Медицинская микробиология

Определение предмета, методов и задач медицинской микробиологии, её роль в практической деятельности врача. Основные этапы развития микробиологии и иммунологии. Микроорганизмы и их положение в системе живого мира. Классификация номенклатуры бактерий.

Рубрика Медицина
Вид шпаргалка
Язык русский
Дата добавления 28.09.2019
Размер файла 4,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Конкурентный ИФАдля определения антигенов: искомый антиген и меченный ферментом антиген конкурируют друг с другом за связывание ограниченного количества антител иммунной сыворотки.

Другой тест - Конкурентный ИФА для определения антител: искомые антитела и меченные ферментом антитела конкурируют друг с другом за антигены, сорбированные на твердой фазе.

Иммуноблоттинг -- высокочувствительный метод выявления белков, основанный на сочетании электрофореза и ИФА или РИА. Иммуноблоттинг используют как диагностический метод при ВИЧ-инфекции и др.

Антигены возбудителя разделяют с помощью электрофореза в полиакриламидном геле, затем переносят их из геля на активированную бумагуили нитроцеллюлозную мембрану и проявляют с помощью ИФА.

Фирмы выпускают такие полоски с «блотами» антигенов. На эти полоски наносят сыворотку больного. Затем, после инкубации, отмывают от несвязавшихся антител больного и наносят сыворотку против иммуноглобулинов человека, меченную ферментом. Образовавшийся на полоске комплекс [антиген + антитело больного + антитело против Ig человека] выявляют добавлением хромогенного субстрата, изменяющего окраску под действием фермента.

57.Вакцины. Определение. Современная классификация вакцин. Требования, предъявляемые к вакцинным препаратам

Вакцина -- медицинский препарат, предназначенный для создания иммунитета к инфекционным болезням.

Классификации вакцин:

1.Живые вакцины - препараты, действующим началом в которых являются ослабленные тем или иным способом, потерявшие свою вирулентность, но сохранившие специфическую антигенность штаммы патогенных бактерий. Примером таких вакцин являются БЦЖ и вакцина против натуральной оспы человека, в качестве которой используется непатогенный для человека вирус оспы коров.

2.Инактивированные (убитые) вакцины - препараты, в качестве действующего начала включающие убитые химическим или физическим способом культуры патогенных вирусов или бактерий, (клеточные, вирионные) или же извлечённые из патогенных микробов комплексы антигенов, содержащие в своём составе проективные антигены (субклеточные, субвирионные вакцины). В препараты иногда добавляют консерванты и адьюванты.

Молекулярные вакцины - в них антиген находится в молекулярной форме или даже в виде фрагментов его молекул, определяющих специфичность т. е. в виде эпитопов, детерминант.

Корпускулярные вакцины - содержащие в своем составе протективный антиген

3.Анатоксины относятся к числу наиболее эффективных препаратов. Принцип получения - токсин соответствующей бактерии в молекулярном виде превращают в нетоксичную, но сохранившую свою антигенную специфичность форму путем воздействия 0.4% формальдегида при 37t в течение 3-4 недель, далее анатоксин концентрируют, очищают, добавляют адьюванты.

4.Синтетические вакцины. Молекулы эпитопов сами по себе не обладают высокой иммуногенностью для повышения их антигенных свойств эти молекулы сшиваются с полимерным крупномолекулярным безвредным веществом, иногда добавляют адьюванты.

5.Ассоциированные вакцины - препараты, включающие несколько разнородных антигенов.

Требования, предъявляемые к современным вакцинам:

Иммуногенность;

Низкая реактогенность (аллергенность);

Не должны обладать тератогенностью, онкогенностью;

Штаммы, из которых приготовлена вакцина, должны быть генетически стабильны;

Длительный срок хранения;

Технологичность производства;

Простота и доступность в применении.

58. Вакцинопрофилактика. Вакцины из живых бактерий и вирусов. Принципы получения вакцинных штаммов. Способы аттенуации. Примеры вакцин из живых бактерий и вирусов. Преимущества и недостатки аттенуированных вакцин

Первое поколение вакцин - цельномикробные, цельновирионные

I. Живые:

· Дивергентные - содержат микроорганизмы находящиеся в близком родстве с возбудителями инфекционных заболеваний и обладающие перекрестной иммуногенностью.

1. БЦЖ - против туберкулеза.

2. Ротовирусная.

3. Оспенная (вирус коровьего бешенства).

4. Аттенуированные (ослабленные) вакцины: (Аттенуация (ослабление) возможна путём воздействия на штамм химических (мутагены) и физических (температура) факторов или посредством длительных пассажей через невосприимчивый организм)

Очень опасные и заразные:

· Чумная;

· Туляремийная;

· Сибиреязвенная;

· Бруцеллезная (2 вида);

Против вирусов:

· Паратитная;

· Коревая;

· Краснушная;

· Гриппозная живая, сухая, интраназальная, детская;

· Полимиелитная пероральная типов 1,2 и 3 из штаммов Сэбина (ОПР);

· Герпетическая;

· Аденовирусная;

Вакцины против

· Сыпно-тифозная;

· Вакцина желтой лихорадки;

· Вакцина лихорадки Ку.

Преимущества живых вакцин:

1. По механизму действия они напоминают дикие штаммы и вытесняют последние из организма;

2. Формируют эффективный гуморальный и клеточный иммунитет, так как размножаются и циркулируют в организме;

3. Легко проводить вакцинацию, так как необходимы небольшие дозы и требуется только однократная вакцинация.

Недостатки:

1. Содержат до 99% балласта - реактогенны (много побочных действий);

2. Способны вызывать мутации клеток организма;

3. Содержат вирусы-загрязнители;

4. Трудно дозируются, требуют особых условий хранения;

5. Есть возможность возвращения в вирулентную форму.

Живые вакцины не ставят людям с иммунодефицитами!!!

Между введениями живых вакцин рекомендован интервал не менее 1 месяца, в противном случае возможны тяжелые побочные реакции, иммунный ответ может быть пониженным.

59.Вакцинопрофилактика. Вакцины из убитых бактерий и вирусов. Принципы приготовления. Примеры убитых вакцин. Ассоциированные вакцины. Преимущества и недостатки убитых вакцин

II. Убитые (инактивированные). Убитые вакцины изготовляют из микрооргнизмов, убитых физическим (нагревание) или химическим (фенол, формалин, ацетон) методами.

1. Брюшно-тифозная спиртовая вакцина;

2. Лептоспирозная;

3. Холерная;

4. Имовакс Полио;

5. Гриппозная инактивирвоанная жидкая;

6. Вакцина против клещевого энцефалита;

7. ЭнцеВир, Энцепур (клещевой энцефалит);

8. Антирабическая;

9. Паратифная В;

10. Хаврикс (гепатит А);

11. Аваксим (Гепатит А);

12. Геп-А-ин-ВАК (Гепатит А).

Преимущества:

1. Стабильны и безопасны;

2. Легко дозируются.

Недостатки:

1. Реактогенны;

2. Содержат фенол;

3. Требуется вакцинация.

Ассоциированные вакцины.

Это комбинированные вакцины, в результате действия которых иммунтет формируется одновременно к нескольким инфекциям.

АКДС (ассоциированная коклюшно-дифтерийная столбнячная) - из убитых коклюшных бактерий и инактивированных экзотоксинов дифтерии и столбняка.

Тривакцина - из аттенуированных (ослабленных) вирусов кори, краснухи и праротита.

Тетракокк - из анатоксинов дифтерии и столбняка и убитых коклюшных бактерий и инактивированных вирусов полиомиелита.

60.Молекулярные вакцины: анатоксины. Получение. Использование анатоксинов для профилактики инфекционных заболеваний. Примеры вакцин

Молекулярные вакцины - в них антиген находится в молекулярной форме или даже в виде фрагментов его молекул, определяющих специфичность т. е. в виде эпитопов, детерминант.

В процессе культивирования природных патогенных микробов можно получить протективный антиген, синтезируемый этими бактериями токсин затем превращается в анатоксин, сохраняющий специфическую антигенность и иммуногенность. Анатоксины являются одним из видов молекулярных вакцин. Анатоксины - препараты, полученные из бактериальных экзотоксинов, полностью лишенные своих токсических свойств, но сохранившие антигенные и иммуногенные свойства. Получение: токсигенные бактерии выращивают на жидких средах, фильтруют с помощью бактериальных фильтров для удаления микробных тел, к фильтрату добавляют 0,4% формалина и выдерживают в термостате при 30-40t на 4 недели до полного исчезновения токсических свойств, проверяют на стерильность, токсигенность и иммуногенность. Эти препараты называются нативными анатоксинам, в настоящее время почти не используются, т. к. содержат большое количество балластных веществ, неблагоприятно влияющих на организм. Анатоксины подвергаю физической и химической очистке, адсорбируют на адъювантах. Такие препараты называются адсорбированными высокоочищенными концентрированными анатоксинами.

Титрование анатоксинов в реакции фолликуляции производят по стандартной фолликулирующей атитоксической сыворотке, в которой известно количество антитоксических единиц. 1 антигенная единица анатоксина обозначается Lf, это то количество анатоксина, которое вступает в реакцию фолликуляции с 1 единицей дифтерийного анатоксина.

Анатоксины применяются для профилактики и реже, для лечения токсинемических инфекций дифтерия, газовая гангрена, ботулизм, столбняк). Так же анатоксины применяются для получения антитоксических сывороток путем гипериммунизации животных. Примеры препаратов: АКДС, АДС, адсорбированный стафилококковый анатоксин, ботулинистический анатоксин, анатоксины из экзотоксинов возбудителей газовых инфекций.

61.Генно-инженерные вакцины. Получение. Применение. Преимущества и недостатки

Генно-инженерные вакцины - это препараты, полученные с помощью биотехнологии, которая по сути сводиться к генетической рекомбинации .

Для начала получают ген, который должен быть встроен в геном реципиента. Небольшие гены могут быть получены методом химического синтеза. Для этого расшифровывается число и последовательность аминокислот в белковой молекуле вещества, затем по этим данным узнают очерёдность нуклеотидов в гене, далее следует синтез гена химическим путем.

Крупные структуры, которые довольно сложно синтезировать получаются путем выделения(клонирования), прицельного выщепления этих генетических образований с помощью рестриктаз.

Полученный одним из способов целевой ген с помощью ферментов сшивается с другим геном, который используется в качестве вектора для встраивания гибридного гена в клетку. Вектором могут служить плазмиды, бактериофаги, вирусы человека и животных. Экспрессируемый ген встраивается в бактериальную или животную клетку, которая начинает синтезировать несвойственное ей ранее вещество, кодируемое эксперссируемым геном.

В качестве реципиентов экспрессируемого гена чаще всего используется E. coli, B. subtilis, псевдомонады, дрожжи, вирусы. некоторые штаммы способны переключаться на синтез чужеродного вещества до 50% своих синтетических возможностей - эти штамм называются суперпродуцентами.

Иногда к генно-инженерным вакцинам добавляется адъювант.

Примерами таких вакцин служат вакцина против гепатита В (энджерикс), сифилиса, холеры, бруцеллёза, гриппа, бешенства.

Есть определённые сложности в разработке и применении:

- длительное время к генно-инженерным препаратам относились настороженно.

- на разработку технологии для получения вакцины затрачиваются значительные средства

- при получении препаратов данным способом возникает вопрос об идентичности полученного материала природному веществу.

Третье поколение вакцин - генно-иненерные вакцины

IV. Биосинтетические - искусственно созданные антигены микробов. Для их получения используют дрожжевую клетку, в которую встраивают ген патогенного микроорганизма, отвечающий за синтез данного антигена.

Вакцины от Гепатита В:

· Энджерикс (Бельгия);

· ДНК-рекомбинантная (США);

· Вакцина гепатита В рекомбинантная дрожжевая (Куба);

· Комбиотех ЛТД (Россия).

Преимущества:

4. Меньше побочных эффектов, так как не содержат микроорганизмов;

5. Вызывают узкоспецифический иммуитет;

6. Возможно комплектование по иммуногенным свойствам.

Недостатки:

Менее эффективны по сравнению с традиционными, так как вирусы вариабельны.

V. Векторные (рекомбинантные) вакцины - получают встраиванием генов различных возбудителей в геном ослабленного вируса или бактерии (вектор). Иммунитет формируется к нескольким инфекциям.

Вирус коровьей оспы

Рекомбинантные вакцины:

3. Моновалентные:

· Гриппозная, герпетическая, гепатит В

· Малярийный плазмодий;

4. Поивалентные

· Против гепатита В, бешенства, клещевого энцефалита, ветряной оспы, гепатита А.

Сальмонеллы

Против гепатита В

VI. Рибосомальные вакцины - получают путем выделения микробных рибосом с матрицей иРНК = иммуномодуляторы.

ИРС-19;

Бронхомунал;

Рибомунил.

62.Вакцинотерапия. Понятие о лечебных вакцинах. Получение. Применение. Механизм действия

Вакцинотерапия метод лечения некоторых инфекционных болезней введением вакцин. В. основана на учении И. И. Мечникова о Фагоцитозе. Под влиянием повторных введений вакцины (через определённые промежутки времени, в определённых дозах, определённое число раз) снижается чувствительность организма к специфическому антигену (возбудителю), происходит так называемая десенсибилизация, увеличивается фагоцитоз специфического возбудителя, активизируются обменные процессы; в первичном очаге усиливается гиперемия и повышается проницаемость кровеносных сосудов. При стрептококковых, стафилококковых и некоторых др. заболеваниях для В. применяют аутовакцины. Для В. человека применяют обычно убитые вакцины, которые вводят подкожно, внутримышечно, внутрикожно или внутривенно (иногда методы введения комбинируют). Введение вакцины часто сопровождается общей тяжёлой реакцией организма -- озноб, повышение температуры, усиление потоотделения, обострение болей (лечебный эффект наступает позднее). Противопоказана В. во второй половине беременности, при активных формах туберкулёза, болезнях сердца в стадии декомпенсации, болезнях почек, выраженном атеросклерозе, гипертонической болезни и некоторых др. (В. в ветеринарии применяют сравнительно редко, преимущественно при длительно протекающих хронических локализованных инфекционных заболеваниях, например при бруцеллёзе, туляремии, колибактериозе, стафилококковых инфекциях и др., для стимулирования процесса образования антител. Для В. используют вакцины из убитых микробов, анавакцины, анатоксины, антивирусы, лизаты микробных тел, аутовакцины, бактериофаги и др.

Лечебные вакцины

Применяются для перевода хронической стадии болезни в острую при неэффективности антибиотикотерапии вследствие лекарственной устойчивости микроорганизма. Действие данных вакцин основано на стимуляции защитных сил макроорганизма.

Классификация

По природе иммуногена лечебные вакцины:

· Убитые (инактивированные):

1. Бруцеллезная;

2. Герпетическая;

3. Гонококковая;

4. Стафилококковая жидкая;

5. Дизентерийная

· Химические (субклеточные):

1. Протейная;

2. Стафилококковые антифагин;

3. Стафилококковая сухая;

4. Поликомпонентная из антигенов условно патогенных микроорганизмов.

63.Диагностические антигенные препараты: диагностикумы, аллергены, токсины. Получение. Применение

В диагностических целях при обнаружении антител в сыворотке крови больных, реконвалесцентов и бактерионосителей используются серологические реакции.

Для постановки таких реакций применяются диагностикумы - препараты, содержащие взвесь обезвреженных микроорганизмов или определенные антигены.

Необходимость использования диагностикумов для серологических реакций связана не только с явным их преимуществом перед живыми культурами микробов (безопасность в работе), но еще и потому, что для приготовления диагностикумов подбираются штаммы микроорганизмов с высокой чувствительностью к антителам и способностью длительно сохранять антигенные свойства.

Для инактивации микроорганизмов при приготовлении диагностикумов чаще всего используются химические вещества, особенно формалин, являющийся лучшим консервантом. Убитые нагреванием микробы хуже сохраняют антигенные свойства и применяются редко.

В серологических реакциях (реакции агглютинации, реакции пассивной гемагглютинации, реакции связывания комплемента, реакции торможения гемагглютинации) для выявления специфических антител применяются: бактериальные, эритроцитарные и вирусные диагностикумы.

Бактериальные диагностикумы могут содержать инактивированную микробную взвесь или отдельные антигенные компоненты бактерий: О, Н или Vi-антигены и используются в реакциях агглютинации.

Эритроцитарные диагностикумы представляют собой эритроциты (обработанные танином или формалином) с адсорбированными на них антигенами, извлеченными из бактерий, и применяются в РПГА (реакции пассивной гемагглютинации). В том случае, когда РПГА используется для выявления антигена в выделениях больных, в тканях и др., применяют «антительные диагностикумы», т. е. эритроциты, сенсибилизированные антителами.

Вирусные диагностикумы -- препараты, содержащие инактированные вируссодержащие жидкости (культуральные, из куриных эмбрионов или организма животных, зараженных соответствующим вирусом), применяются в РСК (реакции связывания комплемента), реакции торможения гемагглютинации (РТГА) и реакции нейтрализации.

В настоящее время в лабораториях используются следующие диагноста кумы.

1. Бактериальный диагностикум сальмонелл тифа. Применяется в реакции агглютинации для обнаружения антител в сыворотке больных.

2. Сальмонеллезные О-диагностикумы содержат О-антигены различных групп сальмонелл (инактивированных 15%-ным раствором глицерина). Применяются для выявления О-аптител при сальмонеллезных инфекциях в реакции агглютинации с сывороткой больных.

3. Сальмонеллезные Н-монодиагностикумы. Используются в реакции агглютинации для определения заболевания в прошлом (анамнестическая реакция агглютинации) и реже с диагностической целью.

4. Vi -- брюшнотифозный диагностикум. Применяется в реакции агглютинации при выявлении брюшнотифозного бактерионосительства.

5. Единый бруцеллезный диагностикум -- взвесь бруцелл (инактивированных фенолом), подкрашенная метиленовым синим. Применяется для определения антител в сыворотках крови больных бруцеллезом людей и животных в реакциях агглютинации Райта и Хеддльсона.

6. Эритроцитарный сальмонеллезный О-диагностикум -- взвесь эритроцитов с адсорбированными на них О-антигенами различных групп сальмонелл. Используется для постановки РПГА с сывороткой больного при уточнении клинического диагноза сальмонеллеэной инфекции.

7. Эритроцитарный Vi-диагностикум -- эритроциты, сенсибилизированные очищенным Vi-антигеиом S. typhi, применяется в РПГА при выявлении брюшнотифозного бактерионосительства.

8. Гриппозный диагностикум представляет собой аллантоисную жидкость инфицированных вирусом гриппа (типов А, В) куриных эмбрионов и инактивированную мертиолатом или формалином. Диагностикумы необходимы при постановке РТГА с парными сыворотками больных для уточнения клинического диагноза и циркулирующего типа вируса гриппа.

9. Диагностикум вируса клещевого энцефалита получают из суспензии мозга белых мышей, зараженных вирусом клещевого энцефалита. Суспензию подвергают центрифугированию (для осветлення) и инактивируют химическими веществами.

Диагностикум используется в РТГА и РСК с сывороткой больных при диагностике заболевания.

67.Понятие об иммуномодуляторах. Принцип действия. Применение

Иммуномодуляторы - вещества, оказывающие влияние на функцию иммунной системы, изменяющие активность иммунной системы в сторону повешения (иммуностимуляторы) или понижения (иммунодепрессанты) её активности.

К экзогенным иммуномодуляторам относится большая группа веществ различной химической природы и происхождения, оказывающих неспецифическое активирующее или супрессивное действие на иммунную систему, но являющихся чужеродными для организма. Антибиотики, левамизол, полисахариды, ЛПС, адъюванты.

Эндогенные иммуномодуляторы представляют собой достаточно большую группу олигопептидов, синтезируемых самим организмом, его иммунокомпетентными клетками, и способных активировать иммунную систему путем усиления функции иммунокомпетентных клеток. К ним относятся регуляторные пептиды: интерлейкины, интерфероны, гормоны тимуса.

Применение иммуномодуляторов: при первичных и вторичных имму-нодефицитах различного происхождения, при онкологических болезнях, при трансплантации органов и тканей, при лечении иммунопатологических и аллергических болезней, в иммунопрофилактике и лечении инфекционных болезней.

Созданы препараты, обладающие иммуномодулирующим действием: интерферон, лейкоферон, виферон.

68.Интерфероны. Природа, способы получения. Применение. 99 Интерфероны. Природа, способы получения. Применение

Интерфероны -- гликопротеины, вырабатываемые клетками в ответ на вирусную инфекцию и другие стимулы. Блокируют репродукцию вируса в других клетках и участвуют во взаимодействии клеток иммунной системы. Различают две серологические группы интерферонов: I тип -- ИФН-б и ИФН -в; II тип -- ИФН-.г Интерфероны I типа оказывают противовирусные и противоопухолевые эффекты, в то время как интерферон II типа регулирует специфический иммунный ответ и неспецифическую резистентность.

б- интерферон (лейкоцитарный) продуцируется лейкоцитами, обработанными вирусами и другими агентами. в-интерферон (фибробластный) продуцируется фибробластами, обработанными вирусами.

ИФН I типа, связываясь со здоровыми клетками, защищает их от вирусов. Антивирусное действие ИФН I типа может обуславливаться и тем, что он способен угнетать клеточную пролиферацию, препятствуя синтезу аминокислот.

ИФН-г продуцируется Т-лимфоцитами и NK. Стимулирует активность Т- и В-лимфоцитов, моноцитов/макрофагов и нейтрофилов. Индуцирует апоптоз активированных макрофагов, кератиноцитов, гепатоцитов, клеток костного мозга, эндотелиоцитов и подавляет апоптоз периферических моноцитов и герпес-инфицированных нейронов.

Генно-инженерный лейкоцитарный интерферон получают в прокариотических системах (кишечной палочке). Биотехнология получения лейкоцитарного интерферона включает следующие этапы: 1) обработка лейкоцитарной массы индукторами интерферона; 2) выделение из обработанных клеток смеси иРНК; 3) получение суммарных комплементарных ДНК с помощью обратной транскриптазы; 4) встраивание кДНК в плазмиду кишечной палочки и ее клонирование; 5) отбор клонов, содержащих гены интерферона; 6) включение в плазмиду сильного промотора для успешной транскрипции гена; 7) экспрессия гена интерферона, т.е. синтез соответствующего белка; 8) разрушение прокариотических клеток и очистка интерферона с помощью аффинной хроматографии.

Интерфероны применяются для профилактики и лечения ряда вирусных инфекций. Их эффект определяется дозой препарата, однако высокие дозы интерферона оказывают токсическое действие. Интерфероны широко применяются при гриппе и других острых респираторных заболеваниях. Препарат эффективен на ранних стадиях заболевания, применяется местно. Интерфероны оказывают терапевтическое действие при гепатите В, герпесе, а также при злокачественных новообразованиях.

69.Химиотерапевтические препараты. Понятие о химиотерапевтическом индексе. Основные группы химиотерапевтических препаратов, механизм их антибактериального действия

Химиотерапевтические препараты - это лекарственные вещества, используемые для подавления жизнедеятельности и уничтожения микроорганизмов в тканях и средах больного, обладающие избирательным, этиотропным (действующим на причину) действием.

По направленности действия химиотерапевтические препараты делят на:

1) противопротозойные;

2) противогрибковые;

3) противовирусные;

4) антибактериальные.

По химическому строению выделяют несколько групп химиотерапевтических препаратов:

1) сульфаниламидные препараты (сульфаниламиды) - производные сульфаниловой кислоты. Они нарушают процесс получения микробами необходимых для их жизни и развития ростовых факторов - фолиевой кислоты и других веществ. К этой группе относят стрептоцид, норсульфазол, сульфаметизол, сульфометаксазол и др.;

2) производные нитрофурана. Механизм действия состоит в блокировании нескольких ферментных систем микробной клетки. К ним относят фурацилин, фурагин, фуразолидон, нитрофуразон и др.;

3) хинолоны. Нарушают различные этапы синтеза ДНК микробной клетки. К ним относят налидиксовую кислоту, циноксацин, норфлоксацин, ципрофлоксацин;

4) азолы - производные имидазола. Обладают противогрибковой активностью. Ингибируют биосинтез стероидов, что приводит к повреждению наружной клеточной мембраны грибов и повышению ее проницаемости. К ним относят клотримазол, кетоконазол, флуконазол и др.;

5) диаминопиримидины. Нарушают метаболизм микробной клетки. К ним относят триметоприм, пириметамин;

6) антибиотики - это группа соединений природного происхождения или их синтетических аналогов.

химиотерапевтический индекс - показатель широты терапевтического действия химиотерапевтического средства, представляющий собой отношение его минимальной эффективной дозы к максимальной переносимой.

Химиотерапевтический индекс (chemotherapeutic index) [греч. chemeia -- химия и therapeia -- забота, уход, лечение; лат. index -- указатель, показатель] -- величина, выражающая отношение максимально переносимой (толерантной) или 50 % дозы химиотерапевтического средства к его минимальной (или 50 %) лечебной или ингибирующей (микробоцидной, микробостатической) дозе, или наоборот. В первом варианте величина Х.и. должна быть больше 3. Постулируется (с рядом оговорок), что чем выше Х.и., тем эффективнее действие препарата. Напр., высокий Х.и. присущ пенициллинам, которые нетоксичны даже при больших концентрациях.

70.Антибиотики. Классификация антибиотиков по источникам получения и спектру действия. Механизм действия антибиотиков. Побочные действия антибиотиков на организм. Методы определения чувствительности микробов к антибиотикам

Для определения чувствительности бактерий к антибиотикам (антибиотикограммы) обычно применяют:

* Метод диффузии в агар. На агаризованную питательную среду засевают исследуемый микроб, а затем вносят антибиотики. Обычно препараты вносят или в специальные лунки в агаре, или на поверхности посева раскладывают диски с антибиотиками («метод дисков»). Учет результатов проводят через сутки по наличию или отсутствию роста микробов вокруг лунок (дисков). Метод дисков -- качественныйи позволяет оценить, чувствителен или устойчив микроб к препарату.

* Методы определения минимальных ингибирующих и бактерицидных концентраций, т. е. минимального уровня антибиотика, который позволяет invitroпредотвратить видимый рост микробов в питательной среде или полностью ее стерилизует. Это количественные методы, которые позволяют рассчитать дозу препарата, так как концентрация антибиотика в крови должна быть значительно выше минимальной ингибирующей концентрации для возбудителя инфекции. Введение адекватных доз препарата необходимо для эффективного лечения и профилактики формирования устойчивых микробов.

Есть ускоренные способы, с применением автоматических анализаторов.

Определение чувствительности бактерий к антибиотикам методом дисков. Исследуемую бактериальную культуру засевают газоном на питательный агар или среду АГВ в чашке Петри.

Среда АГВ: сухой питательный рыбный бульон, агар-агар, натрий фосфат двузамещенный. Среду готовят из сухого порошка в соответствии с инструкцией.

На засеянную поверхность пинцетом помещают на одинаковом расстоянии друг от друга бумажные диски, содержащие определенные дозы разных антибиотиков. Посевы инкубируют при 37 °С до следующего дня. По диаметру зон задержки роста исследуемой культуры бактерий судят о ее чувствительности к антибиотикам.

Для получения достоверных результатов необходимо применять стандартные диски и питательные среды, для контроля которых используются эталонные штаммы соответствующих микроорганизмов. Метод дисков не дает надежных данных при определении чувствительности микроорганизмов к плохо диффундирующим в агар полипептидным антибиотикам (например, полимиксин, ристомицин). Если эти антибиотики предполагается использовать для лечения, рекомендуется определять чувствительность микроорганизмов методом серийных разведений.

Определение чувствительности бактерий к антибиотикам методом серийных разведений. Данным методом определяют минимальную концентрацию антибиотика, ингибирующую рост исследуемой культуры бактерий. Вначале готовят основной раствор, содержащий определенную концентрацию антибиотика (мкг/мл или ЕД/мл) в специальном растворителе или буферном растворе. Из него готовят все последующие разведения в бульоне (в объеме 1 мл), после чего к каждому разведению добавляют 0,1 мл исследуемой бактериальной суспензии, содержащей 106--107 бактериальных клеток в 1 мл. В последнюю пробирку вносят 1 мл бульона и 0,1 мл суспензии бактерий (контроль культуры). Посевы инкубируют при 37 °С до следующего дня, после чего отмечают результаты опыта по помутнению питательной среды, сравнивая с контролем культуры. Последняя пробирка с прозрачной питательной средой указывает на задержку роста исследуемой культуры бактерий под влиянием содержащейся в ней минимальной ингибирующей концентрации (МИК) антибиотика.

Оценку результатов определения чувствительности микроорганизмов к антибиотикам проводят по специальной готовой таблице, которая содержит пограничные значения диаметров зон задержки роста для устойчивых, умеренно устойчивых и чувствительных штаммов, а также значения МИК антибиотиков для устойчивых и чувствительных штаммов.

К чувствительным относятся штаммы микроорганизмов, рост которых подавляется при концентрациях препарата, обнаруживаемых в сыворотке крови больного при использовании обычных доз антибиотиков. К умеренно устойчивым относятся штаммы, для подавления роста которых требуются концентрации, создающиеся в сыворотке крови при введении максимальных доз препарата. Устойчивыми являются микроорганизмы, рост которых не подавляется препаратом в концентрациях, создаваемых в организме при использовании максимально допустимых доз.

Определение антибиотика в крови, моче и других жидкостях организма человека. В штатив устанавливают два ряда пробирок. В одном из них готовят разведения эталонного антибиотика, в другом -- исследуемой жидкости. Затем в каждую пробирку вносят взвесь тест-бактерий, приготовленную в среде Гисса с глюкозой. При определении в исследуемой жидкости пенициллина, тетрациклинов, эритромицина в качестве тест-бактерий используют стандартный штамм S. aureus, а при определении стрептомицина -- Е. coli. После инкубирования посевов при 37 °С в течение 18--20 ч отмечают результаты опыта по помутнению среды и ее окрашиванию индикатором вследствие расщепления глюкозы тест-бактериями. Концентрация антибиотика определяется умножением наибольшего разведения исследуемой жидкости, задерживающей рост тест-бактерий, на минимальную концентрацию эталонного антибиотика, задерживающего рост тех же тест-бактерий. Например, если максимальное разведение исследуемой жидкости, задерживающее рост тест-бактерий, равно 1 :1024, а минимальная концентрация эталонного антибиотика, задерживающего рост тех же тест-бактерий, 0,313 мкг/мл, то произведение 1024- 0,313=320 мкг/мл составляет концентрацию антибиотика в 1 мл.

Определение способности S. aureus продуцировать бета-лактамазу. В колбу с 0,5 мл суточной бульонной культуры стандартного штамма стафилококка, чувствительного к пенициллину, вносят 20 мл расплавленного и охлажденного до 45 °С питательного агара, перемешивают и выливают в чашку Петри. После застывания агара в центр чашки на поверхность среды помещают диск, содержащий пенициллин. По радиусам диска петлей засевают исследуемые культуры. Посевы инкубируют при 37 °С до следующего дня, после чего отмечают результаты опыта. О способности исследуемых бактерий продуцировать бета-лакта-мазу судят по наличию роста стандартного штамма стафилококка вокруг той или другой исследуемой культуры (вокруг диска).

Как и всякие лекарственные средства, практически каждая группа антимикробных химиопрепаратов может оказывать побочное действие, причем и на макроорганизм, и на микробы, и на другие лекарственные средства.

Осложнения со стороны макроорганизма

Наиболее частыми осложнениями антимикробной химиотерапии являются:

Токсическое действие препаратов. Как правило, развитие этого осложнения зависит от свойств самого препарата, его дозы, способа введения, состояния больного и проявляется только при длительном и систематическом применении антимикробных химиотерапевтических препаратов, когда создаются условия для их накопления в организме. Особенно часто такие осложнения бывают, когда мишенью действия препарата являются процессы или структуры, близкие по составу или строению к аналогичным структурам клеток макроорганизма. Токсическому действию антимикробных препаратов особенно подвержены дети, беременные, а также пациенты с нарушением функций печени, почек.

Побочное токсическое влияние может проявляться как нейротоксическое (например, гликопептиды и аминогликозиды оказывают ототоксическое действие, вплоть до полной потери слуха за счет воздействия на слуховой нерв); нефротоксическое (полиены, полипептиды, аминогликозиды, макролиды, гликопептиды, сульфаниламиды); общетоксическое (противогрибковые препараты -- полиены, имидазолы); угнетение кроветворения (тетрациклины, сульфаниламиды, левомицетин/хлорамфеникол, который содержит нитробензен -- супрессор функции костного мозга); тератогенное [аминогликозиды, тетрациклины нарушают развитие костей, хрящей у плода и детей, формирование зубной эмали (коричневая окраска зубов), левомицетин/хлорамфеникол токсичен для новорожденных, у которых ферменты печени не полностью сформированы («синдром серого ребенка»), хинолоны -- действуют на развивающуюся хрящевую и соединительную ткани].

Предупреждение осложнений состоит в отказе от противопоказанных данному пациенту препаратов, контроле за состоянием функций печени, почек и т. п.

Дисбиоз (дисбактериоз). Антимикробные химиопрепараты, особенно широкого спектра, могут воздействовать не только на возбудителей инфекций, но и на чувствительные микроорганизмы нормальной микрофлоры. В результате формируется дисбиоз, поэтому нарушаются функции ЖКТ, возникает авитаминоз и может развиться вторичная инфекция (в том числе эндогенная, например кандидоз, псевдомембранозный колит). Предупреждение последствий такого рода осложнений состоит в назначении, по возможности, препаратов узкого спектра действия, сочетании лечения основного заболевания с противогрибковой терапией (например, назначением нистатина), витаминотерапей, применением эубиотиков и т. п.

Отрицательное воздействие на иммунную систему. К этой группе осложнений относят прежде всего аллергические реакции. Причинами развития гиперчувствительности может быть сам препарат, продукты его распада, а также комплекс препарата с сывороточными белками. Возникновение такого рода осложнений зависит от свойств самого препарата, от способа и кратности его введения, индивидуальной чувствительности пациента к препарату. Аллергические реакции развиваются примерно в 10 % случаев и проявляются в виде сыпи, зуда, крапивницы, отека Квинке. Относительно редко встречается такая тяжелая форма проявления аллергии, как анафилактический шок. Такое осложнение чаще дают бета-лактамы (пенициллины), рифамицины. Сульфаниламиды могут вызвать гиперчувствительность замедленного типа. Предупреждение осложнений состоит в тщательном сборе аллергоанамнеза и назначении препаратов в соответствии с индивидуальной чувствительностью пациента. Кроме того, антибиотики обладают некоторым иммунодепрессивным действием и могут способствовать развитию вторичного иммунодефицита и ослаблению напряженности иммунитета.

Эндотоксический шок (терапевтический). Это явление, которое возникает при лечении инфекций, вызванных грамотрицательными бактериями. Введение антибиотиков вызывает гибель и разрушение клеток и высвобождение больших количеств эндотоксина. Это закономерное явление, которое сопровождается временным ухудшением клинического состояния больного.

Взаимодействие с другими препаратами. Антибиотики могут способствовать потенцированию действия или инактивации других препаратов (например, эритромицин стимулирует выработку ферментов печени, которые начинают ускоренно метаболизировать лекарственные средства разного назначения).

Побочное воздействие на микроорганизмы.

Применение антимикробных химиопрепа-ратов оказывает на микробы не только прямое угнетающее или губительное воздействие, но также может привести к формированию атипичных форм микробов (например, к образованию L-форм бактерий или изменению других свойств микробов, что значительно затрудняет диагностику инфекционных заболеваний) и персистирующих форм микробов. Широкое использование антимикробных лекарственных средств ведет также к формированию антибиотикозависимости (редко) и лекарственной устойчивости -- антибиотикорезистентности (достаточно часто).

Антибиотики -- химиотерапевтические вещества, продуцируемые микроорганизмами, животными клетками, растениями, а также их производные и синтетические продукты, которые обладают избирательной способностью угнетать и задерживать рост микроорганизмов, а также подавлять развитие злокачественных новообразований.

За тот период, который прошел со времени открытия П.Эрлиха, было получено более 10 000 различных антибиотиков, поэтому важной проблемой являлась систематизация этих препаратов. В настоящее время существуют различные классификации антибиотиков, однако ни одна из них не является общепринятой.

В основу главной классификации антибиотиков положено их химическое строение.

Наиболее важными классами синтетических антибиотиков являются хинолоны и фторхинолоны (например, ципрофлоксацин), сульфаниламиды (сульфадиметоксин), имидазолы (метронидазол), нитрофураны (фурадонин, фурагин).

По спектру действия антибиотики делят на пять групп в зависимости от того, на какие микроорганизмы они оказывают воздействие. Кроме того, существуют противоопухолевые антибиотики, продуцентами которых также являются актиномицеты. Каждая из этих групп включает две подгруппы: антибиотики широкого и узкого спектра действия.

Антибактериальные антибиотики составляют самую многочисленную группу препаратов. Преобладают в ней антибиотики широкого спектра действия, оказывающие влияние на представителей всех трех отделов бактерий. К антибиотикам широкого спектра действия относятся аминогликозиды, тетрациклины и др. Антибиотики узкого спектра действия эффективны в отношении небольшого круга бактерий, например полет-миксины действуют на грациликутные, ванкомицин влияет на грамположительные бактерии.

В отдельные группы выделяют противотуберкулезные, противолепрозные, противосифилитические препараты.

Противогрибковые антибиотики включают значительно меньшее число препаратов. Широким спектром действия обладает, например, амфотерицин В, эффективный при кандидозах, бластомикозах, аспергиллезах; в то же время нистатин, действующий на грибы рода Candida, является антибиотиком узкого спектра действия.

Антипротозойные и антивирусные антибиотики насчитывают небольшое число препаратов.

Противоопухолевые антибиотики представлены препаратами, обладающими цитотоксическим действием. Большинство из них применяют при многих видах опухолей, например митоми-цин С.

Действие антибиотиков на микроорганизмы связано с их способностью подавлять те или иные биохимические реакции, происходящие в микробной клетке.

В зависимости от механизма действия различают пять групп антибиотиков:

1. антибиотики, нарушающие синтез клеточной стенки. К этой группе относятся, например, в-лактамы. Препараты этой группы характеризуются самой высокой избирательностью действия: они убивают бактерии и не оказывают влияния на клетки микроорганизма, так как последние не имеют главного компонента клеточной стенки бактерий -- пептидогликана. В связи с этим в -лактамные антибиотики являются наименее токсичными для макроорганизма;

2. антибиотики, нарушающие молекулярную организацию и синтез клеточных мембран. Примерами подобных препаратов являются полимиксины, полиены;

3. антибиотики, нарушающие синтез белка; это наиболее многочисленная группа препаратов. Представителями этой группы являются аминогликозиды, тетрациклины, макроли-ды, левомицетин, вызывающие нарушение синтеза белка на разных уровнях;

4. антибиотики -- ингибиторы синтеза нуклеиновых кислот. Например, хинолоны нарушают синтез ДНК, рифампицин -- синтез РНК;

5. антибиотики, подавляющие синтез пуринов и аминокислот. К этой группе относятся, например, сульфаниламиды.

Источники антибиотиков.

Основными продуцентами природных антибиотиков являются микроорганизмы, которые, находясь в своей естественной среде (в основном, в почве), синтезируют антибиотики в качестве средства выживания в борьбе за существование. Животные и растительные клетки также могут вырабатывать некоторые вещества с селективным антимикробным действием (например, фитонциды), однако широкого применения в медицине в качестве продуцентов антибиотиков они не получили.

Таким образом, основными источниками получения природных и полусинтетических антибиотиков стали:

* Актиномицеты(особенно стрептомицеты) -- ветвящиеся бактерии. Они синтезируют большинство природных антибиотиков (80 %).

* Плесневые грибы-- синтезируют природные бета-лактамы (грибы рода Cephalosporiumи Penicillium)Hфузидиевую кислоту.

* Типичные бактерии-- например, эубактерии, бациллы, псевдомонады -- продуцируют бацитрацин, полимиксины и другие вещества, обладающие антибактериальным действием.

Способы получения.

Существует три основных способа получения антибиотиков:

* биологическийсинтез (так получают природные антибиотики -- натуральные продукты ферментации, когда в оптимальных условиях культивируют микробы-продуценты, которые выделяют антибиотики в процессе своей жизнедеятельности);

* биосинтезс последующими химическими модификациями(так создают полусинтетические антибиотики). Сначала путем биосинтеза получают природный антибиотик, а затем его первоначальную молекулу видоизменяют путем химических модификаций, например присоединяют определенные радикалы, в результате чего улучшаются противомикробные и фармакологические характеристики препарата;

* химическийсинтез (так получают синтетические аналоги природных антибиотиков, например хлорамфеникол/левомицетин). Это вещества, которые имеют такую же структуру,

71.Лекарственная устойчивость микроорганизмов и механизм ее возникновения. Понятие о госпитальных штаммах микроорганизмов. Пути преодоления лекарственной устойчивости

Антибиотикорезистентность -- это устойчивость микробов к антимикробным химиопрепаратам. Бактерии следует считать резистентными, если они не обезвреживаются такими концентрациями препарата, которые реально создаются в макроорганизме. Резистентность может быть природной и приобретенной.

Природная устойчивость. Некоторые виды микробов природно устойчивы к определенным семействам антибиотиков или в результате отсутствия соответствующей мишени (например, микоплазмы не имеют клеточной стенки, поэтому не чувствительны ко всем препаратам, действующим на этом уровне), или в результате бактериальной непроницаемости для данного препарата (например, грамотрицательные микробы менее проницаемы для крупномолекулярных соединений, чем грамположительные бактерии, так как их наружная мембрана имеет «маленькие» поры).

Приобретенная устойчивость. Приобретение резистентности -- это биологическая закономерность, связанная с адаптацией микроорганизмов к условиям внешней среды. Она, хотя и в разной степени, справедлива для всех бактерий и всех антибиотиков. К химиопрепаратам адаптируются не только бактерии, но и остальные микробы -- от эукариотических форм (простейшие, грибы) до вирусов. Проблема формирования и распространения лекарственной резистентности микробов особенно значима для внутрибольничных инфекций, вызываемых так называемыми «госпитальными штаммами», у которых, как правило, наблюдается множественная устойчивость к антибиотикам (так называемая полирезистентность).

Генетические основы приобретенной резистентности. Устойчивость к антибиотикам определяется и поддерживается генами резистентности (r-генами) и условиями, способствующими их распространению в микробных популяциях. Приобретенная лекарственная устойчивость может возникать и распространяться в популяции бактерий в результате:

* мутаций в хромосоме бактериальной клетки с последующей селекцией (т. е. отбором) мутантов. Особенно легко селекция происходит в присутствии антибиотиков, так как в этих условиях мутанты получают преимущество перед остальными клетками популяции, которые чувствительны к препарату. Мутации возникают независимо от применения антибиотика, т. е. сам препарат не влияет на частоту мутаций и не является их причиной, но служит фактором отбора. Далее резистентные клетки дают потомство и могут передаваться в организм следующего хозяина (человека или животного), формируя и распространяя резистентные штаммы. Мутации могут быть: 1) единичные (если мутация произошла в одной клетке, в результате чего в ней синтезируются измененные белки) и 2) множественные (серия мутаций, в результате чего изменяется не один, а целый набор белков, например пени-циллинсвязывающих белков у пенициллин-резистентного пневмококка);

* переноса трансмиссивных плазмид резистентности (R-плазмид). Плазмиды резистентности (трансмиссивные) обычно кодируют перекрестную устойчивость к нескольким семействам антибиотиков. Впервые такая множественная резистентность была описана японскими исследователями в отношении кишечных бактерий. Сейчас показано, что она встречается и у других групп бактерий. Некоторые плазмиды могут передаваться между бактериями разных видов, поэтому один и тот же ген резистентности можно встретить у бактерий, таксономически далеких друг от друга. Например, бета-лактамаза, кодируемая плазмидой ТЕМ-1, широко распространена у грамотрицательных бактерий и встречается у кишечной палочки и других кишечных бактерий, а также у гонококка, резистентного к пенициллину, и гемофильной палочки, резистентной к ампициллину;

* переноса транспозонов, несущих r-гены (или мигрирующих генетических последовательностей). Транспозоны могут мигрировать с хромосомы на плазмиду и обратно, а также с плазмиды на другую плазмиду. Таким образом гены резистентности могут передаваться далее дочерним клеткам или при рекомбинации другим бактериям-реципиентам.

Реализация приобретенной устойчивости. Изменения в геноме бактерий приводят к тому, что меняются и некоторые свойства бактериальной клетки, в результате чего она становится устойчивой к антибактериальным препаратам. Обычно антимикробный эффект препарата осуществляется таким образом: агент должен связаться с бактерией и пройти сквозь ее оболочку, затем он должен быть доставлен к месту действия, после чего препарат взаимодействует с внутриклеточными мишенями. Реализация приобретенной лекарственной устойчивости возможна на каждом из следующих этапов:

...

Подобные документы

  • Понятие и содержание медицинской микробиологии как научного направления, оценка его роли и значения в прогрессе медицины в целом. Цели и задачи микробиологии, а также вирусологии и иммунологии, предметы и особенности их исследования, достижения.

    презентация [1,7 M], добавлен 14.05.2014

  • Микробиология как наука, история ее развития. Характеристика задач медицинской микробиологии. Классификация микроорганизмов по степени их биологической опасности. Организация микробиологической лабораторной службы, правила поведения и работы в ней.

    презентация [1,2 M], добавлен 30.11.2015

  • Краткая биография французского химика, основоположника современной микробиологии и имунологии Луи Пастера. Направления и результаты его научной деятельности. Создание вакцины против сибирской язвы, прививки против бешенства. Увековечивание памяти ученого.

    презентация [662,3 K], добавлен 13.04.2016

  • Становление понятия об инфекционном начале болезней: эвристический, морфологический и физиологические периоды. Развитие микробиологии в XX веке и современное учение об инфекции. Вклад отечественных ученых в развитие понятия об инфекции и иммунологии.

    курсовая работа [40,6 K], добавлен 26.06.2014

  • Биологический смысл спорообразования у бактерий, особенности химического состава и методы выявления. Методы выделения чистых культур. Экзотоксины бактерий: классификация, механизм действия. Частная микробиология и вирусология, экология микроорганизмов.

    контрольная работа [41,2 K], добавлен 25.09.2009

  • Свойства вирусов и плазмид, по которым они отличаются от остального живого мира. Морфология вирусов. Исходы взаимодействия вирусов с клеткой хозяина. Методы культивирования вирусов. Вирусы бактерий (бактериофаги). Этапы взаимодействия фагов и бактерий.

    реферат [25,6 K], добавлен 21.01.2010

  • Проблема развития нравственного сознания врача. Современная медицинская деонтология, требования к ней. Высокие моральные качества медицинских работников, осуществляющих уход за больными. Обязанности врача по отношению к больному по клятве Гиппократа.

    презентация [7,2 M], добавлен 14.04.2015

  • Особенности взаимоотношений врача с родственниками, как одна из самых сложных проблем в медицинской деонтологии. Модели поведения врача при лечении различных заболеваний: хронических, тяжелых, неизлечимых. Личные качества врача и медицинского работника.

    презентация [757,6 K], добавлен 30.03.2011

  • Врач и общество, врачебная деонтология. Принципы врачевания, которые необходимы для повышения индивидуальной и общественной эффективности и полезности лечения. Принципы поведения, взаимоотношений и действий врача по отношению к больному и его окружению.

    курсовая работа [30,7 K], добавлен 17.10.2009

  • Определение предмета и изучение задач медицинской химии, её отличия от биологической и биоорганической химии. Открытие, разработка и идентификация биологических соединений в фармакологических исследованиях. Скрининг в производстве лекарственных средств.

    презентация [630,9 K], добавлен 23.10.2013

  • Разновидности общего процесса реабилитации, ее современные принципы. Уровни медико-биологических и психосоциальных последствий болезни или травмы, которые учитываются при проведении медицинской реабилитации. Осуществление подготовки врача-реабилитолога.

    реферат [43,0 K], добавлен 08.06.2011

  • Определение качества медицинской помощи, как объекта оценки, необходимо для выбора цели, стратегии, постановки адекватных им задач и обоснования критериев их реализации. Надлежащее качество медицинской помощи и его компоненты. Адекватность, экономичность.

    реферат [214,4 K], добавлен 14.12.2008

  • Методы выявления микроорганизмов. Микроскопические методы исследования морфологии бактерий и грибов. Приготовление препаратов для микроскопического исследования, изучения микроорганизмов в нативном виде. Приготовление фиксированных препаратов-мазков.

    реферат [85,3 K], добавлен 02.04.2011

  • Основные симптомы и признаки желчнокаменной болезни, ее причины. Методы диагностики заболевания. Осложнения и последствия желчнокаменной болезни. Определение показаний и противопоказаний к операции. Роль медицинской сестры в предоперационный период.

    дипломная работа [2,5 M], добавлен 20.05.2016

  • Роль врача в деятельности отделения. Основные задачи и направления работы. Оказание специализированной медицинской помощи. Гигиеническое обучение и воспитание пациентов с бронхиальной астмой. Оценка качества медицинской помощи, оказываемой в отделении.

    отчет по практике [25,4 K], добавлен 19.11.2013

  • Профессиональный долг врача: оказание своевременной, качественной медицинской помощи, поддержка пациента, сохранение врачебной тайны, гуманность, доброжелательность. Врачебная ошибка: неправильное определение болезни, добросовестное заблуждение.

    презентация [908,7 K], добавлен 18.04.2013

  • Классификация ожоговых поражений кожи. Оказание первой медицинской помощи при ожогах. Термические ожоги. Ожоговая болезнь, ожоговый шок. Первая медицинская помощь пострадавшим при термических ожогах. Химические ожоги. Медицинская сортировка обожженных.

    методичка [33,3 K], добавлен 29.07.2008

  • Медицинская интроскопия (визуализация) - раздел медицинской диагностики. Методы медицинской интроскопии, ее цели и задачи. Рентгенологические методы визуализации. Компьютерная и магнитно-резонансная томография. Ультразвуковая диагностическая система.

    презентация [1,8 M], добавлен 05.05.2015

  • Деятельность медицинской сестры при лечении и уходе за пациентами с пневмонией. Классификация пневмонии, этиология и факторы риска, клиника. Методы диагностики, особенности лечения. Роль медицинской сестры в организации ухода и лечения при пневмонии.

    дипломная работа [871,2 K], добавлен 19.09.2022

  • Основные понятия термической травмы. Медицинская помощь пострадавшим от ожогов. Роль медицинской сестры в лечении пациентов с ожогами. Анализ профессиональной деятельности медицинских сестер ожогового отделения, направления и методы ее совершенствования.

    курсовая работа [2,2 M], добавлен 19.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.