Типы хромосомных аберраций

Предпосылки для возникновения хромосомных аберраций, появление в клетке двунитевых разрывов ДНК. Эволюционно отработанный механизм, позволяющий сохранять постоянной физико-химическую и морфологическую организацию хромосом в ряду клеточных поколений.

Рубрика Медицина
Вид статья
Язык русский
Дата добавления 10.03.2019
Размер файла 807,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Типы хромосомных аберраций

Types of chromosome aberrations

Лукманова Айгуль Венировна

Тюменский государственный медицинский университет

Министерства здравоохранения Российской Федерации

Введение

Согласно проведенным исследованиям, мутация определяется как стойкое изменение структуры генетического материала. Что значит «стойкое»? Оно передается по наследству потомкам организма, имеющего мутантную ДНК. Происходит это следующим образом. Одна клетка получает неправильную ДНК. Она делится, а две дочерние копируют ее строение полностью, то есть они тоже содержат измененный генетический материал. Далее таких клеток становится все больше, и, если организм переходит к размножению, его потомки получают сходный мутантный генотип.

Мутации обычно не проходят бесследно. Некоторые из них меняют организм настолько, что результатом этих изменений становится летальный исход. Часть из них заставляет организм функционировать по-новому, снижая его способности к адаптации и приводя к серьезным патологиям. И очень малое количество мутаций приносит организму пользу, повышая тем самым его способность адаптироваться к условиям окружающей среды.

Выделяют мутации генные, хромосомные и геномные. Такая классификация основывается на различиях, происходящих в разных структурах генетического материала. Хромосомные мутации, таким образом, затрагивают строение хромосом, генные - последовательность нуклеотидов в генах, а геномные вносят изменения в геном всего организма, прибавляя или отнимая целый набор хромосом.

Поговорим о хромосомных мутациях более подробно.

Хромосомные мутации - это структурные изменения отдельных Х-хромосом, как правило, видимые в световом микроскопе. В хромосомную мутацию вовлекается большое число (от десятков до нескольких сотен) генов, что приводит к изменению нормального диплоидного набора. Несмотря на то, что хромосомные аберрации, как правило, не изменяют последовательность ДНК в специфических генах, изменение числа копий генов в геноме приводит к генетическому дисбалансу вследствие недостатка или избытка генетического материала.

Возникновение хромосомных аберраций

Основной предпосылкой для возникновения хромосомных перестроек является появление в клетке двунитевых разрывов ДНК, то есть разрывов обеих нитей спирали ДНК в пределах нескольких пар оснований. Двунитевые разрывы ДНК возникают в клетке спонтанно или под действием различных мутагенных факторов: физической (ионизирующее излучение), химической или биологической (транспозоны, вирусы) природы. Двунитевые разрывы ДНК возникают запрограммированно во время профазы I мейоза, а также при созревании Т- и Bлимфоцитов во время специфической соматической V(D)J рекомбинации. Нарушения и ошибки процесса воссоединения двунитевых разрывов ДНК приводят к появлению хромосомных перестроек.

Причиной многих хромосомных перестроек может быть неравноценный кроссинговер (дупликация и делеция). При хромосомных аберрациях нарушение структуры хромосомы приводит, с одной стороны, к изменению количества наследственной информации в генотипе, при котором нарушается сбалансированность по дозам отдельных генов, например увеличение доз генов при дупликации или транслокации и уменьшение -- при делеции. С другой стороны, может измениться морфология хромосом, появляются кольцевые, полицентрические хромосомы. Это приводит к нарушению считывания информации, оставшейся в составе хромосом, а также к нарушению их расхождения при делении клеток. Кроме того, при хромосомных аберрациях возможно нарушение взаимодействия генов по типу «эффекта положения». Конечным результатом таких нарушений являются серьезные и множественные аномалии развития. Например, у человека делеция короткого плеча одной из хромосом группы В приводит к развитию аномалии, известной как синдром «кошачьего крика»

Виды хромосомных мутаций

Различают внутрихромосомные, межхромосомные и изохромосомные аберрации.

1. Внутрихромосомные аберрации -- аберрации в пределах одной хромосомы. К ним относятся делеции, инверсии и дупликации.

Делеция -- утрата одного из участков хромосомы (внутреннего или терминального), что может стать причиной нарушения эмбриогенеза и формирования множественных аномалий развития. Различают терминальные (утрата концевого участка хромосомы) и интеркалярные (утрата участка на внутреннем участке хромосомы) делеции.

хромосомная аберрация

Если после образования делеции хромосома сохранила центромеру, она аналогично другим хромосомам передается при делении, участки же без центромеры как правило утрачиваются. При конъюгации гомологов во время кроссинговера у нормальной хромосомы на месте делеции в мутировавшей хромосоме образуется т. н. делеционная петля, которая компенсирует отсутствие делетированного участка.

Исследованные делеции редко захватывает протяженные участки хромосом, обычно такие аберрации летальны. Самым хорошо изученным заболеванием, обусловленным делецией, является синдром кошачьего крика, описанный в 1963 году Джеромом Леженом. В его основе лежит делеция небольшого участка короткого плеча 5 хромосомы. Для больных характерен ряд отклонений от нормы: нарушение функций сердечно-сосудистой, пищеварительной систем, недоразвитие гортани (с характерным криком, напоминающим кошачье мяуканье), общее отставание развития, умственная отсталость, лунообразное лицо с широко расставленными глазами. Синдром встречается у 1 новорожденного из 50000. Другой интересной делецией является делеция в гене, кодирующем рецептор CCR5. Этот рецептор используется вирусом иммунодефицита человека (ВИЧ) для распознавания своей цели -- Т-лимфоцитов. Продукта гена с делецией получил название CCR5-Д32, этот вариант CCR5 не узнается ВИЧ, и носители такой мутации к ВИЧ невосприимчивы (это порядка 10 % европейцев). Современные методы выявления хромосомных нарушений, прежде всего флуоресцентная гибридизация in situ, позволили установить связь между микроделециями хромосом и рядом врождённых синдромов. Микроделециями, в частности, обусловлены давно описанные синдром Прадера-Вилли. Возникает она из-за микроделеции участка хромосомы 15. Что интересно, эта хромосома должна быть обязательно получена организмом от отца. В результате микроделеции затронутыми оказываются 12 генов. У больных с этим синдромом отмечаются умственная отсталость, ожирение, а также у них обычно маленькие стопы и кисти рук.Еще одним примером таких хромосомных болезней может служить синдром Сотоса. Происходит микроделеция на участке длинного плеча хромосомы 5. Клиническая картина этого наследственного заболевания характеризуется быстрым ростом, увеличением в размерах кистей рук и стоп, наличием выпуклого лба, некоторой задержкой психического развития. Частота встречаемости этого синдрома не установлена.Хромосомные мутации, точнее, микроделеции на участках 13 и 15 хромосом, вызывают соответственно опухоль Вильмса и ретинбластому. Опухоль Вильмса - это рак почек, который возникает преимущественно у детей. Ретинобластома - это злокачественная опухоль сетчатки, которая также встречается у детей. Эти заболевания лечатся, если диагностика их проведена на ранних стадиях. В некоторых случаях врачи прибегают к оеративному вмешательству.

Дупликация -- удвоение (или умножение) какого-либо участка хромосомы. Дупликации появляются в результате неравного кроссинговера (в этом случае второй гомолог несет делецию) или в результате ошибки в ходе репликации. При конъюгации хромосомы с дупликацией и нормальной хромосомы как и при делеции формируется компенсационная петля.

Практически у всех организмов в норме наблюдается множественность генов, кодирующих рРНК (рибосомальную РНК). Это явление назвали избыточностью генов. Так у E. coli на рДНК (ДНК, кодирующее рРНК) приходится 0,4 % всего генома, что соответствует 5-10 копиям рибасомальных генов.

Другой пример дупликации -- мутация Bar у Drosophila, обнаруженная в 20-х годах XX века Т. Морганом и А. Стертевантом. Мутация обусловлена дупликацией локуса 57.0 Xхромосомы. У нормальных самок (B+/B+) глаз имеет 800 фасеток, у гетерозиготных самок (B+/B) глаз имеет 350 фасеток, у гомозигот по мутации (B/B) -- всего 70 фасеток. Обнаружены также самки с трижды повторенным геном -- double Bar (BD/B+).

В 1970 году Сусумо Оно в монографии «Эволюция путем дупликации генов» разработал гипотезу об эволюционной роли дупликаций, поставляющих новые гены, не затрагивая при этом функций исходных генов. В пользу этой идеи говорит близость ряда генов по нуклеотидному составу, кодирующих разные продукты. Это трипсин и хемотрипсин, гемоглобин и миоглобин и ряд других белков.

Синдром частичной трисомии по короткому плечу хромосомы 9. Возникает это заболевание по причине несбалансированных дупликаций в девятой хромосоме, в результате чего генетического материала в этой хромосоме становится больше. Всего известно более 200 случаев таких мутаций у человека.Клиническая картина описывается задержкой физического развития, легкой умственной отсталостью, характерным выражением лица. Пороки сердца обнаруживаются у четвертой части всех больных.При синдроме частичной трисомии короткого плеча хромосомы 9 прогноз все же относительно благоприятный: большая часть больных доживают до пожилого возраста.

Инверсия -- встраивание фрагмента хромосомы на прежнее место после поворота на 180°. В результате нарушается порядок расположения генов.

Различают парацентрические (инвертированный фрагмент лежит по одну сторону от центромеры) и перицентрические (инвертированный фрагмент лежит по разные стороны от центромеры) инверсии. При инверсиях не происходит потери генетического материала, потому как таковые инверсии как правило не влияют на фенотип, но если в инверсионной гетерозиготе (то есть организме, несущем как нормальную хромосому, так и хромосому с инверсией) происходит кроссинговер, то существует вероятность формирования аномальных хроматид. В случае парацентрической инверсии образуется одна нормальная и одна инвертированная (фенотипически нормальная) хроматиды, дицентрическая хроматида с дупликацией и делецией (при расхождении хроматид она обычно разрывается на две) и ацентрическая хроматида с дупликацией и делецией (обычно утрачивается). В случае перицентрической инверсии образуется одна нормальная и одна инвертированная хроматиды, а также две хроматиды с дупликацией и делецией. Гаметы, несущие дефектные хромосомы, обычно не развиваются или погибают на ранних этапах эмбриогенеза. Но гаметы с инвертированной хромосомой развиваются в организмы, 50 % гамет которых нежизнеспособны. Т.о. мутация сохраняется в популяции. У человека наиболее распространенной является инверсия в 9 хромосоме, не вредящая носителю, хотя существуют данные, что у женщин с этой мутацией существует 30 % вероятность выкидыша.

2. Межхромосомные аберрации -- обмен фрагментами между негомологичными хромосомами. Они получили название транслокаций.

Различают три варианта транслокаций: реципрокные (обмен фрагментами двух хромосом), нереципрокные (перенос фрагмента одной хромосомы на другую), робертсоновские (соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч, в результате образуется одна метацентри-ческая хромосома вместо двух акроцентрических).

Для формирования транслокации необходимым условием является повреждение ДНК в виде двунитевых разрывов с последующей ошибкой репарации: неправильным воссоединением разрывов при репарации путём негомологичной рекомбинации или ошибочным выбором паралогичной вместо гомологичной последовательности ДНК при репарации двунитевого разрыва ДНК путём гомологичной рекомбинации. Двунитевые разрывы ДНК могут возникать вследствие воздействия экзогенными факторами, такими как ионизирующее излучение или химиотерапия, а также вследствие воздействия на ДНК эндогенно образующимися свободными радикалами. Двунитевые разрывы ДНК возникают запрограммированно во время профазы I мейоза, а также при созревании Т- и B-лимфоцитов во время специфической соматической V(D)J рекомбинации. Двунитевой разрыв ДНК может также возникнуть в клетке, если репликационная вилка встретит какое-либо препятствие, например, в виде однонитевого разрыва ДНК или ДНК-аддукта

В медицинской генетике для обозначения транслокаций используют Международную систему по цитогенетической номенклатуре человека (The International System for Human Cytogenetic Nomenclature -- ISCN). Запись t(A;B)(p1;q2) обозначает транслокацию между хромосомами А и В. Информация во вторых скобках даётся дополнительно для локализации точек разрыва внутри хромосомы А и В соответственно. Буква p означает короткое плечо хромосомы, буква q -- длинное плечо, цифры после p и q относятся к нумерации хромосомных бэндов. Для Робертсоновских транслокаций используется сокращение der или rob, например, der(13;14)(q10;q10) или rob(13;14)(q10;q10)

Реципрокные транслокации не сопровождаются утратой генетического материала, их также называют сбалансированными транслокациями, они, как правило, не проявляются фенотипически. Однако, у носителей реципрокных транслокаций половина гамет несёт несбалансированный генетический материал, что приводит к снижению фертильности, повышенной вероятности спонтанных выкидышей и рождения детей с врождёнными аномалиями. Частота гетерозигот по реципрокным транслокациям оценивается как 1 на 600 супружеских пар. Реальный риск рождения детей с несбалансированным кариотипом определяется характером реципрокной транслокации (спецификой хромосом, вовлеченных в перестройку, размерами транслоцированных сегментов) и может достигать 40 %.

Примером реципрокной транслокации может служить транслокация типа «филадельфийская хромосома» (Ph) между хромосомами 9 и 22. В 95 % случаев именно эта мутация в гемопоэтических клетках-предшественниках является причиной хронического миелобластного лейкоза. Эту перестройку описали П. Новелл (P. Nowell) и Д. Хангерфорд (D. Hungerford) в 1960 году и назвали в честь города в США, где оба работали. В результате этой транслокации ген ABL1 из хромосомы 9 объединяется с геном BCR хромосомы 22. Активность нового химерного белка приводит к нечувствительности клетки к воздействию факторов роста и вызывает её безудержное деление. Примерно пять процентов носителей сбалансированных транслокаций имеют врождённые аномалии развития и/или задержку развития, причём в половине таких случаев наблюдается умственная отсталость. Чаще всего патология связана с тем, что точка разрыва находится внутри гена или внутри его регуляторных последовательностей. Аномальный фенотип может формироваться также за счёт изменения экспрессии гена за счёт так называемого эффекта положения.

Робертсоновские транслокации[en] получили своё название по имени американского исследователя Уильяма Робертсона (W. R. B. Robertson; 1881--1941), впервые описавшего такие перестройки в 1916 году при изучении кариотипов близких видов саранчовых.

Робертсоновские транслокации являются одним из наиболее распространенных типов врождённых хромосомных аномалий у человека. По некоторым данным, их частота составляет 1:1000 новорождённых. Их носители фенотипически нормальны, однако у них существует риск самопроизвольных выкидышей и рождения детей с несбалансированным кариотипом, который существенно варьирует в зависимости от хромосом, вовлеченных в слияние, а также от пола носителя. Большинство Робертсоновских транслокаций затрагивают 13-ю и 14-ю хромосомы. В структуре обращаемости на пренатальную диагностику лидерами оказываются носители der(13;14) и der(14;21). Последний случай, а именно Робертсоновская транслокация с участием 21-й хромосомы, приводит к так называемому «семейному» (наследуемому) синдрому Дауна.

Робертсоновские транслокации, возможно, являются причиной различий между числом хромосом у близкородственных видов. Показано, что два плеча 2-й хромосомы человека соответствуют 12-й и 13-й хромосомам шимпанзе. Возможно, 2-я хромосома образовалась в результате робертсоновской транслокации двух хромосом обезьяноподобного предка человека. Таким же образом объясняют тот факт, что различные виды дрозофилы имеют от 3 до 6 хромосом. Робертсоновские транслокации привели к появлению в Европе нескольких видов-двойников (хромосомные расы) у мышей группы видов Mus musculus, которые, как правило, географически изолированы друг от друга. Набор и, как правило, экспрессия генов при робертсоновских транслокациях не изменяются, поэтому виды практически неотличимы внешне. Однако они имеют разные кариотипы, а плодовитость при межвидовых скрещиваниях резко понижена.

В случае нереципрокной транслокации происходит перемещение (транспозиция) поврежденного участка в пределах той же хромосомы либо в хромосому другой пары, но без взаимного (реципрокного) обмена.

3. Изохромосомные аберрации -- образование одинаковых, но зеркальных фрагментов двух разных хромосом, содержащих одни и те же наборы генов. Это происходит в результате поперечного разрыва хроматид через центромеры (отсюда другое название -- центрическое соединение). Следовательно, человек с 46 хромосомами, одна из которых изохромосома, имеет единственную копию генетического материала одного плеча (частичную моносомию) и три копии генетического материала другого плеча (частичную трисомию).

Изохромосомы состоят из двух копий одного плеча хромосомы, соединенных центромерой таким образом, что плечи образовавшейся хромосомы представляют собой зеркальные «отражения» друг друга. В определенном смысле изохромосома представляет собой гигантскую инвертированную дупликацию размером с целое плечо и делецию другого плеча. Пациенты с 46 хромосомами, из которых одна представляет собой изохромосому, являются моносомиками по генам утраченного хромосомного плеча и трисомиками по генам, присутствующим в изохромосоме. Если изохромосома является добавочной, то данный пациент является тетрасомиком по генам, представленным в изохромосоме. В целом, чем меньше изохромосома, тем меньше генетический дисбаланс, и тем более вероятно выживание плода или ребенка с такой перестройкой. Следовательно, не удивительно, что наиболее частые из описанных случаев аутосомных изохромосом вовлекают хромосомы с маленькими плечами. Некоторые из наиболее частых участников формирования изохромосом -- это короткие плечи хромосом 5, 8, 12, 18.

Человек с двумя нормальными гомологами и добавочной изохромосомой тетрасомен по хромосомному плечу, включенному в изохромосому. Хотя причины образования изохромосом точно не известны, по крайней мере, два механизма подтверждены: (1) неправильное разделение центромеры в мейозе II и, более часто, (2) транслокация, включающая целое плечо гомологичной хромосомы (или сестринской хроматиды) в области, непосредственно примыкающей к центромере. Формально последние изохромосомы можно назвать изодицентрическими, поскольку у них две центромеры, хотя они обычно цитогенетически не различимы, поскольку находятся очень близко друг к другу. Наиболее частая изохромосома -- изохромосома длинного плеча Х-хромосомы -- i(Xq) -- у некоторых пациенток с синдромом Тернера. Описаны изохромосомы для множества аутосом, включая изохромосомы короткого плеча хромосомы 8, i(18p) и короткого плеча хромосомы 2, i(12p). Изохромосомы также часто выявляют в кариотипах как солидных, так и гематологических злокачественных новообразований.

Последствия

Описанные структурные изменения хромосом, как правило, сопровождаются изменением генетической программы, получаемой клетками нового поколения после деления материнской клетки, так как изменяется количественное соотношение генов (при делениях и дупликациях), меняется характер их функционирования в связи с изменением взаимного расположения в хромосоме (при инверсии и транспозиции) или с переходом в другую группу сцепления (при транслокации). Чаще всего такие структурные изменения хромосом отрицательно сказываются на жизнеспособности отдельных соматических клеток организма, но особенно серьезные последствия имеют хромосомные перестройки, происходящие в предшественниках гамет.

Изменения структуры хромосом в предшественниках гамет сопровождаются нарушением процесса конъюгации гомологов в мейозе и их последующего расхождения. Так, делении или дупликации участка одной из хромосом сопровождаются при конъюгации образованием петли гомологом, имеющим избыточный материал (рис. 3.61). Реципрокная транслокация между двумя негомологичными хромосомами приводит к образованию при конъюгации не бивалента, а квадривалента, в котором хромосомы образуют фигуру креста благодаря притягиванию гомологичных участков, расположенных в разных хромосомах (рис.2). Участие в реципрокных транслокациях большего числа хромосом с образованием поливалента сопровождается формированием еще более сложных структур при конъюгации (рис. 1).

Рис.1. Образование при конъюгации поливалента шестью парами хромосом, участвующихв реципрокных транслокациях: ІІ -- конъюгация между парой хромосом, не несущих транслокацию; ІІ -- поливалент, образуемый шестью парами хромосом, участвующихв транслокации.

Рис.2. Образование при конъюгации квадривалента из двух пар хромосом, несущих реципрокную транслокацию.

В случае инверсии бивалент, возникающий в профазе I мейоза, образует петлю, включающую взаимно инвертированный участок (рис. 3.).

Рис. 3.64. Конъюгация хромосом при инверсиях: I -- парацентрическая инверсия в одном из гомологов, II -- перидентрическая инверсия в одном из гомологов.

Нередко жизнеспособными оказываются робертсоновские транслокации, часто не связанные с изменением объема наследственного материала. Этим можно объяснить варьирование числа хромосом в клетках организмов близкородственных видов. Например, у разных видов дрозофилы количество хромосом в гаплоидном наборе колеблется от 3 до 6, что объясняется процессами слияния и разделения хромосом. Возможно, существенным моментом в появлении вида Homo sapiens были структурные изменения хромосом у его обезьяноподобного предка. Установлено, что два плеча крупной второй хромосомы человека соответствуют двум разным хромосомам современных человекообразных обезьян (12-й и 13й --шимпанзе, 13-й и-14-й --гориллы и орангутана). Вероятно, эта человеческая хромосома образовалась в результате центрического слияния по типу робертсоновской транслокации двух обезьяньих хромосом.

К существенному варьированию морфологии хромосом, лежащему в основе их эволюции, приводят транслокации, транспозиции и инверсии. Анализ хромосом человека показал, что его 4, 5, 12 и 17-я хромосомы отличаются от соответствующих хромосом шимпанзе перицентрическими инверсиями.

Вывод

Таким образом, несмотря на эволюционно отработанный механизм, позволяющий сохранять постоянной физико-химическую и морфологическую организацию хромосом в ряду клеточных поколений, под влиянием различных воздействий эта организация может изменяться. В основе изменения структуры хромосомы, как правило, лежит первоначальное нарушение ее целостности -- разрывы, которые сопровождаются различными перестройками, называемыми хромосомными мутациями или аберрациями. Изменения хромосомной организации, чаще всего оказывающие неблагоприятное воздействие на жизнеспособность клетки и организма, с определенной вероятностью могут быть перспективными, наследоваться в ряду поколений клеток и организмов и создавать предпосылки для эволюции хромосомной организации наследственного материала. Хромосомные перестройки играют роль в эволюционном процессе и видообразовании, в нарушении фертильности, в онкологических и врождённых наследственных заболеваниях человека.

Современная медицина избавляет от многих болезней, но вылечить или хотя бы предотвратить хромосомные мутации пока нельзя. Их можно только выявить в начале внутриутробного развития плода. Однако генная инженерия не стоит на месте. Быть может, в скором времени способ предотвращения болезней, вызываемых хромосомными мутациями, будет найден.

Литература

1. http://yakginka.ru/raznoe/lichnost/97562-hromosomnye-mutacii-primery-vidy-hromosomnyh.html 2. http://botan0.ru/?cat=2&id=45

3. Медицинская генетика [Электронный ресурс]: учебник / под ред. Н. П. Бочкова. - М.: ГЭОТАР-Медиа, 2014. -

4. Биология. Книга 1 / Под ред. акад. РАМН В. Н. Ярыгина. -- М.: Высшая школа, 2003.

5. Клаг У., Каммингс М. Основы генетики. -- М.: Мир, 2007.

6. Lynch M., Conery J. S. The evolutionary fate and consequences of duplicate genes // Science. 2000. -- Vol. 290. -- P. 1151--1154. -- PMID 11073452.

7. http://www.renosconnection.com/genetics/2/giri98.htm

8. Жимулев И. Ф. Общая и молекулярная генетика. -- Новосибирск: Изд-во НГУ, 2003.

9. http://studopedia.su/10_18354_hromosomnie-perestroyki-aberratsii.html

Размещено на Allbest.ru

...

Подобные документы

  • Сущность, значение и области применения молекулярно-генетических методов исследования. Специфика метода полимеразной цепной реакции. Блот-гибридизация по Саузерну. Картирование генов и идентификация хромосомных аберраций с помощью "FISH"-метода.

    презентация [971,4 K], добавлен 07.12.2014

  • Понятие наследственных заболеваний: изменение числа или структуры хромосом. Классификация хромосомных нарушений, обусловленных изменениями половых и неполовых хромосом. Основные типы наследственности. Болезни обмена вещества и нарушения иммунитета.

    презентация [1,8 M], добавлен 21.11.2010

  • Морфологические типы хромосом. Получение популяции активно делящихся клеток. Методы дифференциального окрашивания. Исследование анафазы-телофазы. Классификация хромосомных аномалий. Диагностика синдромов, обусловленных микроперестройками хромосом.

    презентация [4,4 M], добавлен 05.09.2013

  • Синдромы, развитие которых обусловлено изменениями числа или структуры хромосом. Частота хромосомных болезней среди новорожденных детей. Синдром Дауна, синдром Патау, синдром Эдвардса. Аномалии сочетания половых хромосом. Синдромы частичных моносомий.

    презентация [2,7 M], добавлен 06.01.2013

  • Молекулярные и диагностика основы наследственных болезней. Симптоматическое, патогенетическое и этиологическое лечение хромосомных болезней. Коррекция генетического дефекта при моногенных заболеваниях. Подавление избыточной функции генов и их продуктов.

    презентация [914,0 K], добавлен 10.10.2013

  • Сущность понятия "наследственные заболевания". Многогенные, хромосомные, полигенные наследственные болезни. Группы хромосомных болезней: аномалии числа хромосом, нарушения структуры. Синдром Дауна, Пату. Генетические болезни соматических клеток.

    презентация [556,1 K], добавлен 06.04.2011

  • Сущность, возникновение и методы изучения хромосомных болезней. Основные признаки синдрома Дауна. Синдром Эдвардса, трисомия по 18 хромосоме. Признаки синдрома Патау - трисомия по 13 хромосоме. Болезни, связанные с нарушением числа половых хромосом.

    презентация [1,1 M], добавлен 03.01.2013

  • Хромосомные болезни или хромосомные синдромы как комплексы множественных врожденных пороков развития, их отличительные особенности и признаки, предпосылки развития. Частота встречаемости всех хромосомных болезней среди новорожденных, их профилактика.

    реферат [32,8 K], добавлен 14.11.2010

  • Классификация генных болезней. Проявления и причины возникновения генных (моногенных – в основе патологии одна пара аллельных генов) наследственных заболеваний, хромосомных болезней. Болезни с наследственным предрасположением (мультифакториальные).

    доклад [32,2 K], добавлен 02.12.2010

  • Мера благоприятного воздействия морфина, героина, тубокурарина в низкой дозе против их вредных эффектов в большей дозе. Разовые, суточные, курсовые, пороговые, терапевтические, токсические и летальные дозы лекарственного вещества. Типы клеточных мембран.

    презентация [1,2 M], добавлен 23.10.2013

  • Общая характеристика и факторы развития хромосомных патологий: синдромов Патау, Дауна, Эдвардса, Шершевского-Тернера, Клайнфельтера, "кошачьего крика", дубль-Y и трисомия Х. Их клинические признаки и степень распространенности, направления исследования.

    презентация [1,5 M], добавлен 27.04.2016

  • Правильное определение костного возраста и наличия признаков нарушения роста. Рентгенография обеих кистей. Дифференциальная диагностика микседемы, гипофизарного и церебрального нанизма, некоторых хромосомных заболеваний, болезни и синдрома Иценко-Кушинга.

    презентация [2,5 M], добавлен 11.04.2016

  • История развития медицинской генетики. Типы хромосомной ДНК. Морфология и строение хромосом человека. Заболевания, связанные с числовыми аномалиями половых хромосом. Патогенез и классификация наследственных болезней. Спонтанные и индуцированные мутации.

    шпаргалка [58,2 K], добавлен 25.05.2015

  • Предмет и задачи генетики человека. Методы изучения наследственности и изменчивости человека. Наследственные болезни человека, их лечение и профилактика, основные пути предотвращения. Генные мутации и нарушения обмена веществ. Виды хромосомных болезней.

    реферат [11,6 K], добавлен 28.11.2010

  • Понятие синдрома Шерешевского-Тернера как хромосомной патологии. Комплекс хромосомных отклонений, присущих синдрому. История открытия заболевания. Клинические проявления, их частота. Главные способы корректировки. Использование заместительной терапии.

    презентация [390,4 K], добавлен 13.05.2017

  • Клиническая характеристика генных и хромосомных мутаций. Изучение наследственных патологий и заболеваний: фенилкетонурия, муковисцидоз, серповидно-клеточная анемия. Синдромы Патау, Дауна и Эдвардса как геномные мутации. Лечение наследственных болезней.

    реферат [52,6 K], добавлен 14.08.2013

  • Понятие наследственных заболеваний и мутаций. Генные наследственные болезни: клинический полиморфизм. Изучение и возможное предотвращение последствий генетических дефектов человека как предмет медицинской генетики. Определение хромосомных болезней.

    контрольная работа [34,5 K], добавлен 29.09.2011

  • Клинические проявления перинатальной патологии нервной системы ребенка. Виды черепно-мозговой грыжи, особенности хромосомных синдромов. Характеристика наследственно-дегенеративных и инфекционных заболеваний детской нервной системы. Травмы головного мозга.

    реферат [427,2 K], добавлен 13.10.2011

  • Структура и функции генов. История расшифровки механизма развития болезней с наследственным предрасположением. Понятие, сущность и причины мутаций. Характеристика хромосомных болезней и болезней нарушения обмена веществ (аминокислот, жиров и углеводов).

    реферат [26,2 K], добавлен 11.03.2010

  • Диагностика генетических заболеваний. Диагностика хромосомных болезней. Лечение наследственных болезней. Проведение евгенических мероприятий. Перспективы лечения наследственных болезней в будущем. Медико-генетическое консультирование и профилактика.

    курсовая работа [27,0 K], добавлен 07.12.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.