Гистология зубных тканей

Строение и разновидности зубов. Эмаль как твердая, резистентная к изнашиванию минерализованная ткань. Строение эмали. Строение дентина как основной опорной ткани зуба. Общая характеристика и функции цемента и пульпы зуба. Строение пародонта и периодонта.

Рубрика Медицина
Вид курсовая работа
Язык русский
Дата добавления 22.02.2019
Размер файла 159,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Гистология зубных тканей

Введение

Зубы (dentes) -- твердые образования ротовой полости, что вросли в альвеолярные отростки верхней и нижней челюстей, основная функция которых заключается в механической обработке еды. Значительная роль зубов в акте артикуляции. Зубы -- это существенный косметический фактор. Дентин образует твердую основу зуба, он размещен в участке коронки, шейки и корня. Эмаль укрывает коронку зуба, лежит на дентине. Цемент укрывает дентин корня зуба. Пульпа расположена внутри зуба -- в его пульпарной полости. Последняя включает полость и канал корня зуба, который открывается на верхушке корня верхушечным отверстием. В альвеолярных луночках зубы закрепляются посредством зубной связки -- периодонта.

В зависимости от строения существуют четыре основные разновидности зубов: резцы, клыки, малые коренные и большие коренные зубы. В течение жизни человека изменяются две генерации зубов. Первая генерация так называемых молочных зубов насчитывает 20 зубов (по 10 на каждой челюсти): два медиальных резца, два латеральных резца, двое клыков и четыре коренных зуба. У взрослого человека имеется 32 постоянных зуба (по 16 на каждой челюсти: два медиальных резца, два латеральных резца, два клыка, четыре малых коренных (премоляры) и шести больших коренных (моляры).

1.Строение эмали

Твердые ткани зуба состоят из эмали, дентина и цемента. Основную массу зуба составляет дентин, который в области коронки зуба покрыт эмалью, а в области корня -- дентином. В полости зуба расположена мягкая ткань -- пульпа. Зуб укреплен в альвеоле с помощью периодонта, который расположен в виде узкой щели между цементом корня зуба и стенкой альвеолы.

Схема строения зуба: 1 - коронка; 2 - шейка; 3 - корень; 4 - эмаль; 5 - дентин; 6 - пульпа; 7 - десна; 8 - цемент; 9 - периодонт; 10 - альвеолярная кость; 11 - апикальное отверстие.

Эмаль (substantia adamentinae, anamelum) -- твердая, резистентная к изнашиванию минерализованная ткань белого или слегка желтоватого цвета, покрывающая снаружи анатомическую коронку зуба и придающая ей твердость. Эмаль располагается поверх дентина, с которым тесно связана структурно и функционально как в процессе развития зуба, так и после завершения его формирования. Она защищает дентин и пульпу зуба от воздействия внешних раздражителей. Толщина слоя эмали максимальна в области жевательных бугорков постоянных зубов, где она достигает 2,3--3,5 мм; на латеральных поверхностях постоянных зубов она обычно равна 1--1,3 мм. Временные зубы имеют слой эмали, не превышающий 1 мм. Наиболее тонкий слой эмали ( 0,01 мм) покрывает шейку зуба. [4]

Эмаль -- самая твердая ткань организма человека (сравнима по твердости с мягкой сталью), что позволяет ей в ходе выполнения зубом своей функции противостоять воздействию больших механических нагрузок. Вместе с тем, она весьма хрупка и могла бы растрескаться при значительной нагрузке, однако это обычно не происходит благодаря тому, что под ней находится поддерживающий слой более упругого дентина. Поэтому разрушение подлежащего слоя дентина неизбежно приводит к растрескиванию эмали.

Эмаль содержит 95 % минеральных веществ (преимущественно гидроксиапатита, карбонапатита, фторапатита др.), 1,2 % -- органических, 3,8 % приходится на воду, связанную с кристаллами и органическими компонентами и свободную. Плотность эмали снижается от поверхности коронки к дентино-эмалевой границе и от режущей кромки к шейке. Ее твердость максимальна на режущих кромках. Цвет эмали зависит от толщины и прозрачности ее слоя. Там, где ее слой тонкий, зуб кажется желтоватым из-за просвечивающего сквозь эмаль дентина. Вариации степени минерализации эмали проявляются изменениями ее окраски. Так, участки гипоминерализованной эмали выглядят менее прозрачными, чем окружающая эмаль.

Эмаль не содержит клеток и не способна к регенерации при повреждении (однако в ней постоянно происходит обмен веществ (преимущественно ионов)), которые поступают в нее как со стороны подлежащих зубных тканей (дентина, пульпы), так и от слюны. Одновременно с поступлением ионов (реминерализацией) происходит их удаление из эмали (деминерализация). Эти процессы постоянно находятся в состоянии динамического равновесия. Его сдвиг в ту или иную сторону зависит от многих факторов, в том числе от содержания микро- и макроэлементов в слюне, рН в полости рта и на поверхности зуба. Эмаль проницаема в обоих направлениях, наименьшей проницаемостью обладают ее наружные, обращенные в полость рта, участки. Степень проницаемости неодинакова в различные периоды развития зуба. Она снижается так: эмаль непрорезавшегося зуба -» эмаль временного зуба -» эмаль постоянного зуба молодого человека -» эмаль постоянного зуба пожилого человека. Местное воздействие фтора на поверхность эмали делает ее более резистентной к растворению в кислотах вследствие замещения ионом фтора иона гидроксильного радикала в кристалле гидроксиапатита.

Эмаль образована эмалевыми призмами и межпризменным веществом, покрыта кутикулой.

Эмалевые призмы -- главные структурно-функциональные единицы эмали, проходящие пучками через всю ее толщину радиально (преимущественно перпендикулярно дентино-эмалевой границе) и несколько изогнутые в виде буквы S. В шейке и центральной части коронки временных зубов призмы располагаются почти горизонтально. Вблизи режущей кромки и краев жевательных бугорков они идут в косом направлении, а приближаясь к краю режущей кромки и к верхушке жевательного бугорка, располагаются практически вертикально. В постоянных зубах расположение эмалевых призм в окклюзионном (жевательном) участке коронки такое же, как во временных зубах. В области шейки, однако, ход призм отклоняется от горизонтальной плоскости в апикальную сторону. То, что эмалевые призмы имеют S-образный, а не линейный ход, часто рассматривают как функциональную адаптацию, благодаря которой не происходит образования радикальных трещин эмали под действием окклюзионных сил при жевании. Ход эмалевых призм необходимо учитывать при препарировании эмали зуба.

Форма призм на поперечном сечении -- овальная, полигональная или -- наиболее часто у человека - арочная (в виде замочной скважины); их диаметр составляет 3--5 мкм. Так как наружная поверхность эмали превышает внутреннюю, граничащую с дентином, откуда начинаются эмалевые призмы, то считают, что диаметр призм увеличивается от дентино-эмалевой границы к поверхности эмали примерно в два раза. .[8]

Эмалевые призмы состоят из плотно уложенных кристаллов, преимущественно гидроксиапатита, и восьмикальцевого фосфата. Могут встречаться и другие виды молекул, в которых содержание атомов кальция варьирует от 6 до 14.

Кристаллы в зрелой эмали примерно в 10 раз крупнее кристаллов дентина, цемента и кости: их толщина составляет 25-- 40 нм, ширина -- 40--90 нм и длина -- 100--1000 нм. Каждый кристалл покрыт гидратной оболочкой толщиной около 1 нм. Между кристаллами имеются микропространства, заполненные водой (эмалевой жидкостью), которая служит переносчиком молекул ряда веществ и ионов.

Расположение кристаллов гидроксиапатита в эмалевых призмах упорядоченное -- по их длиннику в виде «елочки». В центральной части каждой призмы кристаллы лежат почти параллельно ее длинной оси; чем больше они удалены от этой оси, тем значительнее отклоняются от ее направления, образуя с ней все больший угол.

При арочной конфигурации эмалевых призм кристаллы широкой части («головки» или «тела»), лежащие параллельно длине призмы, в ее узкой части («хвосте») веерообразно расходятся, отклоняясь от ее оси на 40--65°.

Органический матрикс, связанный с кристаллами и в ходе образования эмали обеспечивающий процессы их роста и ориентировки, по мере созревания эмали почти полностью утрачивается. Он сохраняется в виде тончайшей трехмерной белковой сети, нити которой располагаются между кристаллами.

Призмы характеризуются поперечной исчерченностью, образованной чередованием светлых и темных полос с интервалами в 4 мкм, что соответствует суточной периодичности формирования эмали. Предполагают, что темные и светлые участки эмалевой призмы отражают неодинаковый уровень минерализации эмали. Периферическая часть каждой призмы представляет собой узкий слой (оболочку призмы), состоящий из менее минерализованного вещества. Содержание белков в ней выше, чем в остальной части призмы, по той причине, что кристаллы, ориентированные под разными углами, не так плотно расположены, как внутри призмы, а образующиеся вследствие этого пространства заполнены органическим веществом. Очевидно, что оболочка призмы является не самостоятельным образованием, а лишь частью самой призмы.

Межпризменное вещество окружает призмы округлой и полигональной формы и разграничивает их. При арочной структуре призм их части находятся в непосредственном контакте друг другом, а межпризменное вещество как таковое практически отсутствует -- его роль в области «головок» одних призм играют «хвосты» других.

Межпризменное вещество в эмали человека на шлифах имеет очень малую толщину (менее 1 мкм) и развито значительно слабее, чем у животных. По строению оно идентично эмалевым призмам, однако кристаллы гидроксиапатита в нем ориентированы почти под прямым углом к кристаллам, образующим призму. Степень минерализации межпризменного вещества ниже, чем эмалевых призм, но выше, чем оболочек эмалевых призм. В связи с этим при декальцинации в процессе изготовления гистологического препарата или в естественных условиях (под влиянием кариеса) растворение эмали происходит в следующей последовательности: сначала в области оболочек призм, затем межпризменного вещества и лишь после этого самих призм. Межпризменное вещество обладает меньшей прочностью, чем эмалевые призмы, поэтому при возникновении трещин в эмали они обычно проходят по нему, не затрагивая призмы.

Безпризменная эмаль. Самый внутренний слой эмали толщиной 5--15 мкм у дентино-эмалевой границы (начальная эмаль) не содержит призм, так как во время его образования отростки Томса еще не сформировались. Аналогичным образом на завершающих этапах секреции эмали, когда у энамелобластов исчезают отростки Томса, они образуют наиболее наружный слой эмали (конечную эмаль), в которой эмалевые призмы также отсутствуют. В слое начальной эмали, покрывающей концы эмалевых призм и межпризменное вещество, содержатся мелкие кристаллы гидроксиапатита толщиной около 5 нм, расположенные в большинстве случаев почти перпендикулярно к поверхности эмали; между ними без строгой ориентации лежат крупные пластинчатые кристаллы. Слой мелких кристаллов плавно переходит в более глубокий слой, содержащий плотно расположенные кристаллы размером около 50 нм, лежащие преимущественно под прямым углом к поверхности эмали. Слой конечной эмали значительнее выражен в постоянных зубах, поверхность которых благодаря ему на наибольшем протяжении гладкая. Во временных зубах этот слой выражен слабо, поэтому при изучении их поверхности обнаруживается преимущественно призменная структура.

Дентино-эмалевое соединение. Граница между эмалью и дентином имеет неровный фестончатый вид, что способствует более прочному соединению этих тканей. При использовании сканирующей электронной микроскопии на поверхности дентина в области дентино-эмалевого соединения выявляется система анастомозирующих гребешков, вдающихся в соответствующие им углубления в эмали.

2. Строение дентина

Дентин (substantia eburnea) в функциональном отношении можно рассматривать как основную опорную ткань зуба. Дентин составляет основную массу коронки и корня. Кроме того, он образует плотный и крепкий футляр, прикрывающий легко ранимую зубную мякоть (пульпу), ее протоплазматические отростки, (томсовы волокна) и нервы. В дентине сосредоточены болевые рецепторы (воспринимающие боль точки) зуба. Эти рецепторы являются периферическими, так как эмаль, выполняя специализированную барьерную функцию, в нормальном состоянии почти не воспринимает болевого ощущения.

По своему химическому составу дентин относится к сильно минерализованным тканям и занимает в этом отношении второе место после эмали. Дентин содержит 70% известковых солей, по преимуществу фосфорнокислой извести (66%), 2% Других болей и 28% органического вещества. Обызвествленным в дентине является только основное вещество (см. ниже). Однако некоторые участки основного вещества дентина отличаются незначительным содержанием или полным отсутствием солей кальция.

Известь почти отсутствует в тех участках дентина, которые носят название интерглобулярных пространств (spatia interglobularia). Последние представляют собой промежутки между обызвествленными шарами основного вещества дентина.

Известь откладывается в основном веществе дентина в форме глыбок или зерен, которые затем сливаются, образуя шары. В коронковой части дентина интерглобулярные пространства крупны и располагаются между плащевым (см. ниже) и околопульпарным дентином. В области корня они мелки и расположены близко к внешней поверхности дентина (зернистый слой).

В гистологическом отношении в дентине различают основное вещество и дентинные канальцы.

Основноe вещество дентина состоит из волокон, содержащих коллаген, и расположенной между ними бесструктурной склеивающей субстанции. Направление волокон неодинаково. Различают два основных направления волокон, которые явственно обозначаются уже при формировании первичного дентина: 1) радиальное совпадение с осью зуба и 2) тангенциальное, в основном соответствующее поперечнику зуба. Механическая прочность дентина зависит в значительной степени от сложности переплета коллагеновьих волокон основного вещества.

В наружном слое дентина, который расположен непосредственно под эмалью, преобладают радиальные волокна. Этот слой носит название плащевого дентина. По гистологическому строению плащевой дентин несколько напоминает грубоволокнистую кость. .[12]

Внутренний стой дентина, доходящий непосредственно до пульпы, т. е. дентин, образующий массивный овод пульпарной камеры, построен преимущественно из тангенциальных волокон. Этот слой носит название околопульпарного дентина и по общему плану построения напоминает пластинчатую кость.

Эти структурные особенности плащевого и околопульпарного дентина следует иметь в виду в клинике при удалении размягченного дентина с помощью экскаваторов и острых ложечек. В слое плащевого дентина ребро экскаватора следует вонзать в дентин по направлению оси зуба, т. е. сообразуясь с радиальным ходом коллагеновых волокон основного вещества. В околопульпарном слое лучше вонзать ребро экскаватора перпендикулярно по отношению к длиннику зуба, в соответствии с тангенциальным расположением коллагеновых волокон этого слоя дентина.

Дентинные канальцы составляют вторую структурную часть дентина. Они пронизывают всю его толщу, начинаясь на внутренней, обращенной к пульпе поверхности и проникая за эмалево-дентивную границу. В околопульпарном слое количество канальцев и их диаметр несколько больше, чем в последующих слоях, так как канальцы, спирально извиваясь, постепенно суживаются по направлению к наружной границе дентина.

Следующие цифры дают наглядное представление о количестве дентинных канальцев. На периферии дентина в 1 .мм2 насчитывается в среднем 15 000 канальцев. Нарастая в направлении от периферии к центру, количество канальцев достигает 75000 IB 1 мм2 дентина. На всем пути своего прохождения дентинные канальцы дают большое количество ответвлений, соединяющихся (анастомозирующих) с ответвлениями соседних канальцев. Таким образом, в основном веществе дентина проходит густое сплетение микроскопических канальцев, ветвящихся и соединяющихся друг с другом. В клинике мы называем это сплетение системой микроканалов в отличие от системы макро-каналов, выполненных корневой пульпой и ее разветвлениями.

В околопульпарном дентине канальцы большого калибра дают боковые ответвления, которые ориентированы в направлении эмали и цемента; при приближении к последним уменьшается их калибр. Дентинные канальцы) сообщаются с интерглобулярными пространствами, которые в свою очередь анастомозируют с цементными тельцами зубного корня. Е. И. Гаврилов описал у животного непосредственные анастомозы дентинных канальцев с отростками цементных клеток. Наличие в канальцах протоплазм этических отростков одонтобластов и нервов, проникающих из пульпы, обеспечивает питание и трофику дентина и эмали.

Однако на протяжении существования зуба в нем и особенно в пульпе нередко происходят регрессивные изменения, связанные с возрастом или болезнями. Пульпа может атрофироваться в результате облитерации и особенно при полном сужении корневого канала. Пульпа обычно некротизируется в результате воспалительного процесса. Естественно, возникает вопрос, как в таких случаях происходит питание дентина и эмали. Среди клиницистов широко распространен термин «мертвый зуб». Этим названием обозначают депульпированный, т. е. лишенный пульпы зуб. Однако этот термин следует признать неправильным. Эмаль и дентин депульпированного зуба, несмотря на гибель пульпы, не омертвевают, так как поступление питательных веществ осуществляется за счет периферических тканей зуба--периодонта (перицемента) и цемента. Описанные выше и детально изученные Е. И. Гавриловым (1952) анастомозы между дентинными канальцами и отростками цементных меток обеспечивают питание депульпированных зубов. Еще в 1910 г. Н. В. Алтухов обратил внимание на значение и роль анастомозов между дентинными канальцами и интерглобулярными пространствами при обмене веществ в дентине.

В дентинных канальцах содержатся протоплазматические отростки периферических клеток пульпы -- одонтобластов. Эти отростки носят название томсовых волокон. Большинство их оканчивается в дентине, остальная часть проникает за эмалево-дентинную границу и заканчивается в оболочках эмалевых волокон. Томсовы волокна окружены двумя ободочками, построенными из аморфного эктоплазматического вещества. Эти оболочки по структуре аналогичны кожице эмали и оболочкам эмалевых волокон.

Большинство зарубежных авторов считает, что нервные волокна проходят только по дентинным канальцам. И. М. Оксман (Молотов, 1953) доказал, что нервы пульпы, проникая в дентин, идут не только по дентинным канальцам, но чаще всего распространяются в основном веществе дентина, независимо от хода дентинных канальцев.

Между сформированным околопульпарным дентином и периферическим слоем пульпы располагается узкая полоса незрелого и необызвествленного дентина, или предентина. Полоса эта носит название дeяфиногeнной, или дентиноидной зоны. Она является непосредственным продуктом пластической, создающей дентин деятельности одонтобластов. Нормально предентин превращается в дентин. При заболевании одонтобластов и связанном с этим угнетении их пластической функции, т. е. способности строить нормальный дентин, нарушается процесс превращения предентина в дентин.

Помимо первичного, различают еще вторичный дeнтин. Этим названием обозначают те пласты дентина, которые отложились после формирования зуба в результате раздражения (обычно патологического) пульпы. Структура вторичного дентина отличается от первичного неправильным расположением и чередованием двиганных канальцев, резким уменьшением их числа. Поэтому вторичный дентин носит еще название иррегулярного (неправильного).

3. Общая характеристика и функции цемента зубов

Цемент зуба - обызвествленная ткань зуба, сходная с костной, но, в отличие от нее, лишенная сосудов и не подверженная постоянной перестройке. Цемент покрывает корни и шейку зуба. По данным большинства исследователей, он в 60-70% частично заходит на эмаль (так называемый коронковый цемент), в 10% -- не доходит до нее (рис. На-в).

Согласно сведениям, полученным в последние годы, непосредственный контакт эмали с цементом встречается значительно чаще, чем считали ранее, а область, наблюдаемая в 10% зубов на светооптическом уровне в виде зазора между цементом и эмалью, в действительности покрыта очень тонким слоем цемента.

Толщина слоя цемента минимальна в области шейки зуба (20-50 мкм) и максимальна у верхушки корня (100-1500 мкм и более, толще в молярах).

Вследствие продолжающегося в течение всей жизни непрерывного ритмического отложения цемента на поверхности корня зуба толщина его слоя утраивается с 20 до 60-70 лет. Прочность полностью обызвествленного цемента несколько ниже, чем расположенного под ним дентина. Он является наименее минерализованной из твердых тканей зуба, но все же содержит больше неорганических веществ (около 60%, преимущественно гидроксиапатита), чем костная ткань (порядка 50%).

Функции цемента зубов:

1) входит в состав поддерживающего аппарата зуба, обеспечивая прикрепление к зубу волокон периодонтальной связки;

2) защищает дентин корня от повреждающих воздействий;

3) выполняет репаративные функции при образовании так называемых резорбционных лакун и при переломе корня зуба;

4) откладываясь в области краев новообразованных волокон регенерирующей периодонтальной связки после ее повреждения, способствует восстановлению ее прикрепления к корню зуба;

5) откладываясь в области верхушки корня, обеспечивает сохранение общей длины зуба, компенсирующее стирание эмали в результате ее изнашивания (пассивное прорезывание).

Строение цемента зубов.

Цемент состоит из клеток (присутствуют не везде) и обызвествленного межклеточного вещества (матрикса), включающего коллагеновые волокна и основное вещество. Его питание осуществляется диффузно со стороны периодонтальной связки. Цемент подразделяется на бесклеточный (первичный) и клеточный (вторичный).

Бесклеточный (первичный) цемент образуется первым в ходе развития и покрывает поверхность корней зуба в виде слоя незначительной (30-230 мкм) толщины -- минимальной в области цементо-эмалевой границы и максимальной у верхушки зуба. Он является единственным слоем цемента, покрывающим шейку зуба, а в некоторых зубах (например, нижних передних резцах) он почти целиком покрывает и корень. Бесклеточный цемент не содержит клеток и состоит из обызвествленного межклеточного вещества, включающего плотно расположенные коллагеновые волокна и основное вещество. На его поверхности располагается слой необызвествленного органического материала -- прецемент (цементоид) -- толщиной 0,25-5,0 мкм, который содержит коллагеновые фибриллы. В нем выявляется исчерченность, направленная перпендикулярно поверхности корня (образована вплетающимися в цемент волокнами периодонтальной связки), а также слоистость, параллельная поверхности корня зуба (вследствие периодичности отложения самого цемента). Линии роста в бесклеточном цементе располагаются близко друг к другу, а его граница с дентином выражена нечетко. .[1]

Клеточный (вторичный) цемент покрывает апикальную треть корня и область бифуркации корней многокорневых зубов. Он располагается поверх бесклеточного цемента, однако иногда (в отсутствие последнего) непосредственно прилежит к дентину. Граница между ними (в отличие от таковой с бесклеточным цементом) выражена отчетливо. Толщина слоя клеточного цемента варьирует в широких пределах (100-1500 мкм) и наиболее значительна в молярах.

Клеточный (вторичный) цемент состоит из клеток (цементоцитов и цементобластов) и обызвествленного межклеточного вещества.

Цементоциты лежат в особых полостях внутри цемента -- лакунах -- и построению сходны с остеоцитами. Между их плазмолеммой и обызвествленной стенкой лакуны находится перицементоцитарное пространство, заполненное органическим материалом. Цементоциты представляют собой уплощенные клетки с умеренно развитыми органеллами и относительно крупным ядром.

Их многочисленные (до 30) ветвящиеся отростки диаметром около 1 мкм достигают в длину 12-15 мкм и связывают соседние клетки благодаря наличию многочисленных щелевых контактов (нексусами) и плотных соединений. Отростки ориентированы преимущественно в сторону периодонтальной связки (источника питания). Канальцы, связывающие лакуны и содержащие отростки цементоцитов, образуют непрерывную систему, которая протягивается от внутренней до наружной поверхностей слоя цемента.

Цементобласты -- клетки, участвующие в образовании цемента и располагающиеся на его поверхности -- в периферических участках периодонтальной связки вокруг корня зуба. Описание этих клеток приведено выше.

При формировании бесклеточного цемента цементобласты отодвигаются кнаружи от выработанного ими межклеточного вещества, а при образовании клеточного цемента -- замуровываются в нем. В последнем случае, погружаясь в цемент, эти клетки постепенно превращаются в цементоциты, уменьшаясь в объеме и утрачивая значительную часть органелл.

Межклеточное вещество клеточного цемента включает волокна и основное вещество. Волокна цемента образованы коллагеном I типа и подразделяются на «собственные», или «внутренние», т. е. образованные клетками цемента и идущие преимущественно параллельно поверхности корня зуба, и «внешние», к которым относят волокна периодонтальной связки -- шарпеевские волокна (ориентированы перпендикулярно поверхности корня).

Соотношение между волокнами обоих типов варьирует в широких пределах в различных участках цемента. В цементе человека и животных, подобно костной ткани, обнаруживается ряд неколлагеновых белков (сиалопротеин и остеопонтин), протеогликаны (верзикан, декорин, бигликан и люмикан), гликозаминогликаны (в бесклеточном цементе отсутствуют).

Межклеточное вещество цемента зуба человека содержит особый белок САР, который обусловливают адгезию периодонтальных фибробластов, цементный фактор роста (англ. Cementum-Derived Growth Factor -- CGF), обладающий выраженной митогенной активностью. Помимо этого, цемент, как и костная ткань, содержит высокие концентрации факторов роста -- таких, как ИФР-1, ИФР-П, ТФР-(31 и ТРФР, которые выделяются в значительных количествах, в особенности, после повреждения и способствуют регенерации этой ткани.

4.Строение и функции пульпы зуба

Пульпа зуба -- это рыхлая волокнистая соединительная ткань, содержащая сосуды и нервы, богатая клеточными элементами, волокнистыми структурами и межклеточным веществом, заполняющая пульповую камеру коронки и канала корня зуба.[16]

Пульпа зуба развивается из зубного сосочка, образованного эктомезенхимой. Расположена пульпа в полости зуба, повторяет его внешние анатомические контуры и делится на коронковую и корневую. В направлении бугров коронки зуба располагаются так называемые "рога" пульпы. Свод коронковой полости в зависимости от возраста пациента может быть расположен на различных уровнях по отношению шейки зуба. В однокорневых зубах коронковая пульпа плавно переходит в корневую, а в многокорневых зубах между коронковой и корневой пульпой есть выраженная граница.

Объем пульпы зависит от возраста: у детей она более массивная, с возрастом ее объем становится меньше в результате отложения вторичного дентина и уменьшения размеров полости зуба. Возраст определяет гистологическое строение пульпы. По мере старения организма количество клеточных элементов уменьшается, а количество волокнистых структур увеличивается. Корневая часть пульпы отличается от коронковой тем, что она более плотная, с преобладанием волокон, что делает ее похожей на перицемент, с которым она и сливается в области верхушки корня зуба. Пульпа зуба находится в непосредственном контакте с периодонтом.

По структуре пульпа зуба является рыхлой соединительной тканью, которая представлена:

клеточным составом,

волокнистыми структурами,

основным веществом,

кровеносными сосудами,

нервами.

Клеточный состав пульпы зуба разнообразен. В зависимости от расположения групп клеток пульпу принято подразделять на три слоя: периферический, промежуточный и центральный.

Периферический слой образован специфическими клетками -- одонтобластами. Одонтобласты -- это высокодифференцированные и специализированные клетки пульпы, располагающиеся в 2--4 ряда; количество рядов уменьшается по мере приближения к верхушечному отверстию корня. Клетка имеет продолговатую, овальную или грушевидную форму, которая с возрастом изменяется на цилиндрическую или колбообразную. По периферии одонтобласт ограничен плазматической мембраной, имеющей двухконтурное строение. В цитоплазме содержится ядро вытянутой формы, хорошо развитая эндоплазматическая сеть с большим количеством рибосом и митохондрий, что свидетельствует об активных энергетических процессах, происходящих в одонтобластах и участии их в синтезе протеинов. В цитоплазме также имеются свободные рибосомы, липидные гранулы, пиницитозные пузырьки, которые свидетельствуют об активном участии клетки в обменных процессах с межканальцевой средой. Одонтобласт имеет два отростка -- центральный и периферический. Центральный отросток не выходит за пределы пульпы зуба, а периферический проникает в дентин, располагаясь в дентинных канальцах, полностью заполняя его просвет. Большая часть отростков достигает эмалево-дентинного соединения, где делятся на две веточки, что, вероятно, и объясняет его высокую чувствительность. Одонтобласты плотно прилежат и контактируют друг с другом, образуя своеобразный клеточный монослой. Основная функция клетки -- образование дентина.

В коронковой части эуба под слоем одонтобластов находится зона Вейля, свободная от клеточных элементов и богатая нервными волокнами.

Промежуточный или субодонтобластический слой представлен большим количеством звездчатых клеток. Эти клетки могут быть различной величины, иметь двухконтурную мембрану, вытя-нутой формы ядро, которое занимает значительную часть клетки, 1--2 ядрышка. В цитоплазме звездчатой клетки содержатся митохондрии, большое количество свободных рибосом, липидные гранулы, крупные вакуоли, аппарат Гольджи. Клетка имеет несколько отростков, длина которых превышает размеры самой клетки. Соединяясь друг с другом, отростки образуют клеточный синцитий. Звездчатые клетки являются предодонтобластами, через стадию фибробласта она дифференцируется в одонтобласт. В промежуточном слое, помимо звездчатых клеток, находятся зрелые фибробласты, гистиоциты (фиксированные макрофаги), а также сеть мелких капилляров и безмякотных нервных волокон.

Центральный слой богат фибробластам. Клетки этого слоя лежат рыхло, вокруг расположены пучки коллагеновых и ретикулиновых волокон, что связано с функцией фибробластов образовывать коллагеновые волокна и межуточное вещество соединительной ткани пульпы зуба. Данный слой богат гистиоцитами (блуждающие клетки), наличие которых связано с дентинообразующей, трофической и защитной функциями клеток. Гистиоцит имеет длинные отростки, которые он легко утрачивает, превращаясь в макрофаг. При внедрении в пульпу бактерий или при нарушении обменных процессов в ней гистиоциты активизируются и приобретают черты подвижных макрофагов, активно фагоцитирующих и переваривающих поглощенные частицы. Макрофаги обеспечивают обновление пульпы, захват и переваривание погибших клеток, микроорганизмов и компонентов межклеточного вещества. Лимфоциты присутствуют в небольшом количестве в здоровой пульпе зуба, преимущественно в периферической ее части, их содержание возрастает при воспалении. Плазматические клетки являются конечной стадией дифференцировки В-клеток, в норме -- единичные, но при воспалении становятся многочисленными, деятельность их связывают с синтезом антител и иммуноглобулинов, отвечающих за гуморальный иммунитет. Тучные клетки присутствуют преимущественно в воспаленной пульпе зуба, располагаются периваскулярно и являются носителями биологически активных веществ -- гепарина, гистамина, эозинофильного хемотаксического фактора и лейкотриена С. Дегрануляцня тучных клеток сопровождается увеличением проницаемости сосудов и сокращением гладких миоцитов.

Волокнистые структуры пульпы зуба подобны соединительнотканным волокнам других органов, представлены в основном коллагеновыми волокнами, располагаются без особой ориентации, формируя достаточно рыхлую сеть в центральной части пульпы (диффузные коллагеновые волокна) и плотный каркас по периферии (пучковые коллагеновые волокна). В молодой пульпе очень мало коллагеновых волокон, однако по мере старения, коллаген вырабатывается все больше н больше, что придает пульпе беловатый оттенок. Независимо от возраста верхушечная часть пульпы плотнее коронковой благодаря большому содержанию коллагеновых волокон. В пульпе также присутствуют ретикулярные волокна Корфа, берущие свое начало от пульпы зуба, проходящие между одонтобластамн в дентин спиралевидными переплетениями в виде тонкой сети, образуя фибриллярную основу последнего. В коронковой и корневой части пульпы присутствуют окситалановые волокна, на периферии их значительно больше, они располагаются хаотично без строгой ориентации. Эластических волокон в пульпе зуба нет.

Основное вещество пульпы зуба содержит высокие концентрации мукополисахаридов. мукопротеинов, гликопротеинов, гексозаминов и др. Из мукополисахаридов наиболее важную роль играют кислые мукополисахариды -- гиалуроновая кислота и производные хондроитинсерной кислоты, от степени полимеризации которых зависят вязкость и тургор пульпы, а следовательно и степень проникновения в нее питательных веществ. Важное значение имеет субстрат -- ферментная система гиалуроновая кислота--гиалуронидаза. При увеличении количества гиалуронидазы происходит деполимеризация основного вещества, что обусловливает большую проницаемость соединительной ткани для микроорганизмов и их токсинов. Основное вещество объединяет клеточные и волокнистые структуры, кровеносные и лимфатические сосуды, нервы, тем самым обеспечивая жизнеспособность пульпы зуба, выполняя трофическую и защитную функции, то есть отвечает за обменные процессы в клетках и волокнах; влияет на функцию гормонов, витаминов и биологически активных веществ; предотвращает и тормозит распространение инфекционного процесса в ткани; обеспечивает передачу питательных веществ и кислорода из кровеносного сосуда в клетку и обратно.

Кровоснабжение пульпы зуба очень обильное. На верхней челюсти оно осуществляется из a.maxillaris interna, а также отходящими от a.infraorbitalis веточками аа. alveolaris superior et posterior. Пульпа жевательной группы зубов верхней челюсти получает питание через rami dentalis аа. alveolaris superior et posterior, нижней -- через rami dentalis a. alveolaris inferior, проходящей в нижнечелюстном канале. Сосуды проникают в пульпу через апикальное и дополнительные естественные перфорационные отверстия корня, входят 2--3 крупными и 1--3 мелкими артериолами в сопровождении 1--2 венул, образуя обильную сосудистую сеть. Под слоем одонтоблас-тов и в самом одонтобластическом слое образуется своеобразное сосудистое сплетение из мелких сосудов и капилляров, анастомозирующих между собой. В коронковой пульпе моляров анастомозируют и сосуды, проникающие из корневой пульпы различных каналов. В пульпе также имеются артериоловенулярные анастомозы, осуществляющие прямое шунтирование кровотока. В состоянии покоя большая часть анастомозов не функционирует. Их активность резко возрастает при воспалении, когда наблюдаются большие перепады давления в пульповой камере и кровь сбрасывается из артериального русла в венозное. Капилляры переходят в венулы, которые выходят из апекса. Как правило, венулы располагаются в пульпе центрально, а артериолы занимают периферическое положение. Количество капилляров зависит от количества клеток в данном участке, нуждающихся в питании. Капилляры обеспечивают питание клеток в соответствии с законом гидростатического и осмотического давления. Питательный продукт движется из кровеносного сосуда в клетку. Продукты распада, скапливающиеся внутри клетки, увеличивают и стимулируют обмен жидкости между клеткой и капилляром за счет увеличения ее проницаемости, что позволяет клетке освободиться от шлаков. .[6]

Иннервация пульпы зуба

Через апикальное отверстие и добавочные каналы в корневую пульпу проникают пучки миелиновых и безмиелиновых нервных волокон. Множественное их разветвление осуществляется в коронковой пульпе, где можно обнаружить как миелиновые, так и безмиелиновые нервные волокна. Расходящиеся пучкн имеют сравнительно прямой ход и постепенно истончаются в направлении дентина. В периферических участках большинство волокон утрачивают миелиновую оболочку, ветвятся и сплетаются друг с другом. Особенно обширная сеть нервных волокон располагается под слоем одонтобластов, где образуется субодонтобластическое нервное сплетение (сплетение Рашкова) и присутствуют как толстые миелиновые, так и тонкие безмиелиновые волокна. Безмиелиновые волокна проходят через слой одонтобластов и в виде кустиков проникают в дентин, достигая эмалево-дентинного соединения, в результате чего данная зона является наиболее чувствительной. Иннервация пульпы в области корня зуба скудная, это связано с отсутствием сплетения Рашкова.

Функции пульпы зуба

Пульпа зуба несет на себе несколько функций:

трофическую,

защитную,

рецепторная,

пластическую.

Трофическая функция пульпы определяется хорошо развитой кровеносной и лимфатической системами, основным веществом, которые обеспечивают клеточные элементы пульпы питательными веществами, а также освобождают клетку от продуктов метаболизма. Твердые ткани зуба (дентин, цемент) не имеют кровеносных сосудов, их питание осуществляется отростками одонтобластов. Частично дентин и цемент снабжаются кровью через сосудистую систему периодонта. Трофика эмали, хотя и в меньшей степени, также осуществляется через отростки одонтобластов и в большей степени через эмаль из ротовой жидкости.

Защитная функция (барьерная) пульпы зуба осуществляется клетками ретикулоэндотелиальной системы, в частности гистиоцитами, которые при патологических процессах в пульпе превращаются в подвижные макрофаги и играют роль фагоцитов. Защитную роль выполняют плазматические клетки пульпы зуба, вырабатывая антитела. Фибробласты принимают участие в образовании фиброз-ной капсулы вокруг патологического очага, возникшего в пульпе. Защитная функция проявляется также образованием вторичного и третичного дентина пульпой зуба.

Рецепторная функция проявляется тем, что пульпа зуба обладает высокой болевой и температурной чувствительностью. Она имеет собственные рецепторы, часть из них связана с иннервацией слоя одонтобластов и дентина, а часть осуществляет иннервацию соединительной ткани и кровеносных сосудов самой пульпы.[5]

Пластическая функция пульпы заключается в образовании дентина, благодаря активной деятельности расположенных в ней одонтобластов. Первичный дентин образуется в процессе развития тканей зуба, вторичный или заместительный дентин-- в процессе жизнедеятельности зуба как органа, третичный дентин образуется в ответ на какое-либо раздражение.

5.Строение пародонта

Пародонт (греч. около, зуб) -- сложный морфофункциональный комплекс тканей, окружающих и удерживающих зуб в альвеоле.

Пародонт состоит из:

десны, периодонта, цемента и альвеолярных отростков.

Функции пародонта:

· Трофическая. Определяется хорошо выраженной разветвленной кровеносной и лимфатической сетью и содержанием различных видов нервных рецепторов

· Опорно-удерживающая функция. Осуществляется сложной структурой связочного аппарата периодонта, десны и альвеолярного отростка, благодаря которой зуб фиксирован в альвеоле. Многочисленные коллагеновые волокна, расположенные между стенкой альвеолы и цементом корня, удерживают зуб в подвешенном состоянии.

· Амортизирующая. Обеспечивает равномерным распределением силы жевательного давления по зубному ряду и альвеолярному отростку верхней челюсти и альвеолярной части нижней челюсти. Этому способствует наличие гидравлической подушки из рыхлой соединительной ткани, клубочковой сети кровеносных и лимфатических сосудов, а также тканевой жидкости.

· Барьерная. Определяется морфологической целостностью тканей пародонта, защитными свойствами покровного эпителия десны, его способностью к ороговению, наличием плазматических, лимфоидных и тучных клеток, обеспечивающих постоянный фагоцитоз, содержанием ферментов и их ингибиторов, роданидов и других биологически активных веществ. Защитная функция десны проявляется и в эмиграции лейкоцитов в ротовую жидкость, которая осуществляется преимущественно десневыми сосочками.

· Пластическая. Обеспечивает высокую регенеративную способность тканей пародонта за счет содержания фибробластов, тучных клеток, цементо- и остеобластов, адвентициальных клеток, высокого уровня энергетических процессов и интенсивного транскапиллярного обмена.

· Рефлекторная регуляция. Осуществляется обширным нервно-рецепторным аппаратом пародонта и слизистой оболочки полости рта, регулирующим силу жевательного давления в зависимости от характера пищи, полноценности зубного ряда, пародонта и слизистой оболочки.

Периодонт

Периодонт (лат. Periodontium) -- комплекс тканей, находящихся в щелевидном пространстве между цементом корня зуба и пластинкой альвеолы. Его средняя ширина составляет 0,20-0,25 мм. Наиболее узкий участок периодонта находится в средней части корня зуба, а в апикальном и маргинальном отделах его ширина несколько больше.

Развитие тканей периодонта тесно связано с эмбриогенезом и прорезыванием зубов. Начинается процесс параллельно с формированием корня зуба. Рост волокон периодонта происходит как со стороны цемента корня, так и со стороны кости альвеолы, навстречу друг - другу. С самого начала своего развития волокна имеют косой ход и располагаются под углом к тканям альвеолы и цемента. Окончательное развитие периодонтального комплекса наступает после прорезывания зуба. В то же время, сами ткани периодонта участвуют в этом процессе. Необходимо отметить, что, несмотря на мезодермальное происхождение составных компонентов периодонта, в его нормальном формировании принимает участие эктодермаэпителиальное корневое влагалище.

Основу периодонта составляет соединительная ткань. Ее главной структурой являются коллагеновые волокна. Они составляют основу периодонтальной связки и соединяют цемент зуба с костной тканью альвеолы. Несмотря на отсутствие эластичности, волокна коллагена обеспечивают некоторую подвижность зуба в лунке, в основном за счет незначительной извитости их хода. Участки волокон, проникающие в цемент и костную ткань альвеолы, носят название прободающих - шарпеевских волокон. Глубина их проникновения в цемент составляет не более.3-5 м.т, а в кость альвеолы - до 20 м.т.. В периодонтальной щели пучки коллагена, идущие от цемента и альвеолы, образуют выраженное промежуточное сплетение, которое обеспечивает адаптацию всего тканевого комплекса к меняющимся нагрузкам на зуб. Коллаген, входящий в состав периодонтальной связки по своим физикобиохимическим свойствам является типичным, но его фибриллы имеют сравнительно малый диаметр - не более 55 м.т Кроме типичных коллагеновых волокон в периодонте имеются незрелые - эластические - окситалановые. Они достигают в длину нескольких миллиметров и идут параллельно цементу корня зуба, пересекая пучки коллагена под прямым углом. Этим волокнам приписывают значительную роль в процессе регуляции и распределения кровотока при физической нагрузке на периодонт.

Основное вещество периодонта занимает 60% от всех других компонентов соединительной ткани. Причем около 70% гелеобразного аморфного вещества составляет вода. Такое необычно большое процентное содержание основного вещества со значительным количеством воды играют важную роль в процессе амортизации нагрузки.

Клеточные элементы, входящие в периодонт чрезвычайно разнообразны. Они представлены как оседлыми, так и подвижными клетками. Наибольшую популяцию клеток представляют фибробласты. Они располагаются по ходу коллагеновых волокон. В процессе жизни часть из них может дифференцироваться в стационарные клеточные элементы - фиброциты, другая - в миофибробласты, способные к сократительной активности. Другую популяцию клеток составляют цементоциты и цементобласты, последние непосредственно прилежат к поверхности цемента корня зуба и участвуют в построении вторичного цемента. Остеобласты располагаются по поверхности альвеол и выполняют функцию образования кости. Кроме того, в тканях периодонта в небольшом количестве встречаются остеокласты, одонтокласты, макрофаги и клеточные элементы специфического звена иммунной системы (лимфоциты и плазматические клетки). Причем, в маргинальном отделе это в основном плазмоциты, синтезирующие IgA. Кроме этих клеточных элементов в периодонте в незначительном количестве находится тучные клетки, зозинофильные и нейтрофильные лейкоциты.

Характерной особенностью периодонтальной ткани является наличие эпителиальных островков Маляссе - остатки редуцированного эпителиального корневого влагалища. Объем и количество островков Маляссе имеет индивидуальные особенности. С возрастом, после 30 лет, их количество значительно снижается, но они никогда полностью не исчезают.

Кровоснабжение периодонта осуществляется по верхней и нижней альвеолярным артериям. Наибольшая часть артериальной крови поступает к тканям периодонта по артериолам из костномозговых пространств альвеолярного отростка через гаверсовы и фальксмановы каналы, а также по ветвям зубной артериолы дающей пучок к периодонту. Сосудистая сеть связочного аппарата соседних зубов объединена в систему, обеспечивающую возможность коллатерального кровотока. Кровеносные сосуды периодонта образуют несколько сплетений. Наружное, расположенное ближе к лунке, среднее, и капиллярное, расположенное рядом с цементом корня. Отток крови из периодонта осуществляется во внутрикостные вены.

Лимфатическая система периодонтальной связки представлена слепо начинающимися в соединительной ткани капиллярами и развита относительно слабо. Основная масса лимфатических капилляров идет по ходу периодонтальных венул. Отток лимфы происходит в околоушные (зубы верхней челюсти), подчелюстные (нижние резцы, премоляры) и подъязычные лимфатические узлы. Этим объясняется их увеличение при некоторых заболеваниях периодонта.

Иннервация периодонта осуществляется как афферентными, так и эфферентными волокнами тройничного нерва. Афферентные волокна проникают в ткань двумя путями - через костномозговые каналы и отходят от зубного нерва. В периодонте они образуют нервное сплетение Их окончания являются в основном механо- и ноцирепторами (болевыми рецепторами). Наибольшая плотность рецепторов отмечается в области верхушек зубов, за исключением резцов, где они распределены равномерно по всей периодонтальной щели. Имеющиеся симпатические нервные волокна участвуют в регуляции кровотока, парасимпатических волокон в периодонте не описано.

Особенностью ткани периодонта является высокая скорость ее обновления. Это касается не только и не столько клеточного состава, сколько коллагеновых волокон и основного вещества. С возрастом процессы обновления значительно замедляются, отмечается уменьшение числа макрофагов, тучных клеток и плазмоцитов. Постепенно нарастают процессы редукции капиллярного русла, уменьшается число афферентных и эфферентных нервных волокон.

Кроме выше изложенного, структурную целостность периодонта обеспечивает эмалевое прикрепление. Оно представлено 10-20 рядами клеток многослойного плоского эпителия, полное обновление которых происходит за 4-8 дней. Это значительно превосходит процессы физиологического обновления клеток эпителия десны и обеспечивает не только механическую защиту входа в маргинальную часть периодонта, но и процессы элиминации потенциальных повреждающих факторов.

Таким образом, периодонт представляет собой сложную единую морфофункциональную структуру, выполняющую целый ряд функций:

· Механостатическая или анатомическая функция заключается в удержании зуба в альвеоле (периодонт является связкой, соединяющей зуб с альвеолой).

· Распределительно-регулирующая функция заключается в равномерном перераспределении нагрузки на зуб и ткани альвеолы при жевании. Ее обеспечивают основное вещество и волокна периодонта

· Защитная функция, выражается в том, что компоненты периодонта представляют собой особый гистогематический барьер и обеспечивают структурный и антигенный гомеостаз собственных и окружающих тканей.Реализация этого гарантируется как специфическими, так и неспецифическими факторами защиты.

· Трофическая функция обеспечивается хорошо развитой сосудистой и нервной сетью.

· Пластическая функция тесно связана с защитной и обеспечивает поддержание структуры и репарацию тканей как самого периодонта, так и тканей, контактирующих с ним.

· Сенсорная функция реализуется через богатую сеть рецепторного аппарата периодонтальной щели и тесно связана со всеми выше перечисленными.

Заключение

Природа позаботилась о зубной эмали и поэтому ткани оперативно реагируют на появление кариеса, сигнализируя об этом. И стараясь сделать все возможное для того, чтобы сохранить зубы в нормальном состоянии. Итак, система зубных тканей состоит из:

Ткани, представляющей собой достаточно твердое покрытие и обосновавшейся на зубной коронке. Зачастую она имеет желтый или серый цвет. В состав эмали входят соединения неорганического характера такие как: фторапатит и гидроксиапатит, а также карбонапатит и непосредственно вода и вещества органического типа.

Следует отметить очень важный факт: питательные компоненты попадают в ткани благодаря слюнным железа или посредством пульпы либо дентина, так что зуб в любом случае всегда будет получать необходимые витамины и кальций.

Эмаль не может возобновляться, ведь в ее составе отсутствуют клетки. При употреблении очень жесткой пищи, горячей или холодной она подвергается негативному влиянию и стирается, а, значит, дентин оголяется и поэтому в зубе может возникать болезненность. При гистологическом строении зуба следует подразумевать длительный процесс, начало которого основано на эмбриогенезе и завершается ближе к 25 годам.

Дентинно-эмалевое соединение - это специальные гребешки, соединенные в единую систему. Они помогают в разграничении дентина и эмали и прочно держатся на своем месте, так как имеют неровную форму.Дентин представляет собой основу всего зуба. Он очень прочный, но одновременно с этим эластичный. Благодаря этому зубному составу можно отметить появление желтизны так характерной в стертых зонах.Он состоит как органических, так и неорганических веществ, которые составляют большую часть и только на воду приходится всего 10 %. Его структура напоминает канальцевую, благодаря чему зуб насыщается полезными веществами способствующими дальнейшему обновлению, ведь правильное строение зависит от наличия нужных питательных веществ. Предентин помогает в образовании пульпарной камеры. Именно в этой части можно отыскать зону, где растет дентин и проследить его развитие.

...

Подобные документы

  • Биохимический состав зуба. Стадии процесса минерализации тканей зуба. Обмен веществ в эмали. Функции пульпы и строение дентина. Последствия гиповитаминоза и гормональная регуляция гомеостаза кальция. Причины и лечение кариеса. Состав и функции слюны.

    презентация [4,1 M], добавлен 02.06.2016

  • Зубы сменного и постоянного прикуса. Краткое описание строения зуба. Анатомические признаки, позволяющие определить групповую принадлежность зуба. Расположение зубов в альвеолярном отростке. Связочный аппарат и ткани зуба. Дентин - основная масса зуба.

    доклад [21,2 K], добавлен 05.06.2010

  • Рассмотрено строение пульпы зуба, ее функция и физиология. Сосуды и нервы пульпы. Особенности полости зуба во временных зубах. Корневые каналы временных и несформированных постоянных зубов. Функциональные признаки развития пульпы после прорезывания зуба.

    презентация [1,2 M], добавлен 17.06.2019

  • Периодонт как тип соединительной ткани, находящейся между корнем зуба и альвеолярной пластинкой, его строение и составные части. Классификация и типы волокон. Главные функции периодонта, причины его воспаления и подходы к лечению, используемые лекарства.

    презентация [3,3 M], добавлен 18.09.2016

  • Образование пелликулы зуба после прорезывания, вследствие утраты кутикулы и эррозивного воздействия слюны и микроорганизмов поверхность эмали. Значение состава и свойств пелликулы для проницаемости в поверхностном слое эмали и развития кариеса зубов.

    презентация [540,1 K], добавлен 21.08.2015

  • Прогрессирующее поражение эмали и дентина, возникающее при неправильной чистке зубов и при механическом воздействии на них. Выявление границ на вестибулярной поверхности зуба. Слабые болевые ощущения. Степени поражения, исходя из глубины дефекта тканей.

    презентация [1,1 M], добавлен 10.04.2019

  • Структура и основные элементы зуба, его уровни и компоненты. Зубодесневое соединение. Этапы развития зубов в течение жизни человека, особенности каждого периода. Отличие молочных зубов от постоянных. Развитие корней и цемента, возрастные изменения.

    контрольная работа [22,0 K], добавлен 18.04.2012

  • Кальций, фосфор. Роль кальция в организме человека. Роль фосфора в организме человека. Строение зуба. Эмаль. Дентин. Цемент. Пульпа. Болезни зубов. Кариес зубов. Деминерализация. Зубные пасты. Назначением зубной пасты. Классификация зубных паст.

    дипломная работа [383,5 K], добавлен 21.08.2007

  • Строение пародонта - сложного морфофункционального комплекса тканей, окружающих и удерживающих зуб в альвеоле. Его трофическая, опорно-удерживающая, амортизирующая и пластическая функции. Классификация болезней пародонта, их течение, стадии и лечение.

    презентация [1,6 M], добавлен 24.05.2016

  • Определение понятия и функции пульпы как сложного соединительнотканного органа, который обеспечивает жизнедеятельность зуба. Гистологические зоны, структурные и обызвествленные элементы пульпы, ее кровоснабжение, лимфатические сосуды и иннервация.

    реферат [4,7 M], добавлен 27.12.2011

  • Нарушения развития и прорезывания зубов. Аномалии размеров и формы. Изменение цвета зубов в процессе формирования и после прорезывания. Повышенное стирание зубов. Перелом коронки зуба без повреждения пульпы. Оставшийся корень зуба. Флюороз и кариес зубов.

    презентация [170,4 K], добавлен 11.05.2015

  • Клиническое описание вывихов и переломов как острых травм зубов. Условия изменения пространственного соотношения зуба со своей альвеолой при неполных и полных вывихах. Разрушение целостности коронки и лунки зуба при переломах. Виды трещин на эмали зубов.

    презентация [1,1 M], добавлен 01.03.2015

  • Определение, функции и строение лимфоидной ткани слизистых оболочек. Изучение лимфоэпителиального глоточного кольца Пирогова, миндалин. Строение сгруппированных лимфоидных узелков и червеобразного отростока. Рассмотрение реакции ткани на инфекции.

    реферат [6,1 M], добавлен 24.08.2014

  • Показания к отбеливанию зуба. Определение причин изменения цвета эмали. Факторы, влияющее на отбеливание, состав препаратов, осложнения, противопоказания. Этапы отбеливания депульпированных, витальных зубов. Нововведения в технологии отбеливания зубов.

    презентация [4,2 M], добавлен 25.12.2014

  • Одонтома как опухоль развивающаяся из избытка эмбриональных тканей развивающегося зуба пульпы, дентина, эмали и цемента. Классификация, клиническая картина. Амелобластома: понятие, рентгенологическая картина. Одонтогенная фиброма, особенности лечения.

    презентация [9,0 M], добавлен 15.10.2017

  • Строение и функции пародонта. Факторы риска возникновения и развития его заболеваний, их симптомы, методы, средства профилактики. Регистрация состояния тканей пародонта с помощью пародонтальных индексов. Клиника пародонтоза - поражения околозубных тканей.

    реферат [468,2 K], добавлен 22.12.2013

  • Аномалии развития зубов. Распространённость и причины развития. Гиперплазия эмали или эмалевые "жемчужины". Наследственные поражения твердых тканей зуба. Исследование знаний населения о некариозных поражениях зубов, возникающих до прорезывания зубов.

    дипломная работа [952,9 K], добавлен 23.10.2015

  • Расположение и форма легких. Строение легких. Разветвление бронхов. Макро-микроскопическое строение легкого. Междольковая соединительная ткань. Альвеолярные ходы и мешочки. Сегментарное строение легких. Бронхолегочные сегменты.

    реферат [20,6 K], добавлен 22.02.2007

  • Морфологические признаки элементов мышечных тканей. Виды тканей: мезенхимные, эпидермальные, нейральные, соматические и целомические. Возрастные особенности мышечных волокон. Ультраструктурная организация кардиомиоцитов и строение гладкого миоцита.

    презентация [1,9 M], добавлен 15.09.2014

  • Расположение и форма легких, их функции и роль в обеспечении жизнедеятельности организма. Анатомическое строение легких. Особенности разветвления (бифуркации) бронхов. Микро- и макроскопическое строение ткани. Характеристика сегментарного строения.

    презентация [755,4 K], добавлен 18.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.