Влияние озона и доксорубицина на жизнеспособность и морфологию злокачественных клеток печени
Влияние изолированного и сочетанного действия озоно-кислородной смеси и химиопрепарата доксорубицина на жизнеспособность и морфологию нормальных и злокачественных клеток печени человека. Проверка клеток на жизнеспособность. Способы введения озона.
Рубрика | Медицина |
Вид | статья |
Язык | русский |
Дата добавления | 10.04.2018 |
Размер файла | 1,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Статья по теме:
Влияние озона и доксорубицина на жизнеспособность и морфологию злокачественных клеток печени
А.В. Алясова, М.В. Ведунова, Т.А. Мищенко, И.Г. Терентьев, С.Н. Цыбусов, К.Н. Конторщикова
Введение
Ключевые слова: клетки печени; доксорубицин; озон.
Цель исследования -- изучить влияние изолированного и сочетанного действия озоно-кислородной смеси и химиопрепарата доксорубицина на жизнеспособность и морфологию нормальных и злокачественных клеток печени человека.
Материалы и методы. Исследования проводились на культуре нормальных (Chang liver) и злокачественных (SK-HEP-1) клеток печени человека. Химиопрепарат доксорубицин и озоно-кислородную газовую смесь вводили в культуральную среду для выращивания клеток. Проверку клеток на жизнеспособность проводили по восстановлению солей тетразолия МТТ. Морфологические исследования выполняли через 48 ч после замены культуральной среды с помощью инвертированного микроскопа DMIL HC (Германия).
Результаты. Наибольшей цитотоксичностью в отношении как нормальных, так и злокачественных клеток печени человека обладает доксорубицин. Озон как изолированно, так и в комбинации с доксорубицином также оказывает выраженный цитостатический эффект на жизнеспособность клеток и приводит к необратимым последствиям для структуры клеточных элементов. Полученные результаты можно использовать для подбора доз озона и способов его введения при различных локализациях опухолей.
Основная часть
В последние годы в медицине наряду с хирургическим и лекарственным лечением используются немедикаментозные методы. Некоторые из них применяются в онкологии для поддержания собственных компенсаторных функций организма, в первую очередь нейроэндокринной и иммунной систем. Одним из таких методов является озонотерапия. В клинической практике доказана эффективность очень низких доз озона, позволяющих корригировать состояние организма и поддерживать оптимальное течение адаптационных процессов.
Предпосылками для использования озона в онкологии можно считать два открытия немецких ученых: O.H. Warburg (1966), утверждавшего, что ключевой предпосылкой для развития опухоли является недостаток кислорода на клеточном уровне, и J. Varro (1974), выявившего непереносимость опухолевыми клетками пероксидов. В 1980 г. F. Sweet с соавт. представили доказательства ингибирующего действия озона по отношению к опухолевым клеткам в условиях in vitro, обнаружив слабую способность опухолевых клеток компенсировать кислородный «взрыв», вызванный озоном, по сравнению с нормальными клетками и установив 90% подавление роста малигнизированных клеток [1].
В 1982 г. H.H. Wolf выявил дозозависимый антипролиферативный эффект озона [2]. Позднее H. Karlic с соавт. подтвердили селективное подавление озоном роста клеток карциномы яичников и эндометрия [3]. K.S. Zanker, P. Kroczek обнаружили повышение под влиянием озона чувствительности резистентных линий опухолевых клеток к цитостатическим препаратам [4].
В работе M. Arnan, L.E. DeVries [5] продемонстрировано увеличение выживаемости мышей с перевитой карциномой, получивших инъекции озоно-кислородной смеси. Y. Rodrigues с соавт. [6] показали антиметастатический эффект озона. В наших экспериментальных исследованиях, выполненных на лабораторных животных с перевитой опухолью молочной железы [7], показано, что действие озона на патоморфоз злокачественных клеток сопоставимо с действием известного химиопрепарата доксорубицина. Доксорубицин является антибиотиком антрациклинового ряда. В последнее время доксорубицин используется в экспериментах на культуре клеток для разработки методов снятия резистентности [8, 9]. Нами продемонстрировано выраженное повреждающее действие на опухоль сочетания озона и доксорубицина. Кроме того, были определены эффективные концентрации озона и доксорубицина. Для уточнения механизмов действия озона и доксорубицина необходимым явился переход от экспериментов на целостном организме животного к культуре злокачественных клеток.
Цель исследования -- изучение изолированного и сочетанного влияния доксорубицина и озона на жизнеспособность и морфологию нормальных и злокачественных клеток печени человека.
Материалы и методы. В работе использовались два вида клеток:
1) культивированные клетки нормальной печени человека Chang liver; культивирование осуществлялось в среде «Игла МЕМ» с солями «Эрла» («ПанЭко», Россия) с добавлением 10% эмбриональной телячьей сыворотки («ПанЭко», Россия), оптимальная плотность -- (0,5-1,0)·105 кл./мл;
2) клетки линии SK-HEP-1 (аденокарцинома печени человека, асцитная жидкость), морфология -- эпителиоподобная, культивирование осуществлялось в среде «Игла МЕМ» с солями «Эрла» («ПанЭко», Россия) с добавлением 10% эмбриональной телячьей сыворотки («ПанЭко», Россия) и 1% заменимых аминокислот («ПанЭко», Россия), оптимальная плотность -- (2,0-4,0)·106 кл./см2.
Поддержание жизнеспособности культур проводилось в СО2-инкубаторе, при 5% содержании СО2. Эксперимент выполняли на 3-5-м пассаже. Клетки рассаживали на 48- или 6-луночные планшеты. При достижении 60% роста монослоя проводили замену культуральной среды на испытуемые.
Испытуемые среды готовили следующим образом: в 50 мл среды для выращивания клеток вводили: а) доксорубицин в дозе 0,004 мг; б) 150 мл кислорода; в) 150 мл озоно-кислородной смеси с концентрацией озона 25 мг/л; г) среду с кислородом + доксорубицин 0,004 мг; д) среду с озоно-кислородной смесью + доксорубицин 0,004 мг. Кислород поступал из концентратора кислорода New Life Intensity (Buffalo, США). Озоно-кислородная газовая смесь поступала со скоростью 1 л/мин в течение 5 мин из генератора озона («Квазар», Россия).
Через 48 ч культивирования испытуемая клеточная среда убиралась, клетки промывали полифосфатным буфером (PBS) (pH=7,4) и заливали 250 мл смеси версена (0,02%) и трипсина (0,25%)в соотношении 3:1. Через 10 мин инкубации в СО2-инкубаторе клетки пипетировали и добавляли в каждую лунку по 250 мл 8% формальдегида. После этого производили подсчет количества клеток на автоматическом анализаторе Septer (Мillipore, Германия).
Проверку клеток на жизнеспособность выполняли по восстановлению солей тетразолия МТТ (Sigma, США) [10]. В основе метода лежит реакция восстановления желтой соли тетразолия -- бромида 3-(4,5-диметилтиазол-2-ил-2,5-дифенилтетразолий) митохондриальными дегидрогеназами (оксидоредуктаза) живых клеток до голубых кристаллов формазана [11]. Для этого клеточную среду убирали, клетки промывали раствором PBS (pН=7,4), в каждую ячейку вносили по 300 мкл раствора соли тетразолия МТТ (концентрация -- 0,25 мг/мл в PBS, pН=7,4). Инкубировали в условиях СО2-инкубатора в течение 30 мин. Далее раствор МТТ удаляли и клетки заливали для разрушения клеточных мембран изопропанолом. Через 10 мин измеряли оптическую плотность (А) при длине волны 570 и 620 нм. Здесь: 570 нм -- максимум поглощения восстановленной формы ММТ; 620 нм -- максимум поглощения триптофана, пропорциональный количеству белка в пробе, которая зависит от количества клеток.
Расчет жизнеспособности (Е) проводили по формулам:
Е=А570-А620;
% жизнеспособных клеток==(Е опыта/Е контроля)Ч100%.
При исследовании влияния окислителей и доксорубицина на жизнеспособность клеток за контроль принимали изменение оптической плотности интактных культур.
Морфологические исследования проводили через 48 ч после замены клеток в лунках с помощью инвертированного микроскопа DMIL HC (Leica, Германия). Исследовали не менее пяти непересекающихся полей зрения с одной культуры.
Результаты. Изучение показателей жизнеспособности нормальных и злокачественных клеток печени (см. таблицу) показало, что она напрямую связана с активностью ферментов оксиредуктаз. Снижение активности данных ферментов указывает на выраженную цитотоксичность доксорубицина в отношении нормальных клеток печени (показатель жизнеспособности -- 3,5%) и особенно злокачественных клеток печени (показатель жизнеспособности -- 1,56%). Анализ действия окислителей выявил прямо противоположное действие на жизнеспособность клеток и озоно-кислородной смеси. Обработка культуральной среды кислородом повышала активность как нормальных оксидоредуктаз (показатель жизнеспособности увеличивался до 104%), так и злокачественных клеток (показатель жизнеспособности увеличивался до 115%). Это свидетельствовало о том, что добавление кислорода не изменяло состав среды для клеточной культуры и не мешало ей расти. Напротив, дополнительный кислород по принципу обратной связи активировал оксидоредуктазы. Введение в культуральную среду озоно-кислородной смеси вызывало образование продуктов взаимодействия озона с биоорганическими соединениями (озонидов). Эти продукты, по всей видимости, повреждали клеточные мембраны и подавляли активность оксидоредуктаз, что проявлялось снижением показателей жизнеспособности (4,54% -- для нормальных клеток и 15,7% -- для злокачественных клеток печени). Количественные различия жизнеспособности нормальных и злокачественных клеток можно объяснить более мощной антиоксидантной защитой злокачественных клеток.
Рис. 1
Сочетанное использование доксорубицина и кислорода показало, что применение двух агентов оказывает более выраженное действие на нормальные клетки, а не на злокачественные, имеющие более выраженную антиоксидантную систему защиты. Сочетание доксорубицина и озона сопровождалось снижением жизнеспособности как нормальных клеток -- до 7,9%, так и злокачественных -- до 2,6%. Отличие этих показателей от тех, что получены при действии изолированного введения доксорубицина и окислителей, связано, по всей видимости, с взаимодействием этих факторов между собой и компонентами клеток, в том числе и с антиоксидантами.
Исследование морфологической структуры клеток обеих выбранных линий (рис. 1, 2) показало, что кислород через 48 ч после замены культуральной среды не оказывает токсического действия на клеточные линии (рис. 1, в и2, в). Структура клеток остается неизменной, конденсация хроматина, характерная для апоптоза, не наблюдается. В культуре хорошо видны активно делящиеся клетки, отдельные клеточные элементы, открепившиеся от подложки и свободно пилагирующие (плавающие) в клеточной среде (один из этапов развития монослоя). В культуре Chang liver обнаружено небольшое количество клеток с измененной морфологией, контуры клеток -- неровные, хроматин изменен, однако количество изменений морфологической структуры не значимо. Несмотря на то, что увеличение концентрации кислорода для клеточных линий не является физиологичным и рассматривается как неблагоприятный фактор, в наших исследованиях не выявлено каких-либо изменений морфологической структуры и жизнеспособности клеток даже при максимальном насыщении культуральной среды.
Рис. 2 - Морфологическая структура клеток нормальной печени человека Chang liver после воздействия окислителей и доксорубицина: а -- интактные клетки; б -- доксорубицин в дозе 0,004 мг; в -- кислород; г -- кислород с доксорубицином в дозе 0,004 мг; д -- озон в концентрации 25 мг/л; е -- озон в концентрации 25 мг/л с доксорубицином в дозе 0,004 мг
Рис. 3 - Морфологическая структура злокачественных клеток печени человека SK-HEP-1 после воздействия окислителей и доксорубицина: а -- интактные клетки; б-- доксорубицин в дозе 0,004 мг; в -- кислород; г -- кислород с доксорубицином в дозе 0,004 мг; д -- озон в концентрации 25 мг/л; е -- озон в концентрации 25 мг/л с доксорубицином в дозе 0,004 мг
озон химиопрепарат печень клетка
Применение доксорубицина в культуре клеток линии Chang liver (рис. 1, б) в выбранной концентрации приводит к существенным изменениям морфологии клеток. Наблюдается потеря характерной клеточной структуры, клетки теряют форму, открепляются от подложки, уменьшаются в размерах, выявляются выраженные изменения ядерного аппарата и всех органелл. Данные изменения характерны для погибших клеток. Добавление кислорода не влияет на эффекты, оказываемые доксорубицином в концентрации 0,004 мг (рис. 1, г).
При изучении морфологии после 48-часового культивирования в озонированной среде обнаружены клеточные элементы, указывающие на терминальную стадию апоптоза, а также клеточные элементы с разрушенными мембранами (рис. 1, д).
При совместном использовании озона и доксорубицина выявлен цитостатический эффект (рис. 1, е). Обнаруживаются отдельные клеточные элементы с характерной для данной линии морфологией, присутствуют клетки с поврежденными мембранами, делящиеся клетки не выявлены. За 48 ч после воздействия образования монослоя (как в контрольных сериях) не произошло. Однако количество погибших и открепившихся от подложки клеток было относительно небольшим.
В культурах клеток линии SK-HEP-1 добавление цитостатика также вызывает необратимые изменения в большей части клеток (рис. 2, б): они теряют форму, хроматин конденсируется, наблюдается массовая гибель. При этом форма небольшой части неделящихся клеток остается веретеновидной, характерной для данной линии. Делящихся клеток не обнаружено.
Совместное применение доксорубицина и кислорода не влияет на эффекты, оказываемые цитостатиком (рис. 2, г). Применение озонированной среды вызывает выраженный цитостатический эффект (рис. 2, д), так как скорость достижения монослоя ниже. Однако через 48 ч после добавления озонированной среды к культуре наряду с большим количеством веретеновидных клеток обнаруживаются и делящиеся клетки.
Совместное применение доксорубицина и озона (рис. 2, е) приводит к необратимым последствиям для структуры клеточных элементов. Клеток с нормальной формой не обнаруживается: клеточные тела округлены, хроматин конденсирован, мембраны повреждены. Встречаются клеточные «тени» -- как терминальная стадия некротической гибели.
Проведенный морфологический анализ показал, что совместное применение доксорубицина и озона усиливает цитотоксический эффект каждого из данных веществ. Клетки аденокарциномы печени более устойчивы, чем клетки нормальной печени, как к озону, так и к доксорубицину. Замена культуральной среды на среду, насыщенную кислородом, не влияет на морфологию клеток и линии аденокарциномы печени, и линии нормальной печени человека.
Таким образом, исследование жизнеспособности клеток печени выбранных линий и данные изменения их морфологической структуры убедительно свидетельствуют, что доксорубицин обладает выраженной цитотоксичностью в отношении и нормальных клеток печени, и, особенно, злокачественных клеток печени. Применение кислорода в монорежиме не изменяет состав среды для клеточной культуры и не мешает пролиферации клеток. Сочетанное использование доксорубицина и кислорода оказывает более выраженное действие на нормальные клетки, а не на злокачественные, отличающиеся более выраженной антиоксидантной системой защиты. Введение в культуральную среду озоно-кислородной смеси проявляется снижением показателей жизнеспособности для злокачественных клеток печени. Сочетание доксорубицина и озона сопровождается снижением жизнеспособности как нормальных, так и злокачественных клеток.
Заключение
Сочетанное применение озона и доксорубицина оказывает цитостатический эффект на жизнеспособность нормальных и злокачественных клеток печени человека, приводит к необратимым последствиям для структуры клеточных элементов. Эффект озона сопоставим с действием доксорубицина, что дает возможность подбирать способы введения озона -- изолированно или в сочетании с доксорубицином.
Финансирование исследования и конфликт интересов. Исследование не финансировалось какими-либо источниками, и конфликты интересов, связанные с данным исследованием, отсутствуют.
Литература
1. Sweet F., Kao M.S., Lee S.C., Hagar W.L., Sweet W.E. Ozone selectively inhibits growth of human cancer cells. Science 1980; 209(4459): 931-933, http://dx.doi.org/10.1126/science.7403859.
2. Wolf H.H. Das medizinische Ozon [Medical ozone]. Heidelberg; 1982; 250p.
3. Karlic H., Kucera H., Metka M., Schцnbauer M., Sцregi G. Effect of ozone and ionizing radiation on an in vitro model -- a pilot study of 4 gynecologic tumors. Strahlenther Onkol1987; 163(1): 37-42.
4. Zanker K.S., Kroczek R. The mystery of molecule-ozone: antiproliferative, immunmodulative, synergistic to chemotherapy and carcinogenetic carcinogenic. In: IX Congress of Ozone. New York; 1989; p. 55-68.
5. Arnan M., DeVries L.E. Effect of ozone/oхygen gas miхture directly injected into the mammary carcinoma of the female C3H/HEJ mice. In: Medical applications of ozone 1983; p. 101-107.
6. Rodriguez Y., Bello J.L., Menendez S., et al. Antitumor activity of ozone. Experimental research. Ozone News 1997; 25(3): 50.
7. Алясова А.В., Конторщикова К.Н., Терентьев И.Г., Иванова И.П., Кузнецов С.С., Сазанов А.И. Влияние низких терапевтических концентраций озонированного физиологического раствора на патоморфоз опухоли в эксперименте. Современные технологии в медицине 2010; 4: 27-32.
8. Бойко Н.Н., Сенькив Ю.В., Шляхтина Е.А., Ключивская О.Ю., Скорохид Н.Р., Митина Н.Е., Скорохода Т.В., Москвин М.М., Заиченко А.С., Стойка Р.С. Действие доксорубицина, доставленного в опухолевые клетки in vitro и in vivo новым наноразмерным функционализированным олигоэлектролитным носителем. Biotechnologia Acta 2013; 6(3): 53-62.
9. Замулаева И.А., Пронюшкина К.А., Матчук О.Н., Яббаров Н.Г., Никольская Е.Д., Кондрашева И.Г. Комбинированное действие ионизирующего излучения и дендритных полимеров, нагруженных доксорубицином, на раковые клетки молочной железы линии MCF-7. Радиационная биология. Радиоэкология 2015; 6: 591-597.
10. Аникина Л.В., Пухов С.А., Дубровская Е.С., Афанасьева С.В., Клочков С.Г. Сравнительное определение жизнеспособности клеток с помощью МТТ и Ресазурина. Фундаментальные исследования 2014; 12(часть 7): 1423-1427.
11. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65(1-2): 55-63, http://dx.doi.org/10.1016/0022-1759(83)90303-4.
Размещено на Allbest.ru
...Подобные документы
Характеристика и виды очагового образования печени. Совершенствование методов лабораторной и инструментальной диагностики. Радиоизотопное сканирование печени. Клиника, диагностика и лечение метастатического рака печени. Доброкачественные опухоли печени.
реферат [16,6 K], добавлен 25.02.2009Канцерогенез: определение и основные стадии опухолевой трансформации клеток, классификация и характеристика провоцирующих факторов. Вирусный онкогенез, клинические признаки. Биологические особенности и свойства злокачественных опухолевых клеток.
презентация [1,0 M], добавлен 24.10.2013Теории развития опухолей. Описание патологического процесса, характеризующегося безудержным ростом клеток, которые приобрели особые свойства. Классификация доброкачественных и злокачественных опухолей. Развитие рака печени, желудка, молочной железы.
презентация [13,7 M], добавлен 05.05.2015Характеристика эмбриональных стволовых клеток (ЭСК): свойства генома, основные источники и способы выделения. Характеристика традиционных методов лечения цирроза печени. Сравнительный анализ традиционного лечения и лечения цирроза печени с помощью ЭСК.
курсовая работа [1,5 M], добавлен 23.07.2011Анализ онкологических заболеваний как злокачественных опухолей, возникающих из клеток эпителия, в органах и тканях организма. Механизм образования и классификация злокачественных новообразований. Симптомы и причины образования раковых заболеваний.
презентация [1,3 M], добавлен 06.03.2014Фактор возникновения, патоморфология, клиника и диагностика первичного рака печени, аппаратные методы диагностики. Системная химиотерапия больных. Ограничение использования методов паллиативного лечения. Криохирургия злокачественных опухолей печени.
реферат [15,2 K], добавлен 25.02.2009Основное свойство стволовых клеток - дифференциация в другие типы клеток. Виды стволовых клеток. Рекрутирование (мобилизация) стволовых клеток, их пролиферация. Болезни стволовых клеток, их иммунология и генетика. Генная терапия и стволовые клетки.
курсовая работа [94,3 K], добавлен 20.12.2010Роль тучных клеток в регуляции гомеостаза организма. Локализация тучных клеток, их медиаторы. Секреция медиаторов и их функции. Основные типы тучных клеток. Рецепторы и лиганды, эффекты медиаторов. Участие тучных клеток в патологических процессах.
презентация [2,2 M], добавлен 16.01.2014Понятие и функции стволовых клеток, их типы в зависимости от способов получения, потенциал. Характеристики эмбриональных стволовых клеток. Дифференцировки стволовых клеток костного мозга. Органы и ткани, которые ученые смогли вырастить с их помощью.
презентация [817,5 K], добавлен 04.11.2013Закладка и первичная дифференцировка парафолликулярных клеток щитовидной железы человека, их значимость в регуляции процессов жизнедеятельности. Цитология и физиология С-клеток щитовидной железы. Медуллярный рак как один из видов злокачественной опухоли.
реферат [21,5 K], добавлен 21.03.2011Общая характеристика болезней печени. Токсическая дистрофия печени человека. Этиология и патогенез, патологическая анатомия по стадиям, осложнения, исходы. Роль пункционной биопсии печени в диагностике гепатитов. Медикаментозное поражение печени.
реферат [34,4 K], добавлен 25.05.2014Ознакомление с понятием и историей использования стволовых клеток. Рассмотрение особенностей эмбриональных стволовых клеток, геном которых находится в "нулевой точке", а также соматических - клеток взрослого организма. Основы процесса регенерации.
реферат [22,6 K], добавлен 21.05.2015Механизм действия гепатопротекторов - препаратов растительного и животного происхождения, предназначенных для предохранения клеток печени от повреждающего воздействия различных факторов. Их классификация, состав, лекарственные формы, способ применения.
презентация [895,8 K], добавлен 12.03.2013Понятие "биотерапия" опухолей, характеристика маркёров. Иммунотерапия опухолей, эффекты макрофагов. Доклинические испытания препарата Галавит. Создание индивидуальных цитотоксических клеток. Принцип действия вакцин на основе белков теплового шока.
контрольная работа [2,3 M], добавлен 05.05.2014Роль печени в организме. Биохимические основы формирования алкогольной болезни печени. Экспериментальное моделирование патологии печени у крыс. Влияние карсила и эссенциале на состояние печени крыс при острой интоксикации CCl4 и этиловым спиртом.
дипломная работа [10,2 M], добавлен 06.06.2016Клетка как основная единица, определяющая состояние и жизнеспособность организма. Роль и значение крови для жизненных процессов организма. Воздействие внешней среды на жизнедеятельность человека. Влияние физических нагрузок на состояние иммунитета.
статья [16,0 K], добавлен 04.05.2014Возбудитель альвеококкоза и его распространение. Основные типы оперативных вмешательств. Абсцессы печени: клиника, диагностика, лечение. Сложность выявления злокачественных опухолей. Характеристика очаговых заболевания селезенки и методы их лечения.
реферат [16,7 K], добавлен 25.02.2009Дифференциация стволовых клеток. Использование стволовых клеток в медицине: проблемы и перспективы. Пуповинная кровь как источник стволовых клеток. Лекарства будут испытывать на стволовых клетках. Эмбриональные и соматические стволовые клетки.
реферат [851,0 K], добавлен 24.07.2010Биографии лауреатов Нобелевской премии по физиологии и медицине 2007 г. Разработка метода генного таргетирования. Основные характеристики эмбриональных стволовых клеток. Использование нокаутированных мышей для изучения наследственных заболеваний человека.
курсовая работа [985,0 K], добавлен 02.08.2020Понятие, классификация и применение стволовых клеток. Эмбриональные, фетальные и постнатальные клетки. Клиническое применение стволовых клеток для лечения инфаркта. Опыт применения биологического материала в неврологии и нейрохирургии, эндокринологии.
реферат [26,1 K], добавлен 29.05.2013