Компьютерные методы автоматического анализа ЭКГ в системах кардиологического наблюдения

Автоанализ биомедицинской информации. Оценка физиологических параметров организма, информационная поддержка диагностических решений врача, автоматическая диагностика патологических изменений состояния человека. Амбулаторное мониторное наблюдение.

Рубрика Медицина
Вид автореферат
Язык русский
Дата добавления 13.02.2018
Размер файла 332,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

· Наблюдается не сама функция управления сердечным ритмом, которая является предметом анализа, а вторичный по отношению к ней сигнал - последовательность NN-интервалов, представляющая собой последовательность точечных событий, неравномерно распределённых по времени.

· Получаемая в результате анализа ЭКГ последовательность RR-интервалов может содержать интервалы не только фонового ритма, но и другого происхождения (связанные с нарушениями ритма, помехами или ошибками обнаружения QRS-комплекса).

· Поскольку сигнал сердечного ритма является случайным процессом, то и рассчитанные по нему показатели будут являться случайными величинами. При этом не существует возможности однозначной верификации получаемых результатов.

· Сигнал сердечного ритма является нестационарным сигналом, что связано как с природой его возникновения, так и с внешними факторами, оказывающими влияние на пациента в процессе съёма сигнала.

В работе была поставлена задача исследования предлагаемых методов получения оценок спектральных показателей ВСР с точки зрения точности и статистической состоятельности получаемых результатов. Рассматривались два альтернативных подхода:

· Использование представления функции управления сердечным ритмом в виде последовательности равноотстоящих отсчётов, восстановленной по исходной последовательности NN-интервалов.

· Непосредственный анализ последовательности NN-интервалов.

В рамках первого из подходов были исследованы непараметрические методы на основе ДПФ (периодограммный с различными видами окон и метод Уэлча с окном фон Ханна), а также параметрические (авторегрессионное моделирование на основе методов Берга, ковариационного и модифицированного ковариационного). Для реализации второго подхода использовался периодограммный метод Ломба-Скаргле, представляющий собой обобщение ДПФ на случай описания процесса в виде последовательности точечных событий.

Для исследования методов оценки спектральных показателей ВСР была разработана модель сигнала сердечного ритма, обладающая заданными частотными свойствами. В качестве отправной точки для построения модели использовалась функция СПМ, имеющая вид, характерный для сигнала ВСР в норме: приблизительно одинаковая концентрация мощности в диапазонах частот VLF, LF и HF при значениях суммарной мощности в данных диапазонах, имеющих порядок от 300 мс 2 до 1000 мс 2. В диапазонах частот VLF, LF и HF были сформированы три огибающие функции СПМ в форме гауссовых кривых, центр каждой из которых расположен в середине соответствующего диапазона частот, а значения на границах диапазона составляют приблизительно 1% от максимума для данной кривой. Масштаб каждой из трёх кривых был выбран так, чтобы величина площади под ней соответствовала 500 мс 2.

Выражение для отсчётов полученной функции имеет вид:

, мс 2/Гц,

где - выбранное число отсчётов по частоте в диапазоне частот от 0 Гц до Гц, - шаг по частоте, - номер диапазона частот (соответственно для диапазонов VLF, LF и HF), - среднеквадратичное отклонение для соответствующей гауссовой кривой (здесь и - границы -го диапазона). По модельной СПМ были восстановлены значения модулей амплитудного спектра:

, мс.

Далее значения компонент амплитудного спектра были использованы для получения модельного сигнала функции управления сердечным ритмом:

, мс,

где - выбранное число отсчётов сигнала, мс - интервал дискретизации (соответствует частоте дискретизации 100 Гц), мс - произвольно выбранное среднее значение RR-интервала, а - фазовый сдвиг для -ой синусоиды, полученный как случайное число с равномерным распределением в диапазоне от 0 до 1 (случайный фазовый сдвиг использован для предотвращения интерференции синусоид с частотами кратными ). В результате была получена реализация модельного сигнала, имеющая длительность 1024 секунды (или 17 минут и 4 секунды), с частотой дискретизации 100 Гц.

Модельная последовательность NN-интервалов была сгенерирована с использованием концепции модели порождения сигнала сердечного ритма, известной как IPFM (Integral Pulse Frequency Modulation, интегральная импульсно-частотная модуляция). Далее с помощью интерполяции кубическими сплайнами была восстановлена исходная функция управления в виде равномерно дискретизованного сигнала с частотой отсчётов . Число отсчётов полученной реализации составило 4096. Расчёт СПМ по модельной реализации показал высокую степень её совпадения с изначально заданной (значение стандартного отклонения - около 0,9%). Таким образом, было показано, что модельный сигнал обладает заданными частотными свойствами и может рассматриваться в качестве образца реализации сигнала сердечного ритма, стационарного на всём его протяжении.

Для получения оценок точности и статистической устойчивости результатов из модельной последовательности RR-интервалов случайным образом выбирались 20 фрагментов продолжительностью по 5 минут (300 секунд) каждый. Эти фрагменты были использованы для вычисления СПМ и спектральных параметров с помощью каждого из перечисленных методов. На рис. 4 приведены примеры графиков СПМ для одного и того же фрагмента сигнала, полученных с использованием различных методов, а также указаны рассчитанные значения оценок спектральных параметров ВСР.

Рис. 4. примеры графиков СПМ, полученных с использованием различных методов: а) периодограммный метод с прямоугольным окном; б) метод Уэлча с окном фон Ханна; в) модифицированный ковариационный метод с порядком равным 20; г) метод Ломба-Скаргле. На графиках также показана СПМ модельного сигнала и приведены значения оценок спектральных параметров ВСР.

Как можно видеть из приведённых графиков, величины показателей ВСР, полученные разными методами, существенно отличаются как от теоретических значений, так и друг от друга. Статистический анализ ошибок показал, что точность и устойчивость результатов, получаемых с помощью простейшего периодограммного метода с использованием прямоугольного окна, оказывается не ниже, чем при использовании других методов, которые значительно сложнее в вычислительном отношении. Этот результат объясняется тем, что в самом принципе расчёта частотных параметров ВСР заложено усреднение по частоте, что избавляет от необходимости использования дополнительных процедур усреднения, а также нивелирует эффект спектральной утечки, свойственный прямоугольному окну. Наилучшие результаты продемонстрировали следующие варианты методов:

· периодограммный с использованием прямоугольного окна;

· авторегрессионная модель на основе модифицированного ковариационного метода при значении порядка модели от 20 до 30;

· метод Ломба-Скаргле.

Оценки относительных среднеквадратичных ошибок расчёта параметров ВСР для диапазонов частот VLF, LF и HF оказались для этих вариантов примерно одинаковыми и составили соответственно: 30-32 %; 9-11 % и 5-6 %.

В работе исследованы методы оценки стационарности сигнала сердечного ритма с целью решения задачи автоматической сегментации продолжительных реализаций сигнала на локально-стационарные фрагменты, что позволяет избежать получения заведомо ошибочных результатов на участках сигнала, содержащих переходные процессы или помехи. Исследование выполнено с использованием как специально предложенной модели сигнала, позволяющей получать реализации, включающие локально стационарные (с точки зрения спектрального описания) сегменты, разделённые переходными процессами, так и набора реальных записей сигнала, полученных при проведении ортостатических функциональных проб (36 реализаций длительностью от 12 до 15 минут каждая). Исследованы три различных подхода, которые по данным литературных источников позволяют наиболее эффективно осуществлять оценку стационарности сигналов:

· метод мониторинга коэффициентов авторегрессии;

· метод анализа сигнала с удалённым трендом;

· метод на основе обобщенного отношения правдоподобия.

В результате исследования с использованием модельных сигналов для каждого из методов была определена область значений параметров, при которых достигаются удовлетворительные результаты. Исследование на реальных записях позволило определить оптимальные значения данных параметров, при которых среднеквадратичная ошибка (СКО) определения границ локально стационарных участков оказывается наименьшей. Наилучшие результаты (относительная СКО около 15 %) продемонстрировал метод на основе обобщённого отношения правдоподобия, в котором используется принцип оценки средней ошибки предсказания авторегрессионной модели в скользящем окне.

С появлением технической возможности одновременной регистрации сигналов сердечного ритма и мгновенного кровяного давления возникла необходимость разработки математических методов, позволяющих выявить и количественно оценить взаимосвязи между этими двумя сигналами. Использование традиционно применяемых методов, рассчитанных на обработку сигналов, имеющих физическое или техническое происхождение, не всегда позволяет получать статистически устойчивые результаты, что связано со спецификой биологических сигналов. Задача представленного в работе исследования состояла в том, чтобы используя как записи реальных сигналов, так и модели сигналов, обладающие свойствами, характерными для сигналов сердечного ритма и мгновенного кровяного давления, разработать методы их совместного анализа, которые позволяют получить корректные оценки параметров, характеризующих взаимосвязи данных сигналов. При этом наибольший интерес для физиологов представляют оценки взаимной спектральной плотности мощности (ВСПМ) сигналов и взаимных фазовых спектров (частотных зависимостей задержек).

Рассмотрены следующие альтернативные подходы:

· Непосредственное вычисление ВСПМ по ДПФ двух синхронно снятых дискретных выборок сигналов.

· Получение оценки ВСПМ как ДПФ от оценки ВКФ.

· Расчёт оценки ВСПМ с использованием одного из распространённых методов практического спектрального анализа - периодограммного метода Уэлча.

С целью оценки точности и статистической устойчивости рассчитываемых взаимных характеристик сигналов, была предложена модель двух рассматриваемых процессов, обладающая заданным видом как амплитудных, так и фазовых спектров, и имеющая частотные и статистические свойства, характерные для сигналов сердечного ритма и артериального давления.

В результате исследований на модельных сигналах было показано, что первый из перечисленных методов позволяет получить точность, как оценок спектральной мощности, так и оценок фазовых сдвигов, в 3-10 раз выше, чем в случае использования двух других методов. Показано также, что статистически устойчивые оценки фазовых сдвигов удаётся получить только на тех участках частотного диапазона, где относительная взаимная мощность составляет не менее 3-5 % от общей взаимной мощности сигналов.

В работе также предложен альтернативный метод получения оценок временного сдвига между сигналами сердечного ритма и мгновенного кровяного давления, основанный на анализе ВКФ двух сигналов, пропущенных через один и тот же полосовой фильтр. Значение временного сдвига непосредственно измеряется по ВКФ, как расстояние от первого положительного пика до точки, соответствующей нулевому сдвигу. Полоса пропускания фильтра выбирается на основании анализа предварительно полученной ВСПМ сигналов с целью выделить тот или иной частотный диапазон, в котором отчётливо выражено наличие когерентных колебаний.

Шестая глава посвящена вопросам реализации разработанных методов и алгоритмов автоматического анализа электрокардиосигнала в практических системах медицинского назначения.

При реализации методов и алгоритмов обработки сигналов в системах кардиологического наблюдения неизбежно приходится учитывать ряд ограничений, связанных с необходимостью непрерывной обработки сигнала в реальном масштабе времени. В первую очередь это касается требующихся вычислительных ресурсов: быстродействия вычислителя и объёма доступной оперативной памяти. Наиболее остро данная проблема встаёт при реализации приборов и систем обработки сигналов на базе микропроцессоров.

В работе рассмотрены возможные меры как алгоритмического, так и чисто технического характера, позволяющие снизить загрузку процессора и потребность в оперативной памяти при анализе сигналов в режиме реального времени. К таким мерам относятся следующие:

· в случае наличия альтернатив, выбор математических методов и алгоритмических решений, требующих наименьших вычислительных затрат;

· оптимизация методов обработки сигналов с целью снижения их вычислительной сложности;

· тестирование разрабатываемых программно-алгоритмических средств с целью оценки требующихся вычислительных ресурсов;

· использование средств и языков программирования, обеспечивающих получение в результате компиляции эффективных исполняемых кодов;

· использование, там где это возможно, целочисленной арифметики;

· использование методов буферизации потоков входных и выходных данных;

· соблюдение правил программирования, обеспечивающих рациональный расход ресурсов процессора.

Предложенные методы и алгоритмы обработки электрокардиосигналов были внедрены в следующих компьютерных системах медицинского назначения:

1. Комплекс мониторного наблюдения ЭКГ "РИТМОН".

Комплекс предназначен для круглосуточного мониторного контроля сердечной деятельности кардиологических пациентов в отделениях интенсивной терапии и реанимации клиник и рассчитан на одновременное наблюдение ЭКГ восьми пациентов. Комплекс "РИТМОН" выпускается ООО "Биосигнал" (Санкт-Петербург), и к настоящему времени эксплуатируется более чем в 100 клиниках России, а также более чем в 50 клиниках Польши.

В составе программного обеспечения комплекса "РИТМОН" реализованы следующие разработанные автором методы и алгоритмы:

· алгоритм предварительной цифровой фильтрации электрокардиосигнала и оценки его зашумлённости;

· одноканальный алгоритм обнаружения желудочкового комплекса ЭКГ;

· алгоритм классификации форм QRS-комплексов ЭКГ;

· алгоритм расчёта оценок частотных показателей ВСР.

Пакет программ автоматической обработки электрокардиосигнала в комплексе "РИТМОН" официально зарегистрирован в РосАПО РФ.

2. Компьютерная система для функциональных исследований сердечно-сосудистой системы "Кардиометр-МТ".

Система "Кардиометр-МТ" выпускается ЗАО "Микард-Лана" (Санкт-Петербург) и к настоящему времени эксплуатируется более чем в 400 медицинских учреждениях России. Система предназначена для использования в кабинетах функциональной диагностики поликлиник и стационаров и рассчитана на проведение нескольких видов стандартных исследований:

· съём и автоматическая интерпретация ЭКГ в 12-ти общепринятых отведениях;

· проведение нагрузочных проб;

· исследование вариабельности сердечного ритма;

· проведение электрофизиологических исследований с искусственной электрокардиостимуляцией сердца.

В составе программного обеспечения системы "Кардиометр-МТ" реализованы следующие разработанные автором методы и алгоритмы:

· алгоритм предварительной цифровой фильтрации электрокардиосигнала и оценки его зашумлённости;

· многоканальный алгоритм обнаружения желудочкового комплекса ЭКГ;

· алгоритм классификации форм QRS-комплексов ЭКГ;

· алгоритм расчёта оценок частотных показателей ВСР;

· метод автоматической сегментации сигнала сердечного ритма на локально стационарные участки.

Пакеты программ автоматической обработки электрокардиосигнала, используемые в компьютерной системе "Кардиометр-МТ" ("КардиоКит - Стимуляция", "КардиоКит - Стресс-тест", "КардиоКит - Анализ ритма"), официально зарегистрированы в РОСПАТЕНТ РФ.

3. Пакет прикладных программ "Оценка вариабельности сердечного ритма и артериального давления, измеряемого методом непрерывной неинвазивной регистрации".

Пакет предназначен для проведения как клинических, так и научных исследований сердечно-сосудистой системы и проходит клиническую апробацию в ФГУ Федеральный центр сердца, крови и эндокринологии им. В.А. Алмазова (Санкт-Петербург).

В составе данного программного пакета реализованы следующие разработанные автором методы и алгоритмы:

· алгоритм расчёта оценок частотных показателей ВСР;

· метод автоматической сегментации сигнала сердечного ритма на локально стационарные участки;

· алгоритм вычисления оценок взаимной спектральной мощности и взаимных фазовых сдвигов сигналов сердечного ритма и мгновенного кровяного давления.

Пакет прикладных программ "Оценка вариабельности сердечного ритма и артериального давления, измеряемого методом непрерывной неинвазивной регистрации" официально зарегистрирован в Федеральной службе по интеллектуальной собственности, патентам и товарным знакам РФ.

Накопленный автором опыт научно-исследовательской и педагогической работы, связанной с проблемами автоматической обработки биомедицинских сигналов, позволил ему выполнить перевод на русский язык монографии известного канадского учёного профессора Р.М. Рангайяна, представляющей собой фундаментальное учебное пособие для студентов и аспирантов, обучающихся по данному направлению: Рангайян Р.М. Анализ биомедицинских сигналов. Практический подход / Пер. с англ. А.Н. Калиниченко под ред. А.П. Немирко. М.: ФИЗМАТЛИТ, 2007. - 440 с.

В заключении излагаются основные результаты теоретических исследований и практических разработок, представленных в диссертационной работе.

В результате проведения представленных в диссертации теоретических и экспериментальных исследований, был решен ряд проблем теоретического характера и создан комплекс методов цифровой обработки и анализа биомедицинских сигналов, что позволило расширить класс анализируемых показателей сердечной деятельности человека и повысить качество и надежность приборов и систем кардиологического наблюдения за счет реализации разработанных алгоритмов и методов в виде прикладных программных комплексов.

1. Разработана обобщённая структура алгоритмического обеспечения анализа электрокардиосигнала в системах кардиологического наблюдения, основанная на комплексном подходе к созданию методов и алгоритмов автоматического непрерывного анализа электрокардиосигнала.

2. Обоснован выбор параметров процедур предварительной цифровой фильтрации, обеспечивающих оптимальные условия для решения задачи обнаружения желудочкового комплекса ЭКГ. Показано, что наилучшие результаты достигаются при использовании полосовой фильтрации электрокардиосигнала с частотами среза цифрового фильтра равными 5 Гц и 30 Гц при значениях ширины переходной полосы соответственно равных 4 Гц и 25 Гц.

3. Разработан алгоритм автоматического обнаружения желудочкового комплекса ЭКГ по электрокардиосигналу в одном отведении, учитывающий статистические характеристики и контекст электрокардиосигнала, обладающий высокой помехоустойчивостью, а также способностью адаптироваться к динамически возникающим изменениям сигнала. Оценка качества разработанного алгоритма показала его преимущество перед ранее разработанным алгоритмом аналогичного назначения.

4. Разработан алгоритм обнаружения желудочкового комплекса ЭКГ по электрокардиосигналу в двух или трёх синхронно снимаемых отведениях, обладающий существенно более высокими показателями качества работы, чем алгоритм, использующий одно отведение ЭКГ.

5. Разработан и исследован алгоритм классификации форм желудочковых комплексов ЭКГ, основанный на одновременном использовании морфологических признаков, рассчитанных во временной области, в частотной области и с использованием корреляции. Алгоритм продемонстрировал качество классификации в 1,5-2 раза превышающее результаты, получаемые для каждого из перечисленных методов в отдельности.

6. Предложена и разработана математическая модель сигнала сердечного ритма, способная воспроизводить реалистичный сигнал с заданными значениями частотных параметров вариабельности сердечного ритма и предназначенная для тестирования и оценки качества методов математического анализа ВСР.

7. Предложены процедуры расчёта спектральных показателей вариабельности сердечного ритма, позволяющие получить наиболее точные и статистически устойчивые оценки параметров ВСР.

8. Разработаны и исследованы методы оценки стационарности сигнала сердечного ритма, позволяющие локализовать стационарные участки продолжительных записей сигнала с целью исключения возможности получения некорректных и статистически несостоятельных оценок спектральных показателей вариабельности сердечного ритма.

9. Разработаны методы оценки фазовых соотношений между сигналами сердечного ритма и мгновенного артериального давления, позволяющие количественно охарактеризовать временные задержки между когерентными колебаниями данных двух сигналов.

10. Созданы новые программные средства для компьютерных систем и приборов кардиологического наблюдения и диагностики, а также исследовательские комплексы, позволяющие решать задачи текущего контроля сердечной деятельности человека, оценки регуляторной функции вегетативной нервной системы и состояния организма по частотным показателям ВСР, что способствует повышению эффективности применения средств компьютерной диагностики и автоматизации в лечебном процессе. Разработанные алгоритмы предварительной фильтрации ЭКГ, обнаружения и классификации форм желудочковых комплексов и методы анализа ВСР внедрены в практические компьютерные системы "РИТМОН" и "Кардиометр-МТ", которые имеют регистрационные удостоверения МЗ РФ, а также сертификат Госстандарта РФ и выпускаются несколькими предприятиями г. С.-Петербурга.

Список опубликованных работ по теме диссертации

В изданиях, определённых ВАК Минобрнауки РФ:

1. Калиниченко, А.Н. Влияние частоты дискретизации ЭКГ на точность вычисления спектральных параметров вариабельности сердечного ритма / А.Н. Калиниченко, О.Д. Юрьева // Информационно-управляющие системы. - 2008. - № 2. - С. 46 - 49.

2. Калиниченко, А.Н. О точности и достоверности спектральных методов расчёта показателей вариабельности сердечного ритма / А.Н. Калиниченко // Информационно-управляющие системы. - 2007. - № 6. - С. 41 - 48.

3. Калиниченко, А.Н. Исследование алгоритмов оценки стационарности сердечного ритма / А.Н. Калиниченко, М.И. Коляденко // Известия СПбГЭТУ "ЛЭТИ" (Известия Государственного электротехнического университета). Сер. Биотехнические системы в медицине и экологии. - 2006. -Вып. 2. - С. 101-105.

4. Калиниченко, А.Н. Оценка разделяющей способности методов классификации форм ЭКГ/ А.Н. Калиниченко // Известия СПбГЭТУ "ЛЭТИ" (Известия Государственного электротехнического университета). Сер. Биотехнические системы в медицине и экологии. - 2006. - Вып. 1.- С. 21- 30.

5. Investigation of Time, Amplitude, and Frequency Parameters of a Direct Fetal ECG Signal during Labor and Delivery (Исследование временных, амплитудных и частотных параметров электрокардиосигнала плода непосредственно снимаемого во время родов) / R.A. Shepovalnikov, A.P. Nemirko, A.N. Kalinichenko, et al. // Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. - 2006. - Vol. 16, No 1. - P. 74 - 76.

6. Software Complex for the Recognition of Diagnostically Significant ECG Changes (Программный комплекс для распознавания диагностически значимых изменений ЭКГ) / A.P. Nemirko, A.N. Kalinichenko, P.V. Murashov, et al. // Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. - 2006, Vol. 16, No 1. - P. 9-11.

7. Пакет программ для функциональных электрокардиографических исследований / А.Н. Калиниченко, А.П. Немирко, П.В. Мурашов и др. // Известия СПбГЭТУ "ЛЭТИ" (Известия Государственного электротехнического университета). Сер. Биотехнические системы в медицине и экологии. - 2004. - Вып. 1. - С. 36-39.

8. Исследование методов анализа электрокардиограммы плода во время родов / Р.А. Шеповальников, А.П. Немирко, А.Н. Калиниченко и др. // Известия СПбГЭТУ "ЛЭТИ" (Известия Государственного электротехнического университета). Сер. Биотехнические системы в медицине и экологии. - 2004. - Вып. 1. - С. 33-36.

9. Software Package for the Functional Investigations Using ECG (Программный комплекс для функциональных исследований с использованием ЭКГ) / A.P. Nemirko, A.N. Kalinichenko, Y.I. Goncharenko, et al. //- Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. - 2003. - Vol. 13, No 2. - P. 308 - 310.

10. Кардиомониторная система RITMON для отделений интенсивной терапии и реанимации / А.П. Немирко, А.Н. Калиниченко, С.Ю. Левашов и др. // Научное приборостроение. - 1996. - Т. 6, № 1. - С. 115-116.

11. Nemirko, A.P. Waveform Classification for Dynamic Analysis of ECG (Классификация сигналов в задачах непрерывного анализа ЭКГ) / A.P. Nemirko, L.A. Manilo, A.N. Kalinichenko // Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. - 1995. - Vol. 5, № 1. - P.131-134.

и в других изданиях:

12. Kalinichenko, A.N. Investigation of the ECG QRS-complex morphologies classification methods (Исследование методов классификации морфологий QRS-комплексов ЭКГ) / A.N. Kalinichenko, K.S. Shuruhina // 9-th International Conference "Pattern Recognition and Image Analysis: New Information Technologies" (PRIA-9-2008), Nizny Novgorod, Sept. 15-20, 2008. Conference Proceedings. - 2008. - Vol. 1. - P. 254-257.

13. Kalinichenko, A.N. ECG waveform classification methods based on spectral and correlation techniques (Методы классификации форм ЭКГ, на основе корреляции и спектрального анализа) / A.N. Kalinichenko // 8-th International Conference "Pattern Recognition and Image Analysis: New Information Technologies" (PRIA-8-2007), Yoshkar-Ola, Oct 8-12, 2007, Conference Proceedings. - 2007. - Vol. 2. - P. 270-272.

14. Калиниченко, А.Н. Анализ спектральных параметров вариабельности сердечного ритма в реальном масштабе времени / А.Н. Калиниченко, Ю.И. Гончаренко, Н.И. Родина // В кн.: Биотехнические системы в медицине и биологии. Под общ. ред. проф. Е.П. Попечителева. - СПб.: Изд-во "Политехника", 2002. - С. 68-71.

15. Kalinichenko, A.N. Real-time Analysis of HRV Spectral Parameters (Анализ параметров вариабельности сердечного ритма в реальном масштабе времени) / A.N. Kalinichenko, M.V. Boyarkin, Y.I. Goncharenko, et al. // In: SYMBIOSIS 2001. VI International Conference, Szczyrk, Poland, 11-13 Sept., 2001, Conference Proceedings. -2001. - P. 228-230.

16. Nemirko, A.P. Computer Net for ECG Monitoring (Компьютерная сеть для мониторного контроля ЭКГ) / A.P. Nemirko, A.N. Kalinichenko, D.V. Korobkov et al. // In: SYMBIOSIS 2001. VI International Conference, Szczyrk, Poland, 11-13 Sept., 2001, Conference Proceedings. -2001. - P. 145-148.

17. Вальденберг, А.В. Мониторный контроль ЭКГ в интенсивной терапии / А.В. Вальденберг, А.Н. Калиниченко // Мир медицины. - 1999. - № 2. - С. 42-45.

18. Калиниченко, А.Н. Автоматическая диагностика фибрилляции предсердий / А.Н. Калиниченко, Л.А. Манило, А.А. Саяпина // Материалы 3-й Международной конференции "Радиоэлектроника в медицинской диагностике", Москва, 29 сент. - 1 окт. 1999. - М., 1999. - С. 96 - 99.

19. Kalinichenko, A.N. Waveforms Classification Algorithm for the Paced ECG (Алгоритм классификации форм сигнала для ЭКГ при искусственной электрокардиостимуляции сердца) / A.N. Kalinichenko, K.V. Sveshnikov // Proceedings of the International Workshop "Biomedical Engineering & Medical Informatics", BEMI'97; Gliwice, Poland, Sept. 2 - 5 1997. Gliwice: Techn. Univ. Gliwice. - P. 150-153.

20. Nemirko, A.P. Reconstruction of cardiac rhythm control function for the spectral estimation of heart rate variability (Восстановление функции управления для получения спектральных оценок вариабельности сердечного ритма) / A.P. Nemirko, L.A. Manilo, A.N. Kalinichenko // Proceedings of 5th International Symposium SYMBIOSIS'97; Jiri Holcik, Peter Fedra, Jan Slezak (Eds.), Brno, Sept. 10 - 12 1997. Brno: Techn. Univ. Brno. - P. 40 - 44.

21. Kalinichenko, A.N. The ECG analysis algorithm and software for noninvasive electrophysiological studies (Алгоритм анализа ЭКГ и программное обеспечение для неинвазивных электрофизиологических исследований) / A.N. Kalinichenko, D.V. Korobkob, K.V. Sveshnikov // Proceedings of 5th International Symposium SYMBIOSIS'97; Jiri Holcik, Peter Fedra, Jan Slezak (Eds.), Brno, Sept. 10 - 12 1997. Brno: Techn. Univ. Brno. - P. 67-69.

22. Boyarkin, M.V. Heart Rate Variability as an Index of Autonomic Heart Regulation in Acute Miocardial Infarction Patients (Вариабельность сердечного ритма как показатель вегетативной регуляции у пациентов с острым инфарктом миокарда) / M.V. Boyarkin, A.N. Kalinichenko, A.P. Nemirko // In: Computers in Cardiology, IEEE. - 1997. - Vol. 24. - P. 45-48.

23. Valdenberg, A.V. The Experience of Computer-Based Monitoring System Utilization in CCU (Опыт использования компьютерной системы мониторного контроля в отделении интенсивной терапии) / A.V. Valdenberg, A.N. Kalinichenko, A.P. Nemirko // In: Computers in Cardiology, IEEE. - 1997. - Vol. 24. - P. 429-432.

24. Калиниченко, А.Н. Алгоритм анализа ЭКГ при электрокардиостимуляции / А.Н. Калиниченко, А.Ю. Левин, А.А. Трушев // Известия СПбГЭТУ "ЛЭТИ" (Известия Государственного электротехнического университета). - 1996. - Вып. 491. - С. 44-51.

25. Nemirko, A.P. Algorithm and Software for ECG Monitoring System (Алгоритмическое и программное обеспечение для системы мониторного контроля ЭКГ) / A.P. Nemirko, A.N. Kalinichenko, S.Y. Levashov, et al. //. In: Analysis of Biomedical Signals and Images. 13-th Biennial International Conference BIOSIGNAL'96. Proceedings. J. Jan, P. Kilian, I. Provaznic (eds). Technical University Brno Press. - 1996. - P. 192 - 194.

26. Калиниченко, А.Н. Мониторы для наблюдения больных в клинике / А.Н. Калиниченко // Медицинская техника и химические реактивы. Информационный бюллетень. - 1996. - № 4. - С. 2-4.

27. Калиниченко, А.Н. Оперативная обработка многоканальной ЭКГ / А.Н. Калиниченко, С.Ю. Левашов. // Известия СПбГЭТУ "ЛЭТИ" (Известия Государственного электротехнического университета). - 1994. - Вып. 468. - С. 26-31.

28. Kalinichenko, A.N. Method of QRS detection based on digital filtering (Метод обнаружения QRS-комплекса на основе цифровой фильтрации) / A.N. Kalinichenko // Proceedings of the International Symposium SYMBIOSIS'93, Brno, Technical University of Brno. - 1993. - P. 75-89.

29. Кардиомониторы. Аппаратура непрерывного контроля ЭКГ / А.Л. Барановский, А.Н. Калиниченко, Л.А. Манило и др.; под ред. А.Л. Барановского и А.П. Немирко. - М.: Радио и связь, 1993. - 248 с.

30. Оценка вариабельности сердечного ритма и артериального давления, измеряемого методом непрерывной неинвазивной регистрации (программа для ЭВМ): Федеральная служба по интеллектуальной собственности, патентам и товарным знакам РФ, гос. рег. № 2007615223 / О.В. Мамонтов, Е.А. Бирюкова, А.Н. Калиниченко и др., заявитель ФГУ Федеральный центр сердца, крови и эндокринологии им. В.А. Алмазова. - 2007.

31. Программа исследования ЭКГ при электрокардиостимуляции (КардиоКит - Стимуляция): РОСПАТЕНТ РФ, гос. рег. № 2003611609 / А.П. Немирко, А.Н. Калиниченко, Ю.И. Гончаренко и др., заявитель Общество с ограниченной ответственностью "Биосигнал". - 2003.

32. Программа автоматизации нагрузочной пробы (КардиоКит - Стресс-тест): РОСПАТЕНТ РФ, гос. рег. № 2003611610 / А.П. Немирко, А.Н. Калиниченко, Ю.И. Гончаренко и др., заявитель Общество с ограниченной ответственностью "Биосигнал". - 2003.

33. Программа исследования сердечного ритма (КардиоКит - Анализ ритма): РОСПАТЕНТ РФ, гос. рег. № 2003611611 / А.П. Немирко, А.Н. Калиниченко, Ю.И. Гончаренко и др., заявитель Общество с ограниченной ответственностью "Биосигнал". - 2003.

34. Программный комплекс мониторного контроля ЭКГ "RITMON": РосАПО РФ, гос. рег. № 960002 / А.П. Немирко, А.Н. Калиниченко, С.Ю. Левашов и др., заявитель Товарищество с ограниченной ответственностью "БИОСИГНАЛ". - 1996.

Размещено на Allbest.ru

...

Подобные документы

  • Современная семейная медицина как интеграционная специальность, рассматривающая здоровье и болезни человека с учетом его биопсихосоциального статуса. Диагностика и наблюдение. Основные задачи семейного врача. Задачи среднего медицинского персонала.

    курсовая работа [28,8 K], добавлен 13.02.2016

  • Проект биотелеметрической системы для дистанционного контроля физиологических параметров организма - электрокардиограммы и электроэнцефалограммы. Методы измерения и регистрации. Структурная схема и алгоритм функционирования системы передачи информации.

    курсовая работа [1,7 M], добавлен 05.01.2013

  • Изучение особенностей детского организма, классификация периодов жизни ребенка в зависимости от закономерных изменений в его организме. Основные нормы и правила ухода за новорожденным, характеристика физиологических переходных состояний его организма.

    реферат [29,1 K], добавлен 23.06.2010

  • Проведение исследований физиологических функций организма: дыхания, кровообращения, обмена веществ. Методы индексов оценки физического развития человека. Изучение строения его тела. Характеристика уровня обменных процессов, снабжения организма кислородом.

    отчет по практике [31,7 K], добавлен 27.05.2014

  • Принцип получения ультразвукового изображения, способы его регистрации и архивирования. Симптомы патологических изменений при УЗИ. Методика УЗИ. Клиническое применение магнитно-резонансной томографии. Радионуклидная диагностика, регистрирующие устройства.

    презентация [18,5 M], добавлен 08.09.2016

  • Основы медицинской статистики. Методы отбора единиц наблюдения и сбора статистической информации. Организация (этапы) статистического исследования. Число единиц наблюдения и учетные признаки. Высокая заболеваемость гастритом у студентов-старшекурсников.

    методичка [39,1 K], добавлен 20.03.2009

  • Путь исследований и совершенствования лечебно-диагностических методов, использование законов термодинамики в данном процессе. Понятие о нелинейности в математике и сложных биологических системах. Характеристика диссипативной системы и ее свойства.

    реферат [27,1 K], добавлен 29.08.2009

  • Понятие о моделировании физиологических систем. Организм как объект математического моделирования. Декомпозиция сложных систем, средства и методы их визуального моделирования. Математические модели физиологических процессов в состоянии патологии.

    реферат [32,3 K], добавлен 07.04.2019

  • Обязанности врача-генетика. Основная цель профилактики наследственных заболеваний. Методы пренатальной диагностики состояния плода. Биопсия хориона, методика проведения. Задачи медико-генетического консультирования. Комплекс преконцепционной профилактики.

    доклад [26,7 K], добавлен 11.12.2011

  • Характеристика общего состояния кошки. Выявление патологических изменений в процессе проведенных исследований, результаты лечения. История изучения панлейкопении, условия размножения ее возбудителя. Использование вакцин для специфической профилактики.

    история болезни [26,3 K], добавлен 21.04.2011

  • Понятие биомедицинской инженерии как разработки и применения технических устройств для биологических и медицинских исследований. Применение современных электрокардиографов при обследовании пациента. Основные достижения в области биомедицинской инженерии.

    презентация [5,8 M], добавлен 16.07.2014

  • Актуальность проблемы ишемической болезни сердца. Основные методы лечения. Оценка эффективности применения "малых доз" ГБО при терапии сердечно-сосудистого заболевания. Формат записей о пациентах кардиологического диспансера, фрагмент базы данных.

    курсовая работа [599,6 K], добавлен 08.01.2013

  • Обзор гинекологического анамнеза, жалоб и истории развития заболевания пациента. Анализ патологических изменений внутренних органов, этиологии и патогенеза миомы матки. Изучение диагностических исследований, плана лечения, профилактических мероприятий.

    история болезни [26,5 K], добавлен 12.01.2012

  • Рассмотрение анатомо-физиологических особенностей организма новорожденного ребенка. Соблюдение строжайшей чистоты как основа ухода за ребенком. Изучение правил гигиены медицинского персонала. Оборудование детской комнаты. Осмотр врача-неонатолога.

    презентация [783,4 K], добавлен 27.04.2014

  • Причины развития легочной артериальной гипертензии. Оценка тяжести заболевания, основанная на определении функционального класса. Прогноз при ЛГ. Схема патологических изменений в системе легочной артерии при гипоксии. Диагностика и лечение болезни.

    презентация [1,2 M], добавлен 21.01.2016

  • Диагностирование гиперметропии, миопии слабой и высокой степеней. Снижение остроты зрения вдаль. Определение начала заболевания. Состояние организма, общие заболевания. Исследование состояния зрительных функций. Назначение стационарного лечения.

    история болезни [571,2 K], добавлен 13.12.2013

  • Конструктивность физиологических параллелей в исследовании проблем социальной безопасности и социальных катастроф. Биоэкономические подходы в физиологии, инстинкты личного и видового самосохранения. Положения функциональной энергетики организма человека.

    реферат [33,8 K], добавлен 03.09.2009

  • Понятие рынка медицинских услуг. Финансовый менеджмент как система и механизм управления финансами. Учет в сестринском деле кардиологического отделения. Совершенствование финансового менеджмента бухгалтерии кардиологического отделения ГУЗ ЦК МСЧ.

    курсовая работа [119,8 K], добавлен 27.09.2013

  • Панкреатит как острое полиэтиологическое заболевание, характеризующееся комплексом морфофункциональных изменений в поджелудочной железе. Алгоритм комплексного лечения болезни. Оценка острых физиологических изменений. Осложнения, хирургическая тактика.

    презентация [13,2 M], добавлен 16.09.2015

  • Понятие и основные черты экстремального состояния организма. Режимы жизнедеятельности организма и их отличия. Условия, ограничивающие обсуждение проблемы экстремального состояния организма в интересах клиники, порядок прогнозирования летального исхода.

    реферат [15,6 K], добавлен 23.08.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.