Исследование костного мозга. Структура и функции костного мозга. Костно-мозговые индексы и их оценка. Нормальные лимфоаденограммы и спленограммы

Морфофункциональные особенности костного мозга и его роль в гемопоэзе. Структура, функции и роль селезенки в гемопоэзе. Сущность понятия, приготовление и окраска мазков, значение исследования. Нормальные лимфоаденограмма и спленограмма, их показатели.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 17.11.2018
Размер файла 40,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Исследование костного мозга. Структура и функции костного мозга. Костно-мозговые индексы и их оценка. Нормальные лимфоаденограммы и спленограммы

План

1. Гемопоэз во взрослом организме

1.1 Морфофункциональные особенности костного мозга и его роль в гемопоэзе

1.2 Структура, функции и роль селезенки в гемопоэзе

1.3 Структура, функции лимфоузлов, их роль в гемопоэзе

1.4 Морфофункциональные особенности тимуса и его роль в гемопоэзе

2. Нормальная миелограмма. Сущность понятия, приготовление и окраска мазков, значение исследования

2.1 Значение изменений миелограммы

3. Нормальные лимфоаденограмма и спленограмма. Сущность, нормальные показатели

1. Гемопоэз во взрослом организме

С момента рождения развитие первичных полипотентных стволовых клеток, как уже говорилось рание, миелопоэз происходят в костном мозге, в то время как лимфопоэз - в тимусе, селезенке и лимфатических узлах. При патологии миелопоэз может возобновляться в селезенке, а также в печени, повторяя стадию развития плода. Главным местом гемопоэза постепенно, на смену печени и селезенке, становятся костномозговые полости почти всех костей осевого и добавочного скелета. Вследствие активации гемопоэза костный мозг приобретает красный цвет, аналогичный цвету крови, что отражает усиленную продукцию эритроцитов, содержащих гемоглобин. Костно-мозговая полость служит местом продукции нелимфоидных клеток крови, в то время как лимфопоэз у взрослого происходит преимущественно в селезенке, лимфатических узлах, тимусе и лимфоидной ткани, ассоциированной с кишечником, включая миндалины, аденоиды и пейеровы бляшки.

Исследования с использованием световой микроскопии показали, что костный мозг взрослого человека составляют эритроидные и миелоидные клетки-предшественники вместе с рассеянными мегакариоцитами. Имеется также популяция клеток, известных как "стромальные клетки", которые определяют созревание клеток-предшественников и высвобождение полностью дифференцированных клеток в кровоток.

1.1 Морфофункциональные особенности костного мозга и его роль в гемопоэзе

В костном мозге существуют области так называемого гемопоэтического индуктивного микроокружения, которые обеспечивают продукцию эритроцитов, лейкоцитов и тромбоцитов.

Их формируют стромальные клетки (ретикулярные и барьерные), а также внутрикостные и лимфоидные клетки, остеобласты, остеокласты, макрофаги и их растворимые ростовые факторы (цитокины). Они создают и поддерживают "почву" для прорастания "семян" гемопоэтических стволовых клеток и их потомства. Таким образом, имеется много уязвимых точек для нарушения гемопоэза.

Сосудистые компартменты костного мозга содержат сосудистые синусы, которые представляют собой широкие тонкостенные вены. Сосудистые синусы -- доминирующая структура этих компартментов. Клетки крови из гемопоэтических компартментов входят в синусы, перемещаются от периферии к центральным венам и, в конечном счете попадают в общий кровоток. Артерии постепенно превращаются в капилляры, которые затем переходят непосредственно в венозные синусы. В отличие от селезенки циркуляция в данном случае является „замкнутой”.

Эндотелий сосудистого синуса прилежит к окончатой базальной мембране, под которой находятся адвентициальные клетки. Это крупные отростчатые стромальные ретикулярные клетки, которые обеспечивают поддержание гемопоэтического компартмента. Они покрывают и раскрывают эндотелиальные клетки сосудов; что помогает регулировать проход клеток из_гемопоэтического компартмента к сосудистому. Эти клетки могут превращаться в адипоциты (или накапливать желатиновый материал) и таким образом контролировать объем гемопоэтического компартмента.

Гемопоэтические компартменты, в которых группируются клетки, находящиеся на разных стадиях развития всех трех ростков кроветворения, окружены венозными пространствами. Здесь же находятся артериальные сосуды и добавочные клетки. Отношение миелоидных клеток к эритроидным равно приблизительно 3:1. Развитие эритроцитов происходит в эритробластных островках, которые состоят из центральных макрофагов, окруженных дифференцирующимися и пролиферирующими эритробластами. Такой островок лежит непосредственно напротив сосудистого синуса, составляющие его клетки располагаются в порядке, определяемом их зрелостью: ретикулоциты и/или ортохроматофильные пронормобласты (наиболее дифференцированные эритроидные предшественники) прилегают непосредственно к эндотелиальным клеткам сосудистых синусов, тогда как ранние предшественники в большей степени удалены от синусов. Макрофаги расположены так, чтобы они могли физически взаимодействовать с эритроидными клеткам для обеспечения фагоцитоза ядер и ядерных остатков и поставки цитокинов развивающимся эритроцитам. Изоляции эритробластных островков способствуют также барьерные клетки. Через отверстия в эндотелии сосудистых синусов мегакариоциты высвобождают цитоплазматические фрагменты (тромбоциты). Кроме того, в созревании мегакариоцитов и продукции тромбоцитов важную роль могут играть легкие. Перед выходом в сосудистый синус гранулоциты достигают стадии превращения в метамиелоциты. Микроворсинки метамиелоцитов отделяют от базальной поверхности эндотелия адвентициальные клетки для проникновения последних в просвет сосудистого синуса. Как уже отмечалось, нарушение гемопоэза может быть обусловлено многими причинами, в том числе физическими, метаболическими, химическими, инфекционными, воспалительными или иммунологическими.

С возрастом мозговая ткань костей добавочного скелета теряет красноватый цвет и преобразуется в желтый мозг, что отражает постепенную замену гемопотической ткани жировой. Уже в молодом возрасте трубчатые кости не содержат красный костный мозг, поскольку он полностью замещается негемопоэтическим желтым костным мозгом. Красный костный мозг сохраняется в грудине, ребрах, позвонках и тазовых костях. Хотя стимул для преобразования красного костного мозга в желтый неизвестен, в патологических условиях, связанных с усилением гемопоэза, может происходить нарушение этого процесса, и красный костный мозг обнаруживается в костях, которые обычно не связаны с гемопоэтической активностью, например в двойных пазухах костей черепа. В таких случаях местами локализации экстрамедуллярного (внекостномозгового) гемопоэза также могут быть печень, селезенка и лимфатические узлы. Максимальное распространение костномозгового кроветворения на все черепные и длинные кости можно наблюдать у лиц с тяжелой талассемией -- болезнью, при которой эритропоэз протекает необычайно интенсивно в течение всей жизни, что и является сутью данного заболевания. При талассемии рентгенограмма черепа в области черепных пазух имеет характерный вид "hаiг-оn-еnd" ("волосатый череп"). Гиперплазия костного мозга в костях верхней челюсти приводит к типичному изменению лица: скулы выдаются и нарушается прикус зубов из-за того, что верхняя челюсть становится диспропорционально больше, чем нижняя.

1.2 Структура, функции и роль селезенки в гемопоэзе

костный мозг гемопоэз лимфоаденограмма

Селезенка размещена в левом верхнем квадранте живота. Она связана с некоторыми другими органами и имеет почечную, панкреатическую и диафрагмальную поверхности. У взрослого человека она весит приблизительно 150 г вместе с небольшими придатками, величиной от горошины до сливы, которые находятся в желудочно-селезеночной связке, большом сальнике, а также в некоторых других местах. Хотя в древности рассматриваемый орган представлялся таинственным, теперь его функция определена. Структура селезенки и характер кровотока обеспечивают уникальную основу для выполнения многих установленных на сегодняшний день задач. Капсула, состоящая из плотной соединительной ткани, прорастает, формируя сеть перегородок в ткани селезенки. В отличие от животных, у человека в капсуле органа есть только небольшая мышца, способная расширять и сокращать селезёнку. Паренхима называется селезеночной пульпой, в которой выделяют красную пульпу, состоящую в значительной степени из селезеночных синусов, и тонкие пластинки ткани -- селезеночные тяжи, находящиеся между синусами.

Кластеры лимфоцитов селезенки бывают двух типов. Одни состоят преимущественно из Т-лимфоцитов (тимусного происхождения) и вспомогательных клеток и формируют цилиндрическую оболочку, окружающую центральную артерию. Это так называемая периартериальная лимфатическая оболочка (ПАЛО). В-лимфоциты (как уже говорилось, термин "В-клетка" образован от burса Fabricius - органа расположенного в клоаке птиц и необходимого для процессинга и созревания В-клеток; костный мозг человека считают аналогом этого органа) внутри ПАЛО формируют узелки. ПАЛО центральной артерии постепенно суживается, переходя в белую пульпу вместе с капиллярами, соединяющимися непосредственно с венозными синусами. Кровь может изливаться прямо в красную пульпу, куда клетки свободно просачиваются и попадают в конечном счете в венозный синус.

Краевая (маргинальная) зона селезеночной пульпы представляет собой переходную область между красной и белой пульпой. Здесь начинается процесс фильтрации и сортировки клеток.

Кровоток в селезенке обеспечивает ее функционирование. Кровь поступает в орган по селезеночной артерии, проходящей через ворота. Селезеночная артерия разветвляется на трабекулярные артерии, которые в свою очередь делятся на центральные артерии, расположенные в центре цилиндрических ПАЛО. Как отмечалось ранее, центральные артерии прямо или косвенно переходят в венозные синусы. После попадания в селезеночные синусы кровь течет по пульпарным венам, которые переходят в трабекулярные вены. Из ворот селезенки кровь выносится по селезеночной вене.

Ток лимфы в селезенке совпадает с направлением венозного потока и противоположен току артериальной крови, но лимфатическая система селезенки у человека не так сильно развита, как у животных. Барьерные клетки, описанные Вейсом как "сильно активизированные, быстро мобилизующиеся блуждающие фибробластные клетки", являются клетками стромы. Хотя функция барьерных клеток неизвестна, их центральное расположение предполагает полифункциональность, включая образование оболочки вокруг кровеносного сосуда, формирование барьеров между кровью и тканью, концентрацию регуляторных факторов, изоляцию иммунокомпетентной ткани после запуска иммунного ответа, отгораживание гемопоэтических колоний, концентрацию гемопоэтических факторов и защиту от паразитов. Подобные клетки представлены в других гемопоэтических и иммунных тканях, где они могут функционировать так же, как в селезенке.

Селезенка выполняет много важных функций, часть из которых непосредственно определяется сложным движением потока крови. В отличие от лимфоузлов, реагирующих на местный антигенный стимул, получая лимфу, селезенка тестирует кровь, которая собирается со всего тела, и иммунологически взаимодействует с ней. Здесь же происходит и "просматривание" плазмы, поскольку ветви центральных артерий повернуты под прямым углом, что позволяет плазме просочиться прежде, чем кровь достигает красной пульпы. Различные фильтрационные прослойки состоят из ретикулярных клеток и ретикулярных волокон, а также других типов клеток стромального происхождения, включая макрофаги, интердигитальные клетки и фолликулярные дендритные клетки. Барьерные клетки также помогают включать механизм фильтрации. Как уже отмечалось, периартериальные лимфатические оболочки, прослойки краевой зоны и красная пульпа служат фильтрами наряду с эндотелиальными клетками венозных синусов. Это позволяет селезенке распознавать, выбраковывать и удалять дефектные, старые и изношенные клетки. Включения частиц типа телец Жолли, телец Гейнца, бактерий, паразитов и гранул железа удаляются путем "складывания в селезеночную яму". Повторное использование железа, концентрирование тромбоцитов, удаление эритроцитов, регуляция объема крови, эмбриональный (и иногда патологический у взрослых) гемопоэз, иммунные функции -- все это элементы комплексной функции селезенки.

На ранних стадиях воспалительного ответа селезенка функционирует и как первичный бактериальный фильтр или губка. При эпизодах массивной бактериемии селезенка улавливает бактерии и переваривает их в макрофагах. Эндотелиальные клетки венозных синусов (ЭКВС) формируют специализированную ткань, с которой сталкиваются клетки крови и которую они должны успешно пересечь, покидая губчатую петлю красной пульпы и продвигаясь к селезеночной вене. ЭКВС имеют уникальные антигенные характеристики и способность двигаться, что позволяет им тестировать аномальные, старые клетки или клетки, содержащие бактерии (например, полиморфно-ядерные лейкоциты), паразитов или простейших, по мере перемещения клеток между пальцеобразными межэндотелиальными расщелинами. Этот физический барьер и сетеобразная базальная мембрана -- плацдарм для межклеточных взаимодействий, на котором макрофаги взаимодействуют с задержанными клетками и "ищут" на поверхности и внутри их дефекты и частицы, которые подвергнутся фагоцитозу.

Макрофаги не только поглощают бактерии, но и представляют их обработанные антигены непосредственно лимфоцитам в селезенке, стимулируя продукцию специфических антител. Собственно фагоцитоз макрофагов значительно уменьшает бактериальную нагрузку в кровотоке. Эта функция чрезвычайно важна, поскольку несколько полисахаридов на поверхности и грамотрицательных, и грамположительных бактерий являются мощными системными токсинами. Если их не изолировать в макрофагах, эти бактериальные антигены до развития гуморального иммунного ответа могут запускать альтернативный путь активации комплемента, что приводит к вазодилатации, увеличению проницаемости капилляров и в конечном счете к шоку и смерти.

Помимо выполнения функции очень сложного фильтра селезенка служит в качестве лимфатического "суперузла", в котором в присутствии Т-клеток образуется большое количество В-клеточных клонов (приблизительно 80 % клеток селезенки -- В-клетки и около 15 % - Т-клетки). Кроме того, главным образом в селезенке происходит Т-независимое развитие В-клеток, имеющее важное значение для ответа организма на углеводные антигены, экспрессированные на капсулах бактерий Streptococcus pneumoniae, Hemophilus influenzae и Neisseriae meningitidis.

Т-клетки и В-клетки взаимодействуют в ПАЛО и лимфатических узелках внутри ПАЛО. Кластеры антителопродуцирующих клеток, состоящие из В-клеток, плазматических клеток, хелперных и супрессорных Т-клеток, макрофагов и других вспомогательных клеток, формируют в центре лимфатических узелков герминативные центры (центры размножения).

Наконец, селезенка выполняет две родственные неиммунные механические функции. Она служит резервуаром для тромбоцитов, наработанных в костном мозге. Обычно в селезенке сохраняется только небольшая часть всех тромбоцитов организма. Однако при увеличении размера селезенки в ней может находиться до 90 % всех тромбоцитов. Селезеночные тромбоциты, как представляется, находятся в состоянии равновесия с пулом циркулирующих тромбоцитов, которые медленно меняют свою локализацию.

Селезенка задерживает также эритроциты, но этот процесс менее пассивен и более динамичен. Стареющие, покрытые антителами или поврежденные эритроциты фильтруются в селезенке, где они либо удаляются, либо частично восстанавливаются, или "ремоделируются", ЭКВС и селезеночными макрофагами.

Ремоделированные эритроциты могут затем повторно рециркулировать, тогда, как аномальные клетки распознаются селезенкой и быстро удаляются для последующей переработки. При гипофункции селезенки или ее отсутствии специальными методами микроскопии обнаруживаются эритроциты с ямками, щербинками и кратерами. Обычная световая микроскопия позволяет в этих случаях рассмотреть на мазках крови, окрашенных по Райту, ядерные остатки, называемые, тельцами Жолли. Следует подчеркнуть, что у пациентов с дисфункцией или отсутствием селезенки в течение всей жизни существует риск развития бактериального сепсиса, особенно вызываемого инкапсулированными бактериями. Кроме того, у них тяжелее протекают паразитарные инфекции, такие как малярия.

Селезенка увеличивается по ряду причин. Одна из них -- функциональная гиперактивность, называемая гиперспленизмом, часто сопровождается увеличением органа. Гиперспленизм может характеризоваться "прожорливостью" селезенки по отношению к собственным клеточным элементам организма, что приводит к цитопениям. Наблюдаются болевые ощущения из-за расширения или инфаркта селезенки, а при сдавлении желудка может развиваться преждевременное чувство насыщения. Существует несколько патофизиологических механизмов увеличения селезенки, в частности гиперплазия эндотелиальных или иммунных элементов вследствие инфекционных болезней или нарушений иммунитета. Расширение селезенки из-за нарушенного селезеночного кровотока происходит при циррозе печени, тромбозе селезеночной, печеночной или портальной вены. Первичные или метастатические опухоли, внекостномозговой гемопоэз или аномальный материал, инфильтрующий селезенку; например, при амилоидозе либо таких болезнях накопления, как болезнь Гоше, гемангиомы или кисты, также вызывают увеличение селезенки. Решение о хирургическом удалении гиперспленической, расширенной, болезненной или кровоточащей селезенки очень ответственно, так как после спленэктомии у пациента_ослабляется иммунитет.

К причинам функционального и анатомического гипоспленизма относятся: врожденное отсутствие селезенки, спленэктомия, миелофиброз и другие миелопролиферативные нарушения, дефекты васкуляризации селезенки, иммунные или аутоиммунные болезни (волчанка или ревматоидный артрит), воспалительные заболевания кишечника, инвазивные опухоли, системный амилоидоз, нефротический синдром, мастоцитоз, а также состояние новорожденности.

Проявления гипоспленизма в периферической крови включают транзиторный тромбоцитоз и наличие телец Жолли (ядерные остатки в эритроцитах), а также ямок и расщелин на эритроцитах, образующихся из-за недостаточной переработки этих клеток в селезенке. При отсутствии селезенки появляются мишеневидные клетки и акантоциты. Как упоминалось ранее, затрудняется инактивация инкапсулированных бактерий. Нарушается ответ на антигенный стимул, в том числе вакцинацию некоторыми вакцинами. Кроме того, следствием асплении является повышенная восприимчивость к паразитарным болезням.

Роль селезенки поэтически описал Э. Джонс в своем стихотворении:

Селезенка

Железистый шар, спрятанный

за грохочущим дном желудка

под крепкой кривой

диафрагмой, толкаемой

ударами, передаваемыми

сердечным мотором. Она размещена

в шумном углу, по

преданию, в центре

страсти. Маленький эллиптический

мусорный мешок живота, который

поглощает старые клетки, использованную кровь;

возможно, он же -- источник

меланхолии, сожаления

о необходимости каннибализма,

вины за излишнюю злость

и постоянное кусание. Это искупается

тем, что маленькая наседка,

кудахча, высиживает

новые клетки, сохраняющие

природу своей матери,

истребляя чужеродные бактериальные частицы,

прибывающие в темную железу.

Фильтр между артерией и веной,

микроскопические канальцы или

лужицы крови, маленькие неогороженные моря

хранят тайны глубоко

в красной висцеральной пульпе.

Элис Джонс, М. D. Окленд, Калифорния'

1.3 Структура, функции лимфоузлов, их роль в гемопоэзе

Лимфатические узлы располагаются по ходу лимфатических сосудов и представляют собой маленькие овальные или почкообразные образования длиной 0,1-2,5 см. Они соединены с системой лимфоциркуляции афферентными лимфатическими сосудами, которые проникают в лимфатический узел в области большой кривизны, и эфферентными сосудами, которые выходят из ворот. Клапаны в лимфатических сосудах обеспечивают однонаправленный ток лимфы. В ворота входят артерии, а выходят из них вены. Каждый узел заключен в фиброзную капсулу, которая распространяется в паренхиму в виде перегородок (трабекул). Специализированные сети или фильтрационное ложе, составленное из ретикулярных клеток и волокон, получает Т- и В-лимфоциты из рециркулирующего лимфатического пула. Т-лимфоциты занимают периферийную область лимфатических узлов и концентрируются в межфолликулярной зоне (между зонами первичных и вторичных фолликулов), а также в паракортикальной области.

Т-клетки в лимфатических узлах -- СД4-хелперного типа (80 %) и СДЗ-супрессорного типа (20 %). В-лимфоциты в корковом веществе лимфатического узла содержатся внутри первичных и вторичных лимфоидных фолликулов (узелков). Интердигитальные ретикулярные (дендритные клетки) могут быть идентичны клеткам Лангерганса в эпителии, которые перемещаются в лимфатическую ткань с накопленными на их поверхности антигенами.

Каждый лимфатический узел является агрегатом В-лимфоидных фолликулов, а в каждом фолликуле происходит экспансия нескольких В-клеточных клонов. Т-лимфоциты группируются вокруг этих фолликулов, функционируя совместно с В-клетками. На Т-клетках, непосредственно окружающих фолликулы , экспрессированы специализированные молекулы межклеточного взаимодействия, которые служат молекулами адгезии при контакте Т- и В-клеток и помогают осуществить Т-В-взаимодействие в процессе созревания и секреции антител.

Барьерные клетки фибробластного происхождения объединяются, обозначая путь крови и участки секвестрации. Макрофаги совместно с барьерными клетками предотвращают развитие инфекции и участвуют в иммунном ответе. Афферентные лимфатические сосуды, содержащие лимфу, антигены, лимфоциты и макрофаги, проникают в субкапсулярное пространство. Лимфа попадает в паракортикальные и медуллярные области, медуллярные синусы и, наконец, в эфферентные лимфатические сосуды. Артерии доставляют Т-клетки из тимуса и В-клетки из костного мозга к лимфатическим узлам. В - и Т-клетки входят внутрь лимфатического узла, проходят через его венулы, где эндотелиальные клетки распознают лимфоциты и направляют их в лимфатический узел. Структурный и клеточный состав лимфатических узлов позволяет взаимодействовать антигену и лимфоцитарным клеткам, которые определяют оптимальный уровень активации иммунного ответа.

Лимфатические узлы могут увеличиваться в размере и при нормальных условиях, но чаще это происходит при значительно усиленном иммунном ответе, а также при некоторых патологических состояниях:

а) увеличение тока крови и клеточного состава как части иммунного ответа;

б) явные инфекции или воспаление непосредственно лимфатического узла (лимфаденит);

в) захват клеточных остатков или конечных продуктов метаболизма макрофагами или клетками накопления при некоторых болезнях накопления;

г) вовлечение в первичный опухолевый процесс или метастазы лимфоретикулярных или солидных опухолей.

1.4 Морфофункциональные особенности тимуса (вилочковой железы) и его роль в гемопоэзе

Тимус находится в переднем средостении. Эта двудольная железа при рождении весит 10-15 г, быстро увеличивается до 20-40 г и затем ее масса уже не изменяется значительно. Хотя с возрастом количество лимфоидной ткани постепенно уменьшается и в железе начинает преобладать жировая ткань, тимус сохраняет иммунологическую активность. Он закладывается на восьмой неделе жизни эмбриона из 3-го и 4-го жаберных карманов как эпителиальный орган, заполняемый тимоцитами (Т-клетками), которые происходят из костномозговых протимоцитов. Т-клеточные маркеры характеризуют стадии развития Т-клеток в тимусе. Железа подразделяется на дольки капсульными перегородками. В каждой дольке имеются кортикальная и медуллярная зоны. Кортикальная зона содержит 95 % тимических лимфоцитов, а также поддерживающие эпителиальные клетки (эпителиальные ретикулярные клетки). Протимоциты входят в паренхиму тимуса высоко в корковом веществе и продвигаются глубже к кортикомедуллярному переходу, созревая по мере перемещения. Они взаимодействуют со стромальными клетками (эпителиальными ретикулярными клетками, ретикулярными клетками, барьерными клетками и макрофагами), которые "обучают" развивающиеся Т-клетки различать свой и чужеродный антигенный материал.

Мозговое вещество содержит 5% лимфоцитов тимуса. Это зрелые Т-клетки. Наиболее широко представленные клеточные элементы - многогранные эпителиальные клетки, которые могут принимать неправильный кольцевой, пластинчатый вид с центральным некрозом, кальцификацией и формированием кист.

Такие структуры называются тимическими тельцами, или тельцами Гассаля. Они представляют собой конечную стадию тимико-медуллярно-эпителиальной дифференцировки. В кортико-медуллярной зоне или в мозговом веществе Т-лимфоциты попадают в вены либо лимфатические сосуды и продвигаются к селезенке, а затем повторно попадают в рециркулирующий пул лимфоцитов. Приблизительно 95% лимфоцитов погибают внутри коры тимуса, и только 5% выходят в кровоток как иммунокомпетентные клетки.

Тимическое развитие Т-клеток происходит преимущественно в детском и юношеском возрасте. После второго десятилетия жизни тимус в значительной степени подвергается инволюции, хотя некоторая тимическая активность все еще имеет место и у взрослого. Некоторые этапы развития Т-клеток в эмбриогенезе, как представляется, происходят вне тимуса, возможно в лимфатических узлах, но детали этого процесса неизвестны. Как только лимфоциты дифференцируются в зрелые Т-клетки, они начинают циркулировать по организму. Их иммунная функция реализуется в основном в лимфатических узлах, где они индуцируют созревание В-клеток и превращение последних в плазматические клетки, секретирующие антитела. Некоторые другие аспекты Т-клеточной иммунной функции выполняются за пределами лимфоидной ткани.

Тимус, таким образом, отвечает за инициацию созревания Т-клеток и развитие их способности распознавать "свои" клетки. Железа подвергается инволюции при нормальном старении, стрессах и болезнях. Может наблюдаться гипертрофия, вызванная трийодтиронином, пролактином и гормоном роста. Изредка после химиотерапии при системных новообразованиях химически и гормонально угнетенная железа значительно увеличивается в размере и причиняет беспокойство, но обычно этот процесс доброкачественный. Иногда образуются тимомы -- опухоли, которые имеют важные иммунологические последствия и могут быть связаны с такими заболеваниями, как myasthenia gravis или парциальная красно-клеточная аплазия. Тимомы бывают злокачественными и инвазивными, но редко -- с отдаленными метастазами.

2. Нормальная миелограмма. Сущность понятия, приготовление и окраска мазков, значение исследования

Миелограмма -- процентное соотношение клеточных элементов в мазках, приготовленных из пунктатов костного мозга. Костный мозг содержит две группы клеток: клетки ретикулярной стромы (фибробласты, остеобласты, жировые и эндотелиальные клетки), составляющие абсолютное меньшинство по численности, и клетки кроветворной ткани (паренхимы) костного мозга с их производными зрелыми клетками крови.

Материал для исследования получают пункцией губчатых костей по методу, предложенному М.И.Аринкиным в 1927 г. Пунктируют чаще всего грудину в области рукоятки или верхней трети ее тела по срединной линии. Прокол осуществляют с помощью особых игл. Удобно и безопасна игла Кассирского, имеющая щиток-ограничитель, который можно установить на необходимую глубину в зависимости от толщины кожи и подкожной клетчатки. Аспирацию костного мозга производят шприцем вместимостью на более 10-20 мл (для обеспечения нужного вакуума предварительно проверяют, не пропускает ли шприц воздух).

При аспирации костного мозга всегда насасывание крови тем больше, чем больше получено аспирата. Обычно разведение пунктата периферической кровью не превышает 2,5 раза. Признаки большой степени разведения костного мозга периферической кровью следующие:

§ бедность пунктата клеточными элементами;

§ отсутствие мегакариоцитов;

§ резкое увеличение лейкоэритробластического соотношения (при соотношении 20:1 и выше пунктат не исследуют);

§ снижение индекса созревания нейтрофилов до 0,4-0,2;

§ приближение процентного содержания сегментоядерных нейтрофилов и/или лимфоцитов к их числу в периферической крови.

При исследовании костного мозга определяют абсолютное содержание миелокариоцитов (ядерных элементов костного мозга), мегакариоцитов, подсчитывают процентное содержание элементов костного мозга.

Следующим этапом исследования клеточных элементов крови служит морфологическое исследование. Оно позволяет определить ряд особенностей клеток: величину, форму, окрашиваемость, свойство ядер, характер включений и т.д.

Изучению подвергают окрашенные мазки пунктатов костного мозга, лимфатических узлов и селезенки, а также отпечатки биопсированных кусочков ткани.

При пункции костного мозга, лимфатических узлов или селезенки ребром шлифованного стекла с поверхности забирают небольшое количество пунктата, затем этим стеклом делают мазки на предметных стеклах. Приготовленные мазки высушивают на воздухе; на середине мазка обычно отмечают иглой или карандашом фамилию исследуемого и дату.

Окраска мазков. Окрашивание сухих мазков производят после предварительной фиксации. Лучшая фиксация достигается в абсолютном метиловом спирте (3-5 мин) или в смеси Никифорова из равных частей абсолютного этилового спирта и эфира (30 мин).

Принцип всех предложенных окрасок основан на химическом сродстве различных составных частей клетки определенным красящим веществом, обычно анилиновым краскам. Ядро, содержащее в значительном количестве нуклеиновые кислоты, связывает главным образом основные краски и являются базофильным. Цитоплазма одних кровяных клеток (ортохромные нормобласты, эритроциты и др.) оксифильна, т.е. поглощает преимущественно кислые краски, других (молодые формы, лимфоциты) - базофильна. Включения в цитоплазму имеют различную окраску в зависимости от сродства к тому или иному красителю. Если они воспринимают оба красителя одновременно, то окрашиваются метахроматически.

К основным гематологическим краскам относятся метиленовый синий и его производное-азур1 (метиленовый азуровый) и азур2 (смесь равных частей азура1 и метиленового синего), к кислым - водорастворимый желтый эозин.

Из множества предложенных способов окраски наиболее распространенными являются окраска по Романовскому-Гимзе и окраска Мая-Грюнвальда-Романовского-Гимзы по Паппенгейну.

Окраска по Романовскому-Гимзе. В этом способе удается хорошо дифференцировать ядро, но гораздо хуже - нейтрофильную зернистость цитоплазмы, поэтому его используют широко только для окраски мазка периферической крови.

Комбинированная окраска Мая-Грюнвальда-Романовского-Гимзе по Паппенгейму. На нефиксированный мазок наливают пепеткой готовый краситель-фиксатор Мая-Грюнвальда, представляющий собой раствор эозинметиленового синего в метиловом спирте, на 3 мин. Через 3 мин к покрывающей мазок краске добавляют равное количество дистиллированной воды и продолжают окрашивание еще 1 мин. После этого краску смывают и мазок высушивают на воздухе. Затем высушенный мазок докрашивают свежеприготовленным водным раствором краски Романовского в течении 8-15 мин. Этот метод считается наилучшим для окраски мазков костномозговых пунктатов.

Показатели нормальной миелограммы приведены в табл.

Миелограмма в норме [Соколов В.В., Грибова И.А., 1972]

Элементы костного мозга

Количество, %

Бласты

Миелобласты

Нейтрофилы:

промиелоциты

миелоциты

метамиелоциты

палочкоядерные

сегментоядерные

Все нейтрофильные элементы

Эозинофилы (всех генераций)

Базофилы

Лимфоциты

Моноциты

Плазматические клетки

Эритробласты

Пронормоциты

Нормоциты:

* базофильные

* полихроматофильные

* оксифильные

Все эритроидные элементы

Ретикулярные клетки

Индекс созревания эритрокариоиитов Лейкоэритробластическое соотношение Количество миелокариоцитов в норме Количество мегакариоцитов в норме

Костно-мозговой индекс нейтрофилов

0,1-1,1

0,2-1,7

1,0-4,1

7,0-12,2

8,0-15,0

12,8-23,7

13,1-24,1

52,7-68,9

0,5-5,8

0-0,5

4,3-13,7

0,7-3,1

0.1-1,8

0,2-1,1

0,1-1,2

1,4-4,6

8,9-16,9

0,8-5,6

14.5-26,5

0,1-1,6

0,7-0,9

2,1-4,5

(41,6-195,0) 109/л

(0,05-0,15). 109/л, или 0,2-

0,4 % костномозговых

элементов

0,5-0,9

В мазках пунктата костного мозга подсчитывают не менее 500 клеточных элементов, а затем вычисляют содержание каждого вида клеток в процентах.

При оценке пунктатов костного мозга, кроме процентного содержание клеточных элиментов, учитывают соотношение молодых и более зрелых форм нейтрофилов (костномозговой индекс нейтрофилов), отношение гемоглобинсодержащих нормобластов ко всем клеткам эритроцитарного ряда (индекс созревания эритрокариоцитов), и отношение всех клеток лейкоцитарного ряда ко всем клеткам эритроцитального ряда (лейкоэритробластическое отношение), которое в норме равно 3(4):1

Костномозговой индекс нейтрофилов

=

Индекс созревания эритронормобластов=

В диагностике различных заболеваний с вовлечением костного мозга (миелофиброз, эритремия, апластическая анемия, метастазы рака, лимфомы) важным методом служит прижизненное гистологическое изучение костного мозга путем трепанобиопсии передней части гребешка подвздошной кости или других областей скелета. В препаратах подсчитывают соотношение жировой гемопоэтической ткани (с помощью окулярной сетки при увеличении 10х5) и производят дифференцированный подсчет клеточных элементов при увеличении 90х7.

В настоящее время биопсия костного мозга -- обязательный метод диагностики в гематологии, так как позволяет оценивать тканевые взаимоотношения в костном мозге.

Костный мозг исследуют для подтверждения или установления диагноза различных форм гемобластозов и анемий. Миелограмму необходимо оценивать, сопоставляя ее с картиной периферической крови. Диагностическое значение имеет исследование костного мозга при поражении его лимфогранулематозом, туберкулезом, болезнью Гоше, Нимана-Пика, метастазами опухолей, висцеральным лейшманиозом. Это исследование широко используют в динамике для оценки эффективности проводимой терапии.

2.1 Значение изменений миелограммы

Уменьшение содержания миелокариоцитов наблюдают при гипопластических процессах различной этиологии, воздействии на организм человека ионизирующего излучения, некоторых химических и лекарственных веществ и др. Особенно резко количество ядерных элементов снижается при апластических процессах. При развитии миелофиброза, миелосклероза костномозговой пунктат скуден и количество ядерных элементов в нем также снижено. При наличии между костномозговыми элементами синцитиальной связи (в частности, при миеломной болезни) пунктат получают с трудом, поэтому содержание ядерных элементов в пунктате может не соответствовать истинному количеству миелокариоцитов в костном мозге.

Высокое содержание миелокариоцитов наиболее выражено при лейкозах, В12-дефицитных анемиях, гемолитических и постгеморрагических анемиях, т.е. при заболеваниях, сопровождающихся гиперплазией костного мозга.

Мегакариоциты и мегакариобласты встречаются в препаратах костного мозга в небольшом количестве, они располагаются по периферии препарата; процентное отношение их в миелограмме не отражает истинного положения, поэтому их не подсчитывают. Обычно проводят лишь ориентировочную, субъективную оценку относительного сдвига в направлении более молодых или зрелых форм.

Увеличение количества мегакариоцитов и мегакариобластов может вызывать миелопро-лиферативные процессы и метастазы злокачественных новообразований в костный мозг (особенно при раке желудка). Содержание м era кари о пито в возрастает также при идиоматической аутоиммунной тромбоцитопении, лучевой болезни в период восстановления, хроническом миелолейкозе.

Уменьшение количества мегакариоцитов и мегакариобластов (тромбоцитопении) может вызывать гипопластические и апластические процессы, в частности при лучевой болезни, иммунные и аутоиммунные процессы, метастазы злокачественных новообразований (редко). Содержание мегакариоцитов снижается также при острых лейкозах, В12-дефицитных анемиях, миеломной болезни, системной красной волчанке.

Увеличение количества бластных клеток с появлением полиморфных уродливых форм на фоне клеточного или гиперклеточного костного мозга характерно для острых и хронических лейкозов.

Мегалобласты и мегалоциты различных генераций, крупные нейтрофильные миелоциты, метамиелоциты, гиперсегментированные нейтрофилы характерны для В12-дефицитной и фолиеводефицитной анемий.

Увеличение количества миелоидных элементов, их зрелых и незрелых форм (реактивный костный мозг), вызывает интоксикации, острое воспаление, гнойные инфекции, шок, острую кровопотерю, туберкулез, злокачественные новообразования.

Промиелоцитарно-миелоцитарный костный мозг с уменьшением числа зрелых гранулоцитов на фоне клеточной или гиперклеточной реакции может вызывать миелотоксические и иммунные процессы.

Резкое уменьшение содержания гранулоцитов на фоне снижения миелокариоцитов характерно для агранулоцитоза.

Эозинофилия костного мозга возможна при аллергии, глистных инвазиях, злокачественных новообразованиях, острых и хронических миелоидных лейкозах, инфекционных заболеваниях.

Увеличенное количество моноцитоидных клеток находят при острых и хронических моноцитарных лейкозах, инфекционном мононуклеозе, хронических инфекциях, злокачественных новообразованиях.

Повышение содержания атипичных мононуклеаров на фоне уменьшения зрелых миелокариоцитов может вызывать вирусные инфекции (инфекционный мононуклеоз, аденовирус, грипп, вирусный гепатит, краснуха, корь и др.).

Увеличение количества лимфоидных элементов, появление голоядерных форм (тени Гумпрехта) при клеточном костном мозге могут давать лимфопролиферативные заболевания (хронический лимфолейкоз, макроглобулинемия Вальденстрема, лимфосаркома).

Повышение содержания плазматических клеток с появлением их полиморфизма, двуядерных клеток, изменением окраски цитоплазмы могут вызывать плазмоцитомы (плазмобластомы, а также реактивные состояния).

Увеличение количества эритрокариоцитов без нарушения созревания возможно при эритремии.

Увеличение содержания эритрокариоцитов и уменьшение лейкоэритробластического соотношения могут вызывать постгеморрагические анемии и большинство гемолитических анемий.

Уменьшение содержания эритрокариоцитов при снижении общего количества миелокариоцитов и небольшого (относительного) увеличения бластных клеток, лимфоцитов, плазмоцитов наблюдается при гипоапластических процессах.

Раковые клетки и их комплексы выявляют при метастазах злокачественных опухолей.

Для оценки миелограммы важно не столько определение количества костномозговых элементов и их процентного содержания, сколько их взаимное соотношение. Судить о составе миелограммы следует по специально рассчитанным костномозговым индексам, характеризующим эти соотношения.

Индекс созревания эритрокариоцитов, характеризуя состояние эритроидного ростка, представляет собой отношение процентного содержания нормобластов, содержащих гемоглобин (т.е. полихроматофильных и оксифильных), к общему процентному содержанию всех нормобластов. Уменьшение этого индекса отражает задержку гемоглобинизации, преобладание молодых базофильных форм (например, В12-дефицитная анемия).

Индекс созревания эритрокариоцитов снижается при железодефицитных и иногда при гипопластических анемиях.

Индекс созревания нейтрофилов характеризует состояние гранулоцитарного ростка. Он равен отношению процентного содержания молодых элементов зернистого ряда (промиелоцитов, миелоцитов и метамиелоцитов) к процентному содержанию зрелых гранулоцитов (палочкоядерных и сегментоядерных). Увеличение этого индекса при богатом костном мозге свидетельствует о задержке созревания нейтрофилов, при бедном костном мозге - о повышенном выходе зрелых клеток из костного мозга и истощении гранулоцитарного резерва.

Увеличение индекса созревания нейтрофилов фиксируют при миелолей козах, лейкемоидных реакциях миелоидного типа, некоторых формах агранулоцитоза; его уменьшение - при задержке созревания на стадии зрелых гранулоцитов или задержке их вымывания (при гиперспленизме, некоторых инфекционных и гнойных процессах).

Лейкоэритробластическое соотношение представляет собой отношение суммы процентного содержания всех элементов гранулоцитарного ростка к сумме процентного содержания всех элементов эритроидного ростка костного мозга. В норме это соотношение составляет 2:1--4:1, т.е. в нормальном костном мозге число белых клеток в 2--4 раза превышает красных. Увеличение индекса при богатом костном мозге (>150·109/л) свидетельствует о гиперплазии лейкоцитарного ростка (хронический лейкоз); при бедном пунктате (< 80·109/л) -- о редукции красного ростка (апластическая анемия) или большой примеси периферической крови. Уменьшение индекса при богатом костном мозге свидетельствует о гиперплазии красного ростка (гемолитическая анемия), при бедном пунктате -- о преимущественной редукции гранулоцитарного ростка (агранулоцитоз).

Лейкоэритробластическое соотношение уменьшается при гемолитических, железодефицитных, постгеморрагических, В12-дефицитных анемиях.

Лейкоэритробластическое соотношение увеличивается при лейкозах и иногда при угнетении эритроидного ростка при гипопластической анемии.

3. Нормальные лимфоаденограмма и спленограмма. Сущность, нормальные показатели

Подсчет лимфаденограммы и спленограммы осуществляют после пункции соответствующего органа в сухих окрашенных мазках. Подсчет производят по обычному правилу, как было указано при подсчете миелограммы.

Лимфаденограмма в норме

(при подсчете на 1000 клеток по Lucas, 1955)

Тип клеток

Колебания, %

Тип клеток

Колебания, %

Ретикулярные

Тучные

Лимфобласты

Пролимфоциты

Лимфоциты

Плазмобласты

0-0,1

0-0,5

0,1-0,9

5,3-16,4

67,8-90,0

0-0,1

Плазматические

Монобласты

Моноциты

Нейтрофилы

Эозинофилы

Базофилы

0-4,7

0-0,5

0,2-7,4

0.2-2,2

0-0,3

0-0,2

Спленограмма в норме

(при подсчете на 1000 клеток по Moeschlin, 1951)

Тип клеток

Колебания %

Ретикулярные клетки

0,5-1,8

Лимфобласты

0-0,2

Пролимфоциты

1,0-10,5

Лимфоциты

57,0-84,5

Плазматические клетки

0-0,3

Нормобласты

0,1-0,2

Промиелоциты

0-0,1

Миелоциты

0,05-0,2

Метамиелоциты

0,05-0,1

Палочкоядерные нейтрофилы

1,0-7,0

Сегментоядерные нейтрофилы

8,0-25,0

Эозинофилы зрелые

0,2-15

Базофилы зрелые

0,1-1,1

Моноциты

1,2-2,4

Мегакариоциты

0

В таблицах 30 и 31 приведены типы и процентное соотношение клеток, встречающихся в пунтктатах в лимфо узлах и селезенки здоровых лиц.

При ряде гипоталогическических заболеваний (лимфогранулематоз, лимфома), помимо пункции лимфоузла, производят биопсию его с изучением гистологических срезов или отпечатков.

ЛИТЕРАТУРА

1. Влияние лекарственных средств на результаты лабораторных методов исследования / Под ред. Проф. А.А. Спасова. - М.: Фармединфо, 1995. - 82 с.

2. Клиническая оценка биохимических показателей при заболеваниях внутренних органов / В.Г. Передерий, Ю.Г. Хмелевский, Л.Ф. Коноплева и др. - Киев: Здоров'я, 1993. 192 с.

3. Козинец Г.И. Интерпретация анализов крови и мочи. - СПб., 1997. - 128 с.

4. Козловская Л.В., Мартынова М.А. Учебное пособие по клиническим лабораторным методам исследования (с элементами программирования0 / Под ред. Акад. Е.М. Тареева, проф. А.В. Сумарокова. - М.: Медицина, 1975. - 352 с.

5. Колб В.Г., Камышников В.С. Лабораторная диагностика хирургических заболеваний. - Минск: Высшейш. шк., 1993. - 185 с.

6. Лабораторные методы исследования в клинике: Спрв. / В.В. Меньшиков, Л.Н. Делекторская, Р.П. Золотницкая и др.; Под ред. В.В. Меньшикова. - М.: Медицина, 1987. - 368 с.

7. Норма в медицинской практике: Спрв. пособие. - М.: ООО «МЕДпресс», 1998. - 144 с.

8. Окороков А.Н. Диагностика болезней внутренних органов: Т. 4. Диагностика болезней системы крови. - М.: мед. лит., 2003. - 512 с.

9. Окороков А.Н. Диагностика болезней внутренних органов: Т. 5. Диагностика болезней системы крови. Диагностика болезней почек. - М.: мед. лит., 2002. - 512 с.

10. Патологическая физиология / В.А. Фролов, Г.А. Дроздова, Т.А. Казанская и др. - М., 1997. - 568 с.

11. Предтеченский В.Е. Руководство по клиническим лабораторным исследованиям / Под. ред. Л.Г. Смирновой и Е.А. Кост. - М.: Медгиз, 1960.

12. Руководство по клинической лабораторной диагностике: Учеб. пособие. Ч 1-2. / М.А. Базарнова, А.И. Воробьев, З.С. Баркаган и др.: под. ред. М.А. Базарновой, А.И. Воробьева. - Киев: Вища шк., 1991. - 615 с.

13. Руководство по медицине. Диагностика и терапия: Пер. с англ. В 2 т. / Под ред. Р. Беркоу, Э. Флетчера. - М.: Мир, 1997. - Т. 1. - 1045 с.; Т 2. - 872 с.

14. Справочник практического врача / Под ред. А.И. Воробьева. - М.: Баян, 1992. - 608 с.

15. Станковская И.М., Шифрина Р.С. Побочное действие лекарственных средств: Обзор. информ. ВНИИМИ. - М.: Медицина, 1985. - Вып. 15, № 6. - 38 с.

16. Тодоров Й. Клинические лабораторные исследования в педиатрии. - София: Медицина и физкультура, 1961. - 784 с.

17. Чекман И.С. Биохимическая фармакодинамика. - Киев: : Здоров'я, 1991. - 200 с.

18. Чиркин А.А., Окороков А.Н., Гончарик И.И. Диагностический справочник терапевта, - 2-е изд. - Минск: Беларусь, 1992. - 668 с.

19. Шиффман Ф.Дж. Патофизиология крови. Пер. с англ. - М. - СПб.: «Издательство БИНОМ» - «Невский диалект», 2000. - 448.

20. Юрковский О.И., Грицюк А.М. Общеклинические анализы в практике врача. - М., 1997. - 123 с.

21. Henry J.B. Clinical diagnosis and management by Laboratory Methods. - Philadelphia, PA: Saunders, 1991.

22. Ravel R. Clinical Laboratory Medicine. - Chicago, 1989. - 692 p.

23. Winter ME et al. Basic Clinical Pharmacokinetics. Applied Therapeutics. - Vancouver, 1994. - 93 p.

24. Yong L.Y., Holland E.G. Interpretation of clinical Laboratory tests. In “Applied Therapeutics”/ Edited by Lloid Yee Young. - Vancouver, 1996. -136 p.

Размещено на Allbest.ru

...

Подобные документы

  • Исторические аспекты трансплантации костного мозга. Гемопоэтические стволовые клетки. Роль микроокружения. Перспективы лечения миеломной болезни. Круг необходимых исследований для отбора больных на трансплантацию костного мозга и мониторинг систем.

    диссертация [1,9 M], добавлен 05.09.2015

  • Строение и организация красного костного мозга - центрального органа кроветворения, расположенного в губчатом веществе костей и костно-мозговых полостях. Его функции и возрастные особенности. Трансплантация костного мозга: показания к операции и методы.

    презентация [219,0 K], добавлен 12.05.2015

  • Лейкоз как системное заболевание крови. Причины развития лейкемии у детей. Патогенез заболевания, его клиническая картина и особенности диагностики. Трансплантация костного мозга: побочные эффекты и осложнения. Лечение после пересадки костного мозга.

    реферат [46,0 K], добавлен 03.12.2012

  • Рассмотрение сущности и основных форм острых лейкозов. Определение возможных вариантов лимфобластных лейкозов. Исследование периферической крови и костного мозга в диагностике острых лейкозов. Трансплантация костного мозга при остром миелоидном лейкозе.

    презентация [2,4 M], добавлен 12.02.2023

  • Развитие и возрастные особенности костного мозга. Кроветворение в эмбриональном периоде. Формирование тимуса. Лимфаденоидное глоточное кольцо Пирогова-Вальдейера. Лимфоидные узелки червеобразного отростка. Функции селезенки. Строение и топография тимуса.

    презентация [7,5 M], добавлен 22.05.2017

  • Роль гомеостаза в поддержании оптимального баланса биологической системы организма. Специфика иммунной системы. Роль аппендикса в ее формировании. Учения И.А. Мечникова о фагоцитозе. Функции костного мозга и тимуса, их значение для иммунной системы.

    презентация [1,5 M], добавлен 21.02.2014

  • Общая характеристика, строение и функции головного мозга. Роль продолговатого, среднего, промежуточного мозга и мозжечка в осуществлении условных рефлексов, их значение. Сравнение массы головного мозга человека и млекопитающих. Длина кровеносных сосудов.

    презентация [2,1 M], добавлен 17.10.2013

  • Общая характеристика волосатоклеточного лейкоза - хронического лимфопролиферативного заболевания со специфической лимфоидной инфильтрацией костного мозга и селезенки. Основные клинические признаки и патология болезни. Данные лабораторных исследований.

    презентация [678,8 K], добавлен 03.04.2012

  • Онтогенез нервной системы. Особенности головного и спинного мозга у новорожденного. Строение и функции продолговатого мозга. Ретикулярная формация. Строение и функции мозжечка, ножек мозга, четверохолмия. Функции больших полушарий головного мозга.

    шпаргалка [72,7 K], добавлен 16.03.2010

  • Особенности строения и элементы рельефа костного неба. Различные классификации форм верхней челюсти. Основные уровни расположения боковых складок слизистой оболочки твердого неба. Анализ коррелятивных связей размеров и индексов костного неба и черепа.

    реферат [298,3 K], добавлен 30.05.2013

  • Особенности современных представлений о крови - внутренней среде организма с определенным морфологическим составом и многообразными функциями, которую условно делят на две части: клетки (эритроциты, лейкоциты, тромбоциты) и плазму. Функции клеток крови.

    реферат [780,2 K], добавлен 15.09.2010

  • Инфекционный энтерит норок – острая форма контагиозной болезни. Воспалительно-некротические поражения слизистой желудочно-кишечного тракта, мезентериальных лимфатических узлов, селезенки, зобной железы, костного мозга. Диагностика, лечение, профилактика.

    реферат [15,2 K], добавлен 26.09.2009

  • Основные восходящие (чувствительные) пути спинного мозга. Типы волокон мышечной ткани и их значение. Важнейшие двигательные безусловные рефлексы у человека. Общие функции спинного мозга. Морфо-функциональные особенности спинного мозга в онтогенезе.

    лекция [1,3 M], добавлен 08.01.2014

  • Изображение правого полушария головного мозга взрослого человека. Структура мозга, его функции. Описание и предназначение большого мозга, мозжечка и мозгового ствола. Специфические черты строения головного мозга человека, отличающие его от животного.

    презентация [1,4 M], добавлен 17.10.2012

  • Особенности строения ствола головного мозга, физиологическая роль ретикулярной формации мозга. Функции мозжечка и его влияние на состояние рецепторного аппарата. Строение вегетативной нервной системы человека. Методы изучения коры головного мозга.

    реферат [1,7 M], добавлен 23.06.2010

  • Характеристика мозга, важнейшего органа человека, регулирующего все процессы, рефлексы и движения в теле. Оболочки головного мозга: мягкая, паутинная, твердая. Функции продолговатого мозга. Основное значение мозжечка. Серое вещество спинного мозга.

    презентация [4,9 M], добавлен 28.10.2013

  • Общая характеристика волосатоклеточного лейкоза - хронического лимфопролиферативного заболевания со специфической лимфоидной инфильтрацией костного мозга. Объективный осмотр по системам. Результаты лабораторных и инструментальных методов исследования.

    история болезни [618,9 K], добавлен 20.05.2014

  • Особенности строения и функции спинного мозга. Функции спинномозговых корешков. Рефлекторные центры спинного мозга. Зрительные бугры как центр всех афферентных импульсов. Рефлекторная и проводниковая функции продолговатого мозга. Виды зрительных бугров.

    реферат [291,0 K], добавлен 23.06.2010

  • Хроническая, прогрессирующая и острая (бластный криз) стадии хронического миелолейкоза, характеризующиеся комплексом определенных признаков. Микропрепарат костного мозга при хроническом миелолейкозе. Результаты цитогенетического исследования, лечение.

    презентация [349,6 K], добавлен 26.11.2014

  • Понятие и функции стволовых клеток, их типы в зависимости от способов получения, потенциал. Характеристики эмбриональных стволовых клеток. Дифференцировки стволовых клеток костного мозга. Органы и ткани, которые ученые смогли вырастить с их помощью.

    презентация [817,5 K], добавлен 04.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.