Оценка эффективности наносекундной лазерной роботизированной хирургии при проведении малоинвазивных операций челюстно-лицевой области в эксперименте
Обзор использования лазерных комплексов в челюстно-лицевой хирургии. Изучение среднеквадратического отклонения от заданной траектории при выполнении хирургических разрезов с применением лазера. Интеграция лазерного модуля в манипуляторы робота-хирурга.
Рубрика | Медицина |
Вид | статья |
Язык | русский |
Дата добавления | 27.03.2018 |
Размер файла | 1,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Оценка эффективности наносекундной лазерной роботизированной хирургии при проведении малоинвазивных операций челюстно-лицевой области в эксперименте
А.А. Чунихин, Ю.В. Подураев, А.А. Воротников, Д.Д. Климов, М.Ю. Саакян, Э.А. Базикян
Аннотация
Цель исследования -- изучение среднеквадратического отклонения от заданной траектории при выполнении стандартных хирургических разрезов с применением лазерного излучения наконечником, встроенным в манипуляционный робот, в сравнении с рукой хирурга с использованием мануального тренажерного комплекса.
Материалы и методы. В работе использовали наносекундный лазерный аппарат с уникальными характеристиками излучения и манипуляционный робот, представляющий собой шарнирный семизвенный механизм с последовательной кинематической структурой, сопряженные прототипом рабочего органа, удерживающего держатель оптического световода медицинского лазера на фланце 6-степенного манипулятора.
Измерение координат точек проводили по типовым траекториям (линейной, полулунной, фестончатой) с учетом функциональных движений медицинского инструмента при мануальных перемещениях и при перемещениях роботом с помощью лазерной координатно-измерительной машины, отражатель которой был закреплен на прототипе рабочего органа.
Результаты. Установлено, что среднеквадратическое отклонение точек при мануальном перемещении больше, чем при перемещении роботом, в 11 раз (p?0,05) при линейной траектории и в 5 раз (p?0,05) -- при полулунной.
Среднее значение всех среднеквадратических отклонений у каждой из малых окружностей на фестончатой траектории при мануальных перемещениях в 3 раза больше (p?0,05), чем при перемещении роботом. Среднеквадратическое отклонение от прямой, равноудаленной от всех полученных центров малых окружностей, при мануальных перемещениях в 4 раза больше (p?0,05), чем при перемещении роботом.
Среднее значение среднеквадратического отклонения от различных траекторий (линейной, полулунной, фестончатой) при мануальном перемещении в 3,3 раза больше, чем при перемещении роботом.
Заключение. Результаты проведенных исследований показывают, что применение роботизированных лазерных комплексов, в частности разработанного нами для челюстно-лицевой области, позволяет существенно повысить точность перемещений медицинского лазера, что особенно важно на сложных траекториях.
Ключевые слова: роботизированная хирургия; наносекундный импульсный лазер; фотодинамический эффект.
Введение
Развитие хирургического направления в медицине идет по пути модернизации минимально инвазивных методик. Такая тенденция сопряжена с развитием робототехнических и лазерных технологий. Этому способствует и значительный прорыв в разработке новых приборов с возможностью использования искусственного интеллекта, новейших лазерных аппаратов с уникальными параметрами [1, 2].
Успешность операций с использованием роботической хирургической системы daVinci свидетельствует о широком внедрении роботизированных технологий в различные области медицины. Опыт применения данной системы показывает значительные преимущества роботизированных технологий не только по сравнению с открытыми полостными вмешательствами, но и перед лапароскопическими методиками [3, 4].
В настоящее время в мировой медицинской индустрии разрабатываются роботические системы для проведения хирургических вмешательств в основном в узких областях медицины -- ангиологии, гинекологии, офтальмологии и др. Однако пока не создано роботов для выполнения минимально инвазивных операций в области головы и шеи. Хирургические вмешательства в данной области требуют филигранной техники, так как повреждение тончайших анатомических структур: мышц, сосудов и нервов, воздухоносных синусов -- может привести к серьезным осложнениям, увеличению длительности лечения [5].
Разработка и создание отечественной роботизированной хирургической системы для лечения сложной патологии челюстно-лицевой области с возможностью интеграции лазерного модуля в манипуляторы робота-хирурга, доставляющего световые потоки лазерного излучения в глубокие анатомические структуры головы и шеи, является перспективным направлением развития медицинской промышленности и реализации программы совершенствования оказания медицинской помощи населению России. С целью создания мультифункционального роботизированного хирургического комплекса на первом этапе разработан компактный лазерный модуль с уникальными характеристиками, а также с возможностью использования комбинированного низкоинтенсивного и высокоинтенсивного излучения и фотохимического воздействия на кислород в тканях [6].
Следующим этапом стала разработка стенда для челюстно-лицевой области на основе манипуляционного робота сотрудниками Московского государственного медико-стоматологического университета им. А.И. Евдокимова и Московского государственного технического университета «СТАНКИН».
Цель исследования -- изучение среднеквадратического отклонения от заданной траектории при выполнении стандартных хирургических разрезов с применением лазерного излучения наконечником, встроенным в манипуляционный робот, в сравнении с рукой хирурга с использованием мануального тренажерного комплекса.
лицевой хирургия лазер робот
Материалы и методы
В исследовании использован роботизированный стенд мультифункционального хирургического комплекса, который включает следующие подсистемы: манипуляционный робот, мануальный тренажерный комплекс, фантом головы пациента и рабочее место хирурга.
Манипуляционный робот (рис. 1) представляет собой шарнирный семизвенный механизм с последовательной кинематической структурой. Приводы манипулятора имеют модульную компоновку и состоят из электродвигателя, волнового редуктора, датчика положения и датчика момента.
Такой робот позволяет осуществлять функциональные движения с медицинским инструментом, частично выполняет функции хирурга, повышая его естественные возможности.
Медицинским инструментом в манипуляционном роботе является лазерный рабочий орган EMPD-1260-2P, разработанный исследовательской группой кафедры хирургии полости рта Московского государственного медико-стоматологического университета им. А.И. Евдокимова и сконструированный в ООО «Новые хирургические технологии» (Москва). Оптическое излучение создается в нем многомодовым полупроводниковым лазером на основе структуры AlGaAs с прямой токовой накачкой.
Рабочий орган EMPD-1260-2P представляет собой импульсный драйвер накачки, конструктивно объединенный с диодно-лазерным модулем с длиной волны излучения л=1260 нм.
Драйвер накачки лазера работает в импульсном режиме, позволяя получать различную мощность оптического излучения на выходе за счет изменения частоты импульсов тока накачки (рис. 2).
Драйвер тока накачки представляет собой разрядный контур, состоящий из накопительной емкости C1+C2, полупроводникового лазера L1 и пары динисторов VS1 и VS2. Динисторы включены последовательно и специально подобраны по электрическим параметрам. На VS2 подается положительный импульс запуска амплитудой, превышающей напряжение его включения. После открывания VS2 все напряжение питания переходит на VS1, и он также открывается. Суммарное напряжение включения этой пары динисторов превышает напряжение питания лазера Uлишь на несколько вольт. Через открытые VS1 и VS2, а также через лазер L1 происходит разряд емкостей контура. Таким образом, формируется импульс тока накачки. Конденсаторы C1 и C2 заряжаются во время паузы между импульсами запуска через зарядный резистор R, включенный одновременно с лазером L1.
Выходной оптический кабель лазера представляет собой световод с кварцевой сердцевиной диаметром 600 мкм, покрытый защитной пластиковой оболочкой. Оптический кабель способен пропускать излучения с длиной волны до 2,5 мкм. Минимальный радиус изгиба кабеля по условию прочности сердцевины составляет 40 мм. Максимальная длина -- 3 м. Коэффициент пропускания оптического кабеля -- не менее 80%. Числовая апертура световода -- f/0,22. Воздействие лазерного излучения на биологические ткани происходит непосредственно с дистального конца световода.
Для управления режимами работы лазера, установленного на многостепенном роботе, необходимо подключить каналы блока питания через электромагнитные реле к блоку дискретных выходов устройства управления роботом.
В контроллере манипулятора используется 16-канальный модуль дискретных выходов KL2809 (Beckhoff Automation, Германия).
Для коммутации каналов блока питания лазера по сигналу управления от контроллера робота применяется электромагнитное реле PE034024 (TE Connectivity, Швейцария). Данное реле управляет сигналом +24В, подаваемым с блока дискретных выходов KL2809. Для измерения точек координат при функциональных движениях и типовых траекториях движения использовали лазерную координатно-измерительную машину Leica Laser Tracker LTD800 (Leica Geosystems, Швейцария).
Для измерения координат точек в пространстве применяли портативную стереофотограмметрическую координатно-измерительную машину Actiris 350 (ActiCM, Франция).
В подсистеме мануального тренажерного комплекса, предназначенной для определения положения и ориентации медицинского инструмента при его мануальном перемещении и для осуществления тренажерной функции роботизированного стенда, разработан прототип рабочего органа (рис. 3). Он предназначен для сопряжения держателя оптического световода медицинского лазера с фланцем 6-степенного манипулятора, а также для закрепления на нем лазерного отражателя координатно-измерительной машины, необходимой для контроля положения и скорости рабочего органа при его движении по траектории.
Печать разработанной модели рабочего органа осуществляли на 3D-принтере WANHAO Duplicator 6 (WANHAO Precision Casting Co., Ltd, Китай) из термоустойчивой пластмассы.
Экспериментальное исследование проводили по типовым траекториям (рис. 4) с учетом функциональных движений медицинского инструмента при выполнении хирургических вмешательств с использованием лазерного инструмента.
Для измерения координат точек на типовых траекториях движения на медицинском инструменте устанавливали отражатель лазерного трекера. Измерение координат точек осуществляли путем сканирования с частотой дискретизации не менее 200 Гц.
Величину среднеквадратического отклонения различных измеряемых величин вычисляли в соответствии со следующим выражением:
где pm -- среднее значение измеряемой величины; pi -- значение измеряемой величины в каждой точке i; n -- количество точек. Для получения статистически значимых результатов каждый эксперимент проводили с 10-кратным повторением с последующим вычислением среднестатистической величины.
Результаты и обсуждение
После проведения измерений определяли среднеквадратические отклонения от линейной уl, полулунной уc и фестончатой уf траекторий. Среднеквадратическое отклонение точек от траектории есть величина отклонения каждой измеренной точки траектории от ее проекции на среднюю линию (модель), построенную по методу наименьших квадратов (среднеквадратическое отклонение точек от траектории при мануальных перемещениях имеет индекс H, при перемещении роботом -- индекс R).
В случае линейной траектории средней линией является прямая. График отклонений от этой прямой измеренных координат точек во время мануальных перемещений представлен на рис. 5, а, во время перемещений роботом -- на рис. 5, б.
По приведенной формуле рассчитаны значения среднеквадратических отклонений измеренных координат точек от прямой при перемещении роботом -- уRl=0,035 мм и при мануальных перемещениях -- уHl=0,393 мм.
У полулунной траектории движения средней линией является дуга окружности; график отклонений измеренных от нее координат точек при проведении мануальных перемещений представлен на рис. 6, а, при перемещении роботом -- на рис. 6, б.
По указанной формуле определены значения среднеквадратических отклонений измеренных координат точек от окружности при перемещении роботом -- уRl=0,054 мм и при мануальных перемещениях -- уHl=0,294 мм.
В отличие от линейной и полулунной траектории фестончатая траектория является сложной. Мы рассматривали ее как совокупность простых траекторий -- одну линейную и несколько полулунных. Таким образом, фестончатая траектория включает в себя несколько малых окружностей (в текущем исследовании их восемь), центры которых лежат на одной прямой. Набор сканированных точек (багровые и салатовые) траекторий движения медицинского инструмента и их средние линии при мануальных перемещениях представлены на рис. 7, а, при перемещении роботом -- на рис. 7, б.
Процесс определения среднеквадратических отклонений от координат точек фестончатой траектории состоит из нескольких этапов.
1. Определение среднеквадратического отклонения от каждой малой окружности в соответствии с приведенной формулой. Значения этих отклонений в измеренных координатах точек для мануальных перемещений и перемещений роботом приведены в таблице. Наблюдается разброс в значениях уHfc по отношению к уRfc на каждой окружности.
2. Определение среднего значения всех среднеквадратических отклонений у каждой из малых окружностей на фестончатой траектории. При мануальных перемещениях величина уHfcm=0,176 мм, при перемещении роботом -- уRfcm=0,053 мм.
3. Определение среднеквадратического отклонения от прямой, равноудаленной от всех полученных центров малых окружностей (рис. 8). Это необходимо, поскольку при генерации точек траектории центры всех окружностей лежали на одной прямой как при проведении перемещения роботом, так и человеком. Значение среднеквадратического отклонения в соответствии с приведенной формулой рассчитано для перемещений роботом -- уRfl=0,206 мм и для мануальных перемещений -- уHfl=0,902 мм. При мануальных перемещениях (рис. 8, а) присутствует значительный выброс, влияющий на значение уHfl. Ввиду того, что при работе человека случайные ошибки могут значительно преобладать, принято решение не фильтровать данный выброс.
Следует отметить, что при определении диаметров каждой малой окружности по измеренным точкам фестончатой траектории во время как мануальных (DH), так и автоматических (DR) перемещений (см. таблицу) обнаружена значительная погрешность по отношению к заданному размеру. Данная погрешность может иметь различную природу: в случае мануальных перемещений это относится к человеческому фактору, в случае автоматических -- к нежесткости используемого робота или к погрешности алгоритма обработки экспериментальных данных, связанной с малой величиной дуги на окружности (программное обеспечение лазерного трекера Spatial Analyzer, New River Kinematics, США).
В результате обработки данных выявлено, что среднеквадратическое отклонение точек от линейной траектории при мануальном перемещении в 11 раз больше (p?0,05), чем при перемещении роботом; среднеквадратическое отклонение точек от полулунной траектории при мануальном перемещении в 5 раз больше (p?0,05), чем при перемещении роботом.
Фестончатая траектория оценена при помощи двух составляющих -- среднеквадратического отклонения у каждой из малых окружностей и от прямой, равноудаленной от всех полученных центров малых окружностей. Среднее значение всех отклонений у каждой из малых окружностей на данной траектории при мануальных перемещениях в 3 раза больше (p?0,05), чем при перемещении роботом. Среднеквадратическое отклонение от прямой, равноудаленной от всех полученных центров малых окружностей при мануальных перемещениях, в 4 раза больше (p?0,05), чем при перемещении роботом.
Таким образом, среднее значение среднеквадратического отклонения от различных траекторий (линейной, полулунной, фестончатой) при мануальном перемещении в 3,3 раза больше, чем при перемещении роботом.
Заключение
Применение роботизированных лазерных комплексов, в частности разработанного нами для челюстно-лицевой области, позволит существенно повысить точность перемещений медицинского лазера, что особенно важно на сложных траекториях.
Финансирование исследования. Работа поддержана средствами субсидии по государственному заданию Министерства здравоохранения РФ 056-00139-16.
Конфликт интересов. У авторов нет конфликта интересов.
Литература
1. Чунихин А.А., Базикян Э.А., Красновский А.А., Сырникова Н.В., Чобанян А.Г. Перспективы совершенствования малоинвазивных лазерных технологий в фотодинамической терапии стоматологических патологий. Российская стоматология 2015; 8(2): 71-74, https://doi.org/10.17116/rosstomat20158271-74.
2. Lehnert M.W. Lasers in medicine and dentistry. Northwest Dent 1996; 75(1): 17-22.
3. Goonewardene S.S., Persad R. Robotic radical prostatectomy, day-case surgery and cardiac health: an opposing paradigm? J Robot Surg 2015; 9(4): 355, https://doi.org/10.1007/s11701-015-0537-9.
4. Васильев А.О., Говоров А.В., Дьяков В.В., Раснер П.И., Колонтарев К.Б., Мальцев Е.Г., Пушкарь Д.Ю. Современные возможности роботизированных технологий: опыт клиники урологии МГМСУ. Фарматека 2016; S1: 44-47.
5. Робустова Т.Г., Базикян Э.А., Ушаков А.И., Даян А.В., Серова Н.С., Ушаков А.А. Комплексный клинико-рентгенологический подход при реконструктивных операциях и синус-лифтинге в области верхней челюсти для дентальной имплантации. Российская стоматология 2008; 1: 61-68.
6. Chunikhin A.A., Sahakyan M.Y., Gazhva S.I., Bazikyan E.A. Development of nanosecond laser module built in the robotic multifunctional surgical complex for minimally invasive therapy of maxillofacial area pathology and estimation of its effects on blood plasma. Sovremennye tehnologii v medicine 2016; 8(4): 30-35, https://doi.org/10.17691/stm2016.8.4.04.
Размещено на Allbest.ru
...Подобные документы
Анестезия в челюстно-лицевой хирургии. Поддержание анестезии и коррекция нарушений гомеостаза при оперативных вмешательствах в челюстно-лицевой области. Анестезия в оториноларингологии и офтальмологии. Предупреждение осложнений послеоперационного периода.
реферат [18,3 K], добавлен 28.10.2009Черты и классификация травм челюстно-лицевой области. Вывихи и переломы зубов, переломы нижней челюсти. Вывихи нижней челюсти: причины, клинические проявления, лечение. Разработка методов диагностики и лечения заболеваний челюстно-лицевой области.
реферат [224,2 K], добавлен 11.04.2010Значение физиотерапевтических процедур при лечении заболеваний и травм челюстно-лицевой области. Методы физиотерапии: постоянный ток, вакуум-терапия, криодеструкция, магнитотерапия, оксигенотерапия. Патогенетическая направленность физических методов.
презентация [214,8 K], добавлен 18.11.2015План комплексного лечения больных с гнойно-воспалительными заболеваниями лица и шеи. Методы медикаментозной терапии челюстно-лицевой области: хирургические, антибактериальные, общеукрепляющие, десенсибилизирующие, физиотерапевтические и симптоматические.
реферат [353,2 K], добавлен 05.03.2014Классификация и признаки доброкачественных опухолей челюстно-лицевой области. Опухоли и опухолеподобные поражения фиброзной ткани. Истинные опухоли (фибромы). Опухолеподобные поражения. Фиброзные разрастания. Фиброматоз десен. Хирургическое лечение.
презентация [653,5 K], добавлен 19.04.2016Расщелина губы и неба как одна из наиболее тяжелых патологий развития челюстно-лицевой области. Обзор литературы по вопросу комплексной реабилитации пациентов с врожденной патологией челюстно-лицевой области. Проведение вторичной костной пластики.
презентация [3,4 M], добавлен 18.10.2014Классификация нейростоматологических заболеваний и синдромов. Алгические и парестетические проявления в челюстно-лицевой области. Причины и проявления глоссодинического синдрома. Основные клинические проявления и лечение невралгии тройничного нерва.
презентация [5,9 M], добавлен 26.11.2015Классификация осложнений травм челюстно-лицевой области. Основные фазы травматического шока, общей реакции организма на тяжелое повреждение. Первая помощь при травматическом шоке. Контрактура и нагноение костной раны. Бронхопульмональные осложнения.
презентация [4,9 M], добавлен 22.01.2015Появление и развитие стоматологии. Что такое зуб с точки зрения зороастризма. Развитие челюстно-лицевой области. Патология челюстно-лицевого аппарата. Аномалии развития зубов. Стоматологическое протезирование. Профилактика стоматологических заболеваний.
презентация [1,9 M], добавлен 07.11.2014Классификация, клинические признаки и симптомы травм челюстно-лицевой области. Виды раны в зависимости от источника травмы и механизма. Причины детского травматизма. Ожоги лица и шеи. Признаки ушибов, ссадин и царапин у детей. Степени отморожения.
презентация [797,2 K], добавлен 14.12.2016Особенности огнестрельных поражений челюстно-лицевой области. Организационные принципы оказания помощи и принципы хирургической обработки огнестрельных ран лица. Огнестрельные травматические остеомиелиты. Питание и организация наблюдения раненых.
реферат [21,1 K], добавлен 28.02.2009Классификация повреждений челюстно-лицевой области. Профилактика осложнений у пострадавших с повреждениями при сочетанной травме в остром периоде. Исследование методов лечения и реабилитации. Стандартизация в профессиональной деятельности медсестры.
курсовая работа [349,7 K], добавлен 13.02.2009Классификация врожденных дефектов и деформаций. Методы восстановительных операций и показания к различным методам. Пластика местными тканями, перемещение треугольных лоскутов по Лимбергу. Особенности методов и операций в челюстно-лицевой хирургии.
презентация [2,7 M], добавлен 31.01.2017Гнойный медиастинит как осложнение инфекционно-воспалительных процессов челюстно-лицевой области, его причины, клиническая картина, симптомы. Вскрытие гнойного очага – медиастинотомия. Тромбофлебит лицевых вен. Одонтогенный сепсис: диагностика и лечение.
презентация [848,5 K], добавлен 25.05.2012Классификация и типы челюстно-лицевых повреждений: травмы мягких тканей лица, повреждения костей лицевого скелета, мягких и костных тканей. Виды переломов верхней и нижней челюсти, принципы оказания первой помощи при них, симптомы и клиническая картина.
презентация [1,8 M], добавлен 10.03.2014Задачи и биологические принципы пластической хирургии, история ее развития. Восстановительная, реконструктивная и эстетическая пластическая хирургия. Классификация дефектов и деформаций челюстно-лицевой области. Противопоказания к проведению операции.
презентация [1,7 M], добавлен 23.04.2017Изучение патологий челюстно-лицевой области. Строение щитовидной железы и ее роль в организме человека. Гипотиреоз как одно из заболеваний щитовидной железы, вызванное нарушением секреции ее гормонов. Влияние гипотиреоза на челюстно-лицевую область.
реферат [27,6 K], добавлен 05.12.2010Понятие и общая характеристика одонтогенной флегмоны подчелюстной области, предпосылки развития данной патологии, ее клиническая картина и симптомы. Данные объективного исследования челюстно-лицевой области и шеи. Проведение операции и реабилитация.
история болезни [27,5 K], добавлен 04.04.2015Сведения о профессиональном образовании и всех формах последипломной подготовки. Общая характеристика Муниципального учреждения "Центральная городская клиническая больница № 23" и рабочего места медсестры, ее функциональные обязанности, манипуляции.
отчет по практике [26,5 K], добавлен 18.01.2014Местная и проводниковая анестезия, методы общего воздействия. Методика проведения анестезии при операциях на лице, языке, небе, челюстях, при травматических повреждениях этих областей. Технические особенности анестезии при распространенных заболеваниях.
реферат [60,1 K], добавлен 19.02.2010