 05.03.2012

  • Анализ механизмов поражения гепатоцитов. Сущность гепотапротекторного действия веществ различных растений. Общая характеристика лекарственных растений, обладающих гепатопроторным действием и содержащих флаволингнаны, флавоноиды и жирорастворимые витамины.

    курсовая работа [45,5 K], добавлен 01.06.2010

  • Общая характеристика антибиотиков - химиотерапевтических веществ, полученных из микроорганизмов или иных природных источников, обладающих способностью подавлять в организме больного возбудителей заболеваний. Технологическая схема производства пенициллина.

    курсовая работа [404,8 K], добавлен 19.12.2010

  • Спектр действия растений, обладающих адаптогенным действием, показания к их применению. Внешние признаки, химический состав и лекарственные свойства растений–адаптогенов: аралия, женьшень, заманиха высокая, лимонник китайский, родиола розовая, левзия.

    курсовая работа [11,0 M], добавлен 27.11.2010

  • Исследование группы сульфаниламидов: препаратов для системного применения, препаратов, действующих в просвете кишечника, препараты для наружного применения. Анализ группы хинолонов, фторхинолонов, нитрофуранов: механизм действия, спектр активности.

    презентация [472,5 K], добавлен 17.04.2019

  • Классификация противогрибковых препаратов - лекарственных средств, которые обладают фунгицидным (уничтожение грибкового возбудителя) и фунгистатическим (подавление его размножения) действием. Свойства нистатина, микогептина, тербинафина и каспофунгина.

    презентация [1,4 M], добавлен 16.06.2015

  • Использование сульфаниламидов, ко-тримоксазола, хинолонов, фторхинолонов и нитрофуранов в клинической практике. Механизм действия препаратов, спектр их активности, особенности фармакокинетики, противопоказания, лекарственные взаимодействия и показания.

    презентация [137,5 K], добавлен 21.10.2013

  • Общая характеристика седативных препаратов, их классификация и механизм действия. Основные показания к применению, побочное действие и противопоказания. Производные бензодиазепина, препараты с антиневротическим действием, группа комбинированных средств.

    презентация [3,0 M], добавлен 28.04.2012

  • Преимущества и недостатки лекарственных форм для парентерального применения. Требования к лекарственным средствам. Технологическая схема производства препаратов в ампулах. Факторы риска (потенциальные причины) ошибок применения парентеральных препаратов.

    презентация [3,2 M], добавлен 06.02.2016

  • Пероральная антибиотикотерапия: общее понятие, преимущества и недостатки. Эффективность ступенчатых режимов лечения. Правила рациональной антибиотикотерапии. Девятнадцать групп антимикробных препаратов. Допустимые дозы аминогликозидов для лечения детей.

    презентация [179,1 K], добавлен 27.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.