О возможности обнаружения вирусов оптоакустическим методом с использованием углеродных наночастиц

Использование оптико-акустического метода с углеродными нанотрубками для обнаружения вирусов в биомедицинских исследованиях. Преобразование при получении образца поглощенной энергии от лазерного излучения в кинетическую с помощью процесса обмена энергией.

Рубрика Медицина
Вид статья
Язык русский
Дата добавления 03.04.2018
Размер файла 105,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Южный федеральный университет, Таганрог

О возможности обнаружения вирусов оптоакустическим методом с использованием углеродных наночастиц

Д.А. Кравчук, А.М Созинова

Аннотация

В работе рассмотрена возможность, с помощью оптико-акустического метода с углеродными нанотрубками, обнаружения вирусов в биомедицинских исследованиях. В данной статье рассмотрена схема установки, используемой для обнаружения оптоакустических откликов с образца, которая позволяет регистрировать оптико-акустические сигналы, генерируемые углеродными нанотрубками, прикреплёнными к поверхности вирусов в крови, и которые обладают высоким оптическим поглощением. При облучении образца, поглощенная энергия от лазерного излучения преобразуется в кинетическую энергию при помощи процессов обмена энергией. Это приводит к локальному нагреву и, следовательно, к появлению волны звукового давления. Регистрируя ультразвуковые волны можно сформировать спектр оптоакустического сигнала для исследуемого образца, который можно использовать для обнаружения поглощающих компонентов находящихся в нем.

Ключевые слова: оптоакустический метод, углеродные нанотрубки, гематологическое исследование, лазерное облучение, наночастицы, оптоакустический сигнал.

Анализ крови является важной лабораторной диагностикой, одной из самых важных задач является выявление наличия вирусов в крови. С диагностированием патогенных организмов в крови эффективно может справиться оптоакустический метод, а учитывая размеры вируса (от 0,02 до 0,3 мкм) необходимо контрастное вещество, сопоставимое с этими размерами. В качестве источника оптико-акустического контрастного вещества были выбраны углеродные нанотрубки. Они представляют собой модификацию углерода, которая имеет цилиндрическую структуру и размеры в приделах нескольких нанометров. Учёными было рассмотрено поведение углеродных нанотрубок при поглощении света, и обнаружено исключительно сильное резонансное оптическое поглощение в ближнем инфракрасном спектральном диапазоне. При исследовании оптических свойств, было выявлено, что они являются хорошими кандидатами для медицинской диагностики, и отличаются качественной адгезией к поверхности вирусов [1].

Известна работа с предложенным цитометрическим методом обнаружения патогенных микроорганизмов, с использованием углеродных нанотрубок [2, 3]. Однако существуют данные об их токсичности, что делает процедуру небезопасной [4]. Это заставляет задуматься о проведении метода, в котором определяется наличие вирусов во взятом образце крови, то есть in vitro. Это помогает эффективно и безопасно обнаружить вирусы.

Оптико-акустический метод, известен своей высокой чувствительностью. Применяемые углеродные нанотрубки поглощают и эффективно преобразуют оптическую энергию, а именно короткие лазерные импульсы, в тепло. Из-за теплового расширения среды генерируется звуковая волна, которая может быть обнаружена пьезоэлектрическим преобразователем и регистрируется с помощью осциллографа [5]. Амплитуду p полученного оптоакустического сигнала P(t) можно в целом описать как

акустический углеродный нанотрубка биомедицинский

(1)

где - коэффициент теплового расширения, c - скорость звука, Cp - теплоемкость, - энергия импульса, - коэффициент поглощения образца.

Амплитуда оптоакустических сигналов зависит от коэффициента поглощения образца, энергии лазера и температуры. Зависимыми от температуры параметрами в (1) являются , Cp и c. В переменных условиях (температура, энергия лазера) коэффициенты поглощения могут быть определены, если оптоакустические сигналы нормализуются до четко определенных условий [6].

В работах авторов [7-9] проводились экспериментальные исследования по регистрации оптоакустического эффекта в движущейся жидкости, в том числе с применением углеродистых нанотрубок, эти исследования позволили разработать математическую модель регистрации количества и размеров форменных элементов крови [10 -12].

Предполагаемая экспериментальная установка для измерения оптоакустического сигнала представлена на рис. 1. Образец, лазерный луч и преобразователь должны быть центрированы по одной и той же оси. Также предполагаются однородные акустические условия и высокая чувствительность преобразователя.

Рис. 1. Схема установки, используемой для обнаружения оптоакустических откликов с образца

При лазерном облучении в растворе генерируется акустическая волна. Каждый вирус рассматривается как точечный акустический источник. Обнаружение клеток вирусов при этом методе происходит при помощи пьезоэлектрического преобразователя, который регистрирует оптоакустические сигналы, генерируемые нанотрубками, взаимодействующими с клетками бактерий, во взятом образце крови. Далее сигнал от преобразователя усиливается усилителем, после этого он записывается цифровым осциллографом и сохраняется на компьютере. При сравнении оптоакустического сигнала исследуемого образца с заранее измеренным и известным сигналом образца без присутствия вирусов, можно говорить об их наличии. Анализируя полученный сигнал, можно также говорить о количественной оценке вирусов в зависимости от уровня сигнала.

К началу XXI века было исследовано свыше 1000 разнообразных вирусов, вызывающих различные заболевания. Около 80% инфекционных заболеваний в настоящее время вызывают вирусы, поэтому использование контрастных агентов, нацеленных на эти патогенные организмы, с лазерно-оптоакустическим обнаружением, может явиться многообещающим методом для разработки быстрых диагностических тестов in vitro.

Литература

1. Митрофанова И.В., Мильто И.В., Суходоло И.В., Васюков Г.Ю. Возможность биометрического применения углеродных нанотрубок // Бюллетень сибирский медицины, 2014, том 13, №1, с. 135-144.

2. Наумов В.Ю., Орда-Жигулина Д.В., Соботницкий И.С. Принципы метрологии информационно-измерительных систем для аналитических измерений в биомедицине // Инженерный вестник Дона, 2012, №4 URL: ivdon.ru/ru/magazine/archive/n4p2y2012/1479

3. Джуплина Г.Ю., Старченко И.Б. Система и методика исследования наноразмерных артефактов в кровотоке // Известия ЮФУ. Технические науки. - Таганрог: Изд-во ТТИ ЮФУ. _ 2010. _ № 8. _С.61_64.

4. Фиговский О. Макро- и нанопроекты: желаемое и реальность // Инженерный вестник Дона, 2010, №2 URL: ivdon.ru/ru/magazine/archive/n2y2010/180

5. Maswadi, S.M., Page, L., Woodward, L., Glickman, R.D., Barsalou, N. Optoacoustic sensing of ocular bacterial antigen using targeted gold nanorods // Proceedings SPIE, 2008, 6856, рp. 151-158.

6. Oraevsky, A., Gold and silver nanoparticles as contrast agents for optoacoustic imaging, in Photoacoustic imaging and spectroscopy. Taylor and Francis Group: New York, 2009. pp. 373-386.

7. Кравчук Д.А., Д.В. Орда-Жигулина, Г.Ю. Слива Экспериментальные исследования оптоакустического эффекта в движущейся жидкости // Известия ЮФУ. Технические науки №4 (189), 2017.c. 246-254

8. Кравчук Д.А., Старченко И.Б., Кириченко И.А. Прототип оптоакустического лазерного цитометра // Медицинская техника №5 (305), Москва 2017 / с. 4-7.

9. Кравчук Д.А. Система проточной лазерной диагностики жидкостей при генерации оптоакустического сигнала на рассеивателях сферической формы // Качество и жизнь. Москва 2017. №4. с.74-78

10. Кравчук Д.А. Исследование генерации оптоакустического сигнала на рассеивателях различной формы для диагностики клеток методом проточнoй цитометрии in vivo // Прикаспийский журнал: управление и высокие технологии научно-технический журнал № 3 (39). Астрахань издательский дом «Астраханский университет».2017 с.139-147.

11. Кравчук Д.А., Старченко И.Б. Математическое моделирование оптикоакустического сигнала от сферических поглотителей на примере эритроцитов // "Известия Юго-Западного государственного университета". Серия Управление, вычислительная техника, информатика. Медицинское приборостроение. г. Курск Т.7. №3 (24) с. 102-108.

12. Кравчук Д.А., Старченко И.Б. Математическое моделирование оптоакустического сигнала от агрегированных эритроцитов для оценки уровня агрегации. Институт аналитического приборостроения РАН. Научное приборостроение, 2018, том 28, № 1, c. 30-36

Размещено на Allbest.ru

...

Подобные документы

  • Свойства вирусов и плазмид, по которым они отличаются от остального живого мира. Морфология вирусов. Исходы взаимодействия вирусов с клеткой хозяина. Методы культивирования вирусов. Вирусы бактерий (бактериофаги). Этапы взаимодействия фагов и бактерий.

    реферат [25,6 K], добавлен 21.01.2010

  • Характеристика вирусов – неклеточных форм жизни, изучаемых с помощью микроскопа. Основные свойства вирусов: поражение вирусами лимфоцитов, особенность образовывать включения Оспа, бешенство, корь. Виды вирусных болезней: продуктивные, персистирующие.

    презентация [186,2 K], добавлен 12.12.2011

  • Роль инфекционного мононуклеоза в этиологии других заболеваний. Иммунная реакция на внедрение патогена. Корреляты поликлональных иммуноглобулинов. Методы обнаружения вирусов после стихания инфекционного процесса. Классификация изменений миндалин.

    презентация [8,1 M], добавлен 27.11.2012

  • Проблемы борьбы с вирусами - возбудителями заболеваний. История открытия вирусов, их формы. Многообразие строения вирусов. Особенности вирусов, их классификация и этапы жизнедеятельности. Анализ строения бактериофага. Вирусные заболевания человека.

    презентация [576,5 K], добавлен 12.05.2013

  • Гипотезы происхождения, история открытия вирусов, их строение и химические свойства. Классификация вирусов, их взаимодействие с клеткой. Способы передачи вирусных заболеваний: оспа, гепатит, грипп, полиомиелит, СПИД. Эволюция вирусов на современном этапе.

    реферат [46,4 K], добавлен 20.12.2009

  • Структура и свойства вирусов гриппа, их антигенная изменчивость. Международная система кодировки вирусов. Разброс аэрозольных частиц при чихании. Симптомы заболевания и его клиническая диагностика. Осложнения и последствия гриппа. Статистика заболевания.

    реферат [818,5 K], добавлен 15.02.2014

  • Открытие первого вируса, поражающего человека, его проникновение в клетку. Этапы развития вирусологии. Использование лабораторных мышей и куриных эмбрионов для культивирования вирусов. Строение и химический состав вириона. Выход вирионов из клетки.

    презентация [7,3 M], добавлен 17.01.2014

  • Описание стадий адсорбции вириона на поверхности клетки. Особенности процесса проникновения вируса в чувствительные к нему клетки. Специфика скрытой фазы инфекционного вируса. Синтез компонентов и формирование зрелых вирионов. Репродукция вирусов.

    реферат [17,8 K], добавлен 26.12.2011

  • Изменение кровенаполнения сосудистой оболочки, функционального состояния сетчатки и цветовой чувствительности при действии лазерного излучения различных длин волн и режимов. Схема лазерного воздействия на глаза. Обработка результатов аномалоскопии.

    курсовая работа [740,9 K], добавлен 31.10.2013

  • Краткая характеристика вирусов. Роль изучения вирусов в развитии эпидемиологии, иммунологии, молекулярной генетики и других разделов биологии. Характеристика вирусных заболеваний. Классификация противовирусных препаратов и их фармакологическое действие.

    реферат [36,0 K], добавлен 31.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.