Применение финитных базисных сплайнов при восстановлении сигналов электрогастроэнтерографии
Разработка метода выбора частоты отсчетов гастроэнтерограмм, учитывающего фактор конечной длительности измерительных сеансов и спектральных свойств сигнала. Определения точности восстановления сигнала при используемых параметрах измерительного сеанса.
Рубрика | Медицина |
Вид | статья |
Язык | русский |
Дата добавления | 29.03.2020 |
Размер файла | 1,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Применение финитных базисных сплайнов при восстановлении сигналов электрогастроэнтерографии
А.И. Попов, С.Ф. Свиньин
Аннотация
гастроэнтерограмма измерительный сеанс спектральный
Электрогастроэнтерография -- перспективный метод обследования сократительной активности органов пищеварительной системы, основанный на съеме и последующей обработке биоэлектрических сигналов. Прогресс в развитии электрофизиологических методов диагностики в последние годы во многом обеспечен возможностью компьютерной обработки измерительных сигналов. Данная статья посвящена вопросам организации измерений в электрогастроэнтерографии. Дано введение в предметную область, проанализирован информационный состав измерительных сигналов электрогастроэнтерографии, приведены диагностические показатели, получаемые в результате спектрального анализа сигналов, рассмотрены задачи автоматизации диагностики.
Предложен новый метод выбора частоты отсчетов гастроэнтерограмм, учитывающий фактор конечной длительности измерительных сеансов и спектральных свойств сигнала. В предлагаемом методе применяется разложение сигнала в виде конечной суммы финитных кардинальных В-сплайнов целых степеней. Проведен вычислительный эксперимент для определения точности восстановления сигнала при используемых в электрогастроэнтерографии параметрах измерительного сеанса.
Ключевые слова: базисный сплайн, конечная энергия, компактный носитель, биосигнал, автоматизированная обработка биомедицинских сигналов, электрофизиология, электрогастроэнтерография.
1. Введение
Электрофизиологические обследования [1] представляют собой важный компонент современной медицинской диагностики. При таких обследованиях количественные параметры функционирования различных органов получаются в результате математической обработки электрических сигналов.
Для исследования сократительной активности органов желудочно-кишечного тракта (ЖКТ) в настоящее время применяются такие электрофизиологические методы, как электрогастрография (ЭГГ) [2, 3] и электрогастроэнтерография (ЭГЭГ) [4, 5]. В современном состоянии данные методы основаны на неинвазивном (т.е. без вмешательства в организм человека) сборе электрических сигналов, содержащих информацию о моторике ЖКТ, и их последующем анализе. В ЭГГ исследуется только желудок, в ЭГЭГ -- желудок и различные отделы кишечника.
Для широкого внедрения в медицинскую практику ЭГЭГ еще нуждается в развитии. Качественное развитие ЭГЭГ обеспечивается целенаправленным изменением технологий сбора и обработки данных.
Можно выделить следующие уровни работы с электрофизиологическими данными: съем сигналов, их цифровая обработка (фильтрация, вычисление значений диагностических показателей), диагностика на основе наборов значений показателей. Тенденция современной электрофизиологии -- автоматизация диагностики [1] -- непосредственно относится к последнему, верхнему уровню обработки данных. Однако вопросы ввода сигналов и их цифровой обработки носят фундаментальный характер, и исследования на этих уровнях не менее важны.
Обрабатываемые в ЭГЭГ сигналы отличаются наиболее низкочастотными спектрами (0,01-0,25 Гц) среди всех электрофизиологических сигналов и, соответственно, большей длительностью, обычно порядка 40 минут. Применительно к ЭГЭГ в большинстве случаев можно говорить об отсутствии разрывов в уровнях энергии внутри интервалов записей и, имея в виду их конечность во времени, рассматривать записи ЭГЭГ как сигналы, заданные на компактных носителях. Функциями с компактным носителем являются все непрерывные сигналы, обнуляющиеся при |t| > C, где t -- вещественная прямая. Создается возможность обратиться к разложениям сигналов в ряды по финитным ортогональным базисам для повышения точности цифровых моделей [6, 7].
Роль обобщенных спектральных методов анализа ЭГЭГ-сигналов, опирающихся на теорию энергетических пространств сигналов, неуклонно возрастает. Цели данного исследования ставятся как повышение значимости диагностических показателей, полученных в результате автоматизации обработки электрофизиологических сигналов, и как обоснование достаточности длин цифровых выборок сигналов с учетом их спектрального состава.
2. Современное состояние электрофизиологических методов обследования ЖКТ
Зарубежные исследования сосредоточены на ЭГГ, то есть на изучении моторики желудка. Достаточно полное представление о современном состоянии ЭГГ дают обзорные работы [3] и [8]. К настоящему времени разработаны различные способы размещения датчиков на теле пациента -- схемы отведений. Применяются как двухполюсные, так и однополюсные отведения. В качестве датчиков используются кардиографические электроды. В ходе обследования обычно последовательно проводятся два измерительных сеанса: один -- натощак (30 минут), второй -- после еды (60 минут). Практикуется также длительная ЭГГ (до 24 часов) с применением портативных измерительных модулей, однако в этом случае особенно остро проявляется проблема артефактов движения. Ввиду низкочастотной природы исследуемого сигнала используются низкие частоты дискретизации. Например, в [8] описана амбулаторная измерительная система, в которой входной сигнал оцифровывается с частотой 1 Гц. Указывается на различие измерительных средств, ориентированных на медицинскую практику и на исследования. В исследовательских целях применяются многоканальные измерительные системы (до 8 каналов). Они обеспечивают возможность анализа распространения волн вдоль желудка. Непосредственная интерпретация ЭГГ-сигналов во временной области затруднена, диагностика базируется на вычислении набора параметров сигналов. Прежде всего, выявляются такие нарушения ритма, как тахигастрия (повышенная частота сокращений), брадигастрия (пониженная частота сокращений) и аритмия. Установлен ряд синдромов, с которыми связаны эти нарушения. Вопрос о том, являются нарушения ритма причиной синдромов или они представляют собой сопутствующий эффект, остается открытым. С точки зрения клинического значения ЭГГ сейчас рассматривается не как самостоятельный метод диагностики конкретных заболеваний, а как полезное звено в совокупности методов.
Указывается, что одной из насущных проблем ЭГГ является ее нестандартизированность. До сих пор не выработаны стандарты на схемы расположения датчиков, параметры измерительного сеанса, вид воздействия между измерениями, функциональные требования на программное обеспечение для анализа сигналов. Кроме того, определения диагностических показателей допускают различные способы их вычисления с различными итоговыми результатами.
Уникальность отечественных разработок состоит в том, что они позволяют исследовать функционирование различных отделов ЖКТ, а не только желудка. Российской промышленностью выпускается аппаратно-программный комплекс «Гастроскан-ГЭМ» (НПП «Исток-система», г. Фрязино) [9]. Портативный измерительный блок «Гастроскана-ГЭМ» позволяет проводить съем ЭГГ и ЭГЭГ-сигналов с частотой дискретизации 2 Гц. В качестве датчиков при различных схемах отведений могут использоваться как корпусные, так и наконечностные электроды. Основной протокол обследования включает два измерительных сеанса продолжительностью по 40 минут [8].
3. Информационный состав ЭГЭГ-сигнала
В таблице 1 приведены полосы частот сокращений, характерные для различных отделов ЖКТ [9]. В компонентах измерительного сигнала, имеющих частоты в указанных полосах, сосредоточена информация о сократительной активности соответствующих органов. Эти компоненты будем называть гастроэнтерограммами.
Таблица 1
Полосы частот сокращений отделов ЖКТ
Название отдела |
Номер отдела в ЖКТ |
Полоса частот (Гц) |
|
Толстая кишка |
5 |
0,01 - 0,03 |
|
Желудок |
1 |
0,03 - 0,07 |
|
Подвздошная кишка |
4 |
0,08 - 0,12 |
|
Тощая кишка |
3 |
0,13 - 0,17 |
|
Двенадцатиперстная кишка |
2 |
0,18 - 0,22 |
На рисунке 1а представлен 10-минутный фрагмент входного ЭГЭГ-сигнала здорового добровольца. Запись выполнена при помощи измерительного блока комплекса «Гастроскан-ГЭМ» с частотой дискретизации 2 Гц. Путем полосовой фильтрации с применением цифрового фильтра Баттерворта получены гастроэнтерограммы. Они показаны на рисунке 1б - 1е. Границы полос пропускания фильтров соответствуют частотам, приведенным в таблице 1. Фильтр Баттерворта характеризуется гладкостью АЧХ в переходной зоне. При использовании других фильтров графики гастроэнтерограмм будут несколько отличаться в силу свойств этих фильтров.
Рис. 1 Цифровая фильтрация ЭГЭГ-сигнала: а) исходный сигнал; б, в, г, д, е) гастроэнтерограммы
Порядок фильтра для каждого отдела ЖКТ (таблица 2) выбирался таким образом, чтобы при требуемой полосе пропускания и имеющейся частоте дискретизации амплитудно-частотная характеристика (АЧХ) фильтра была наиболее близка к идеальной АЧХ. Например, для полосы пропускания 0,03 Гц - 0,07 Гц (желудок) при частоте дискретизации 2 Гц данное условие достигается, когда порядок фильтра равен 5. Это проиллюстрировано на рисунке 2. Сплошной линией показан график АЧХ фильтра Баттерворта порядков 4, 5 и 6, пунктирной линией -- график идеальной АЧХ. Числом n обозначен порядок фильтра.
Таблица 2
Порядок фильтра Баттерворта для отделов ЖКТ
Отдел ЖКТ |
Порядок фильтра |
|
Толстая кишка |
4 |
|
Желудок |
5 |
|
Подвздошная кишка |
6 |
|
Тощая кишка |
6 |
|
Двенадцатиперстная кишка |
7 |
Рис. 2 Выбор порядка фильтра Баттерворта для получения гастрограммы из суммарного ЭГЭГ-сигнала
4. Диагностические показатели в ЭГЭГ
Существующее аппаратное обеспечение ЭГЭГ позволяет проводить анализ измерительных сигналов только в отложенном режиме.
Обработка сигналов ЭГЭГ в основном базируется на спектральном анализе. На рисунке 3 приведен график амплитудного спектра гастрограммы здорового добровольца.
Рис. 3 Амплитудный спектр гастрограммы
Пусть N -- количество отсчетов в ЭГЭГ-сигнале, длина сигнала; X -- массив значений его амплитудного спектра, модуль результата дискретного преобразования Фурье сигнала; a и b -- индексы в массиве X, соответствующие границам диапазона частот сокращений исследуемого отдела ЖКТ, a < b; fd -- частота дискретизации в Гц.
Приведем формулы для вычисления некоторых параметров сигналов, отражающих силу, частоту и ритмичность сокращений [9, 10]. Средняя мощность:
Доминантная частота:
Другими словами, DF -- это частота, которой соответствует максимальное значение амплитуды в анализируемой части спектра. Коэффициент ритмичности:
Здесь X [a: b] обозначает фрагмент массива X, соответствующий значениям индексов от a до b включительно.
Для анализа динамики показателей в рамках одного измерительного сеанса используется оконное преобразование Фурье. Например, вычислив ряд значений доминантной частоты DF на разных участках сигнала, можно получить значение так называемого коэффициента нестабильности доминантной частоты [8]:
где уDF -- среднеквадратическое отклонение доминантной частоты, а DF -- средняя доминантная частота.
На рисунке 4 приведен пример ЭГЭГ-сигнала и его спектрограммы, полученной в результате оконного преобразования Фурье исходного сигнала с шириной окна, равной 10 мин. Более высоким значениям амплитудного спектра на спектрограмме соответствует более темный цвет. При визуальном анализе спектрограммы прослеживается стабильная доминантная частота со средним значением, несколько превышающим 0,05 Гц.
Рис. 4 Оконное преобразование Фурье ЭГЭГ-сигнала: a) исходный сигнал; б) спектрограмма
Также перспективно применение математического аппарата вейвлет-анализа для учета нестационарности ЭГЭГ-сигналов. Например, в [11] предложены варианты использования вейвлета Морле при расчете параметров (местоположение, продолжительность, частота) всплесков активности на гастроэнтерограммах для получения новых динамических характеристик исследуемых сигналов.
Для изучения реакции ЖКТ на воздействие (например, принятие пищи) в рамках одного обследования последовательно проводят два измерительных сеанса: до и после воздействия. Затем вычисляются отношения значений диагностических показателей, например, P2/P1, где P1 и Р2 -- средние мощности сигналов, полученных до и после воздействия.
При автоматизации диагностики параметры сигналов и обследований используются как признаки в методах классификации. Наиболее часто решается задача классификации с целью установления наличия нарушений в функционировании ЖКТ либо отнесения обследуемого к группе «норма». Примерами таких исследований являются [12] (искусственные нейронные сети, точность 85%) и [13] (метод опорных векторов с различными ядрами, точность 87%). К другому типу относятся задачи уточнения диагноза при наличии заболевания, например, диагностика нарушений ритмичности сокращений желудка у больных сахарным диабетом [14] (нейронные сети, точность 97%), уточнение степени компенсации язвенного пилородуоденального стеноза [15, 16] (дискриминантный анализ, точность 97%).
5. Оптимизация длин выборок отсчетов сигналов
Для гастроэнтерограмм характерны большие длительности во времени (десятки минут), значительно превосходящие величины периодов их частотных составляющих. Но они являются финитными сигналами и, более того, если исключить из рассмотрения участки, соответствующие низкой сократительной активности органов, их можно назвать сигналами с компактными носителями. Напомним, что носителем функции x(t) называется замыкание множества точек, где x(t) ? 0 [17]. Так как диапазон таких сигналов ограничен, то они принадлежат классу непрерывных функций с конечной энергией, то есть выполняется условие:
Малыми буквами x(t) обозначены значения непрерывного сигнала во времени. Большой буквой Е обозначена энергия сигнала на всей оси.
В широко известной статье [18] предлагался подход к решению общей проблемы финитности или инфинитности функций как непосредственно непрерывного сигнала, так и ширины полосы его частот. В ней введены понятия, облегчающие выработку оценки точности восстановленного сигнала. Первое из этих понятий определено как «сигнал, ограниченный во времени на уровне е», а второе -- как «полоса частот спектра (-сос, сос), ограниченная на уровне е». Дополним эту пару определений понятием энергии спектра сигнала ЕЈ, ограниченной на уровне е. Такой уровень можно определить как значение интеграла спектральной энергии для функций, интегрируемых с квадратом, отличающееся на величину е от полной энергии Е.
Среди базисных функций, заданных на компактных носителях, особую роль играют полиномиальные базисные сплайны (В-сплайны). Доказано [19], что с их помощью можно добиться высокой степени аналитической точности и эффективной сходимости при решении задач численного анализа. С позиций использования в теории выборок они интересны тем, что результаты их преобразований Фурье отвечают аналитическим выражениям следующего вида [20]:
где B(0) -- значение В-сплайна при t = 0, h -- расстояние между узлами сплайна (если сетка равномерная), m -- степень сплайна (целое число), щ -- круговая частота. Эти выражения имеют много общего с общим членом кардинального ряда Уиттекера-Котельникова-Шеннона. Отличает их в первую очередь то, что независимой переменной является частота, а не время, и кроме того, степень m может быть больше 1.
График модуля спектральной плотности XB3(щ) кубического В-сплайна приведен на рисунке 5.
Рис. 5 Спектр одномерного кубического В-сплайна
Рассмотрим конкретную запись электрогастрограммы длительностью около 20 минут и с ограничением по уровню |x(t)| < 0,51 мВ. Ее график приведен на рисунке 6.
Рис. 6 Пример электрогастрограммы
Функция достаточной степени гладкости (например, подобная изображенной) может быть приближенно представлена в виде суммы «взвешенных» В-сплайнов степени m дефекта 1:
где n -- полное число отсчетов сигнала, bi -- значения коэффициентов (i = 0,1, …, n), Bi(t) -- значение В-сплайна на текущем интервале длиной h. Графики последовательностей В-сплайнов 1-й и 3-й степени показаны на рисунке 7 при шаге между узлами h=1.
Рис. 7 Последовательности В-сплайнов 1-й и 3-й степени
Сошлемся на аналитическое выражение для спектральной плотности Xas(щ) аппроксимирующей последовательности В-сплайнов, приведенное в монографии [20]. Оно получено в виде:
Опираясь на него, можем перейти к интегральному соотношению вида:
Здесь X(щ) -- функция спектральной плотности сигнала.
Спектры X(щ) и Xas(щ) инфинитны, а энергия последовательности, заданной на конечном интервале [a, b], конечна. Спектральную энергию как интеграл от квадрата модуля Xas(щ) можно разбить на две части -- низкочастотную (НЧ) и высокочастотную (ВЧ):
Частоту ще назовем граничной частотой эффективной ширины полосы НЧ-спектра последовательности. Эта полоса может быть рассчитана по энергии НЧ-части, совпадающей «с точностью до е» со значением полной энергии.
На основании известной из математического анализа теоремы об интегральных неравенствах [17] определим уровень энергии ВЧ-части последовательности:
где С1 -- коэффициент, зависящий от количества узлов сплайна на [a, b], то есть шагов выборки.
Из выражения (11) следует, что энергия высокочастотных составляющих последовательности В-сплайнов, аппроксимирующей непрерывный сигнал x(t), пропорциональна значению шага выборки h с коэффициентом, зависящим от степени сплайна m.
Для вычисления коэффициентов интерполяционных сплайнов требуется решение систем линейных алгебраических уравнений (СЛАУ). Часто они имеют большую размерность. Для вычисления коэффициентов в узлах пограничных областей может быть применен метод коллокации, для которого достаточно применение СЛАУ малой размерности [21].
Вместе с тем в теории сплайнов разработаны так называемые «локальные» (сглаживающие) методы вычисления b-коэффициентов, не требующие решения СЛАУ, что ведет к значительному сокращению вычислительных затрат [22]. Эти методы основаны на преобразованиях конечных разностей функций. Формулы сглаживающих приближений аналогичны формулам дискретной фильтрации, используемым в частотной области («окна» Хэннинга, Кайзера, Баттерворта и др.). Они сохраняют свойства гладкости аппроксимирующих сплайнов и тот же порядок оценок точности восстановления сигналов, что и интерполяционные приближения.
В монографии [20] приведены примеры локальных сглаживающих формул вычисления b-коэффициентов кубических сплайнов для внутренних узлов с конкретными значениями весовых множителей:
- усреднение по трем текущим отсчетам функции x(ti) = xi:
- усреднение по пяти текущим отсчетам:
- усреднение по семи текущим отсчетам:
Оценку частоты отсчетов конкретной дискретной выборки можно выполнить в одном из двух вариантов: либо при заданной частоте рассчитать полученную ошибку, либо осуществить выборку с такой необходимой частотой, чтобы ошибка восстановления сигнала не превысила заданную величину е.
Рассмотрим случай, когда измерения произведены по всем пяти отделам ЖКТ. Шаги отсчетов задаются как целые значения, b-коэффициенты вычисляются по формуле трех отсчетов и восстановление сигнала производится по энергетическому критерию.
Интегралы энергии во времени вычисляются по формуле трапеции:
интегралы спектральной энергии -- по формуле:
а модуль ошибки квантования во времени -- по формуле:
Результаты расчетов в процессе уменьшения величин шагов квантования по двоичному закону (h = 4, 2, 1) сведены в таблицу 3. Отделы в таблице расположены в порядке возрастания частоты сокращений.
Таблица 3
Зависимость энергии отсчетов ЭГЭГ-сигналов от величин шагов выборки
Отдел ЖКТ |
Esp |
Et |
Ee |
Относительное отклонение, % |
|
h = 4 |
|||||
Толстая |
29,05033 |
29,06758 |
0,0172 |
0,06 |
|
Желудок |
20,71735 |
21,14948 |
0,4317 |
2,04 |
|
Подвздошная |
5,91264 |
6,68488 |
0,7723 |
11,5 |
|
Тощая |
1,45773 |
2,40063 |
0,9429 |
- |
|
12-перстная |
0,60609 |
2,09175 |
- |
- |
|
h = 2 |
|||||
Толстая |
23,28067 |
23,35799 |
0,0773 |
0,33 |
|
Желудок |
16,20993 |
16,33852 |
0,1285 |
0,79 |
|
Подвздошная |
4,8168 |
4,88408 |
0,0673 |
1,38 |
|
Тощая |
1,54968 |
1,62103 |
0,0713 |
4,40 |
|
12-перстная |
0,99455 |
1,16445 |
0,1699 |
14,6 |
|
h = 1 |
|||||
Толстая |
29,0755 |
29,0843 |
0,008 |
0,03 |
|
Желудок |
20,98009 |
21,0437 |
0,0636 |
0,30 |
|
Подвздошная |
6,66409 |
6,67302 |
0,009 |
0,13 |
|
Тощая |
2,38623 |
2,3967 |
0,0105 |
0,43 |
|
12-перстная |
2,03972 |
2,06419 |
0,0245 |
1,19 |
По таблице можно проследить, как влияет изменение частоты дискретизации на показатели точности восстановления гастроэнтерограмм кубическими сплайнами. Значения спектральных энергий при шаге h = 4 (это соответствует одному отсчету за 2 секунды) для двух наиболее высокочастотных энтерограмм (тощая кишка и 12-перстная кишка) свидетельствуют о том, что данный шаг вообще для них не годится. Это можно объяснить рассогласованием частоты дискретизации с собственными частотами сигналов, вследствие чего происходят потери информации и значительное уменьшение вычисленной спектральной мощности. Положение улучшается при h = 2. Относительные отклонения для данных энтерограмм получаются соответственно порядка 4% и 14%. Приемлемые результаты получаются при h = 1, что соответствует частоте дискретизации 2 отсчета в секунду.
6. Заключение
В работе предлагается новый метод выбора частоты отсчетов сигналов ЭГЭГ, учитывающий фактор конечной длительности сеансов измерений и спектральных свойств сигнала. Применяется разложение сигнала не в классический кардинальный ряд бесконечной длительности, а в виде конечной суммы финитных кардинальных В-сплайнов целых степеней. Известно, что оптимальной степенью в смысле наилучшей гладкости является третья [23]. Приведенные в статье результаты вычислительного эксперимента по нескольким каналам с применением аппроксимации кубическими сплайнами показали, что используемое в системе «Гастроскан-ГЭМ» отношение длительности сеанса и периода выборки сигналов позволяет снизить значения ошибок квантования во времени в некоторых каналах до уровня 0,03%.
Роль изложенного в данной статье принципа конечности энергии для решения проблемы оценки выбора шагов дискретизации непрерывных сигналов будет возрастать при анализе процессов с явными признаками нестационарности. При современных методах функциональной диагностики ЖКТ, позволяющих анализировать визуально и численно картины процессов в трехмерных пространствах «время -- частота -- уровень сигнала» повышается объективность оценок. Особую важность приобретают характеристики, отражающие точность оценок в области частотного аргумента. Этому способствуют математические методы оконного преобразования Фурье, а также вейвлет-преобразования.
Литература
1. Зайченко К.В., Жаринов О.О., Кулин А.Н. Съем и обработка биоэлектрических сигналов // СПб: РИО ГУАП. 2001. 140 c.
2. Alvarez W.C. The electrogastrogram and what it shows // JAMA. 1922. vol. 78. pp. 1116-1119.
3. Yin J., Chen J. D. Z. Electrogastrography: Methodology, Validation and Applications // Journal of Neurogastroenterology and Motility. 2013. vol. 19. no. 1. pp. 5?17.
4. Ребров В.Г. Возможности электрогастроинтестинографии при ряде заболеваний желудка и кишечника // Терапевтический архив. 1981. № 10. С. 66?70.
5. Kosenko P.M., Vavrinchuk S.A. Electrogastroenterography in patients with complicated peptic ulcer // Science Book Publishing House. Yelm. USA. 2013. 164 p.
6. Khan S., Ahmad M. A study on B-spline wavelets and wavelet packets // Applied Mathematics. 2014. vol. 5. pp. 3001-3010.
7. Свиньин С.Ф., Попов А.И. Финитные базисные функции в задачах формирования выборок сигналов конечной протяженности // Труды СПИИРАН. 2015. № 6. С. 50?67.
8. Riezzo G., Russo F., Indrio F. Electrogastrography in adults and children: the strength, pitfalls, and clinical significance of the cutaneous recording of the gastric electrical activity // BioMed research international. 2013. pp. 1-14.
9. Электрогастроэнтерография: исследование электрической активности желудка и кишечника.
10. Попов А.И., Тюльпин А.А., Рудалёв А.В. Программная библиотека для цифровой обработки сигналов электрогастроэнтерографии // Информационно-измерительные и управляющие системы. 2014. № 6. С. 40?45.
11. Свиньин С.Ф., Попов А.И., Рудалёв А.В. Вейвлет-анализ и информационные технологии в задачах обработки электрогастроэнтерограмм // Труды СПИИРАН. 2013. № 27. С.129?143.
12. Chen J., Lin Z., McCallum R.W. Noninvasive feature-based detection of delayed gastric emptying in humans using neural networks // Biomedical Engineering, IEEE Transactions. 2000. vol. 47. no. 3. pp. 409-412.
13. Liang H. Application of support vector machine to the detection of delayed gastric emptying from electrogastrograms // Support Vector Machines: Theory and Applications. 2005. pp. 399-412.
14. Kara S., Dirgenali F., Okkesim Є. Detection of gastric dysrhythmia using WT and ANN in diabetic gastroparesis patients // Computers in biology and medicine. 2006. vol. 36. no. 3. pp. 276?290.
15. Косенко П.М. и др. Математическое моделирование моторно-эвакуаторных нарушений желудочно-кишечного тракта у пациентов с язвенным пилоро-дуоденальным стенозом // Новости хирургии. 2014. Т. 22. № 2. С. 224?229.
16. Попов А.И., Косенко П.М. Программа для диагностики степени компенсации стеноза по данным электрогастроэнтерографии. Свидетельство об официальной регистрации программы для ЭВМ № 2016614008. 2016.
17. Никольский С.М. Курс математического анализа // М.: Наука. 1973. Т.2 392 с.
18. Слепян А.Д. О ширине полосы // ТИИЭР. 1976. Т. 64. № 3. C. 4?14.
19. Yang Z., Chen X., He Z. Wave propagation modeling in one-dimension structures be the B-spline wavelet on interval finite elements // Applied Mechanics and Materials. 2012. vol. 105. pp. 3-8.
20. Свиньин С.Ф. Теория и методы формирования выборок сигналов с инфинитными спектрами // СПб: Наука. 2016. 72 с.
21. Li X. Numerical solution of fractional partial diffetential equations using cubic B-spline wavelets collocation method // Australian Communications and Media Autority. 2012. vol. 1. no. 3. pp. 159-164.
22. Гребенников А.И. Метод сплайнов и решение некорректных задач теории приближений // М.: Изд-во Московского ун-та. 1983. 208 с.
23. Rakowski W. Prefiltering in Wavelet Analysis Applying Cubic B-Splines // Intern. journal of electronics and telecommunications. 2014. vol. 60. no. 4. pp. 331?340.
Размещено на Allbest.ru
...Подобные документы
Разработка метода холтеровского мониторирования, современное клиническое применение. Требования к компетентности врача при интерпретировании результатов. Схема наложения электродов. Искажение ЭКГ сигнала в процессе аналогово-цифрового преобразования.
лекция [5,2 M], добавлен 17.10.2013Определение контраста, интенсивность сигнала пиксела. Главные параметры, определяющие контраст в ЯМР-томографии. Спиновое эхо, кривые спада сигналов тканей мозга. Применение многоэховых последовательностей. Времена релаксации в зависимости от возраста.
реферат [1,3 M], добавлен 26.12.2013Современное состояние проблемы физических средств реабилитации в комплексном восстановлении женщин после кесарева сечения. Показания и возможные осложнения кесарева сечения. Эффективные методы комплексного восстановления женщин после кесарева сечения.
курсовая работа [40,4 K], добавлен 19.04.2012Аналитический обзор ТНПА и литературных источников по определению содержания фосфора в продуктах питания. Основные проявления избытка фосфора. Характеристика спектрофотометрического метода определения. Методика выполнения измерений, показатели точности.
курсовая работа [65,5 K], добавлен 11.02.2015Методы изучения ССС человека. Описание пульсометрической оценки. Графическое изображение артериальной пьезопульсограммы и расчет кодирующих точек. Пьезокерамические датчики ЗП-1, которые непосредственно преобразовывают локальные механические толчки.
контрольная работа [275,7 K], добавлен 07.10.2011Проведение высокоэффективной жидкостной хроматографии с многоканальным детектированием. Сглаживающий фильтр Савицкого-Голея. Разбиение хроматограммы на отдельные пики. Оценка величины шума и ее использование при обработке хроматографического сигнала.
курсовая работа [815,2 K], добавлен 17.11.2011Метод и устройство программируемой электростимуляции мышц при патологической ходьбе. Средства аппаратной реализации метода ИКД. Методика проведения сеансов. Результаты реабилитации больных с поражениями и заболеваниями опорно-двигательной системы.
реферат [616,8 K], добавлен 15.01.2009Развитие двигательных функций у детей до года. Стимуляция становления моторных рефлексов. Виды и методы лечебного массажа. Оценка функционального состояния опорно-двигательного аппарата детей после проведения циклических и нециклических сеансов массажа.
курсовая работа [58,3 K], добавлен 30.01.2013Применение современных электрокардиографов при обследовании пациента. Использование сигма-дельта аналого-цифровых преобразователей. Функция формирования нулевого потенциала. Принципиальная схема и ее описание, методы анализа сигнала электрокардиографа.
курсовая работа [1,0 M], добавлен 03.04.2014Влияние электрического тока на мозг человека и животных. Применение метода нейротропной терапии, в основе которого лежит воздействие на ЦНС пациента постоянным импульсным током низкой частоты. Основные фазы электросна: торможение и растормаживание.
реферат [17,2 K], добавлен 15.12.2010Факторы, влияющие на снижение иммунитета. Понятие антигена и антител. Роль растений в восстановлении и укреплении иммунитета. Лекарственные растения, обладающие иммуномодулирующими свойствами. Фитопрепараты для укрепления и восстановления иммунитета.
курсовая работа [1,7 M], добавлен 29.03.2010Материалы, применяемые в стоматологии (конструкционные, вспомогательные, клинические). Особенности материалов, используемых врачом-стоматологом в процессе изготовления зубных протезов и на приеме больных. Характеристика свойств основных материалов.
презентация [344,1 K], добавлен 26.10.2014Обзор основных методик коррекции искривленной носовой перегородки. Причины повторного обращения пациентов для коррекции носа. Применение метода экстракорпоральной септопластики в модификации по Gubisch для восстановления (реконструкции) перегородки носа.
статья [12,1 M], добавлен 13.05.2014Сущность и особенности медицинской реабилитации в Украине. Роль физической реабилитации в восстановлении. Формы и значение физиотерапевтических процедур. Влияние механического воздействия на ткани организма. Принципы использования некоторых видов массажа.
курсовая работа [74,5 K], добавлен 05.12.2009Сущность научного обоснования лечебного массажа. Его влияние на организм человека. Общие показания и противопоказания для его проведения при острых заболеваниях. Разновидности массажа. Определение длительности и частоты данной процедуры, курса применения.
презентация [1,8 M], добавлен 15.09.2015Способы определения достоверной количественной связи между психологическими факторами, коэффициентами частоты и тяжести заболеваний студентов-первокурсников колледжа. Состояние здоровья обучающихся как залог успешности освоения образовательных программ.
курсовая работа [1019,6 K], добавлен 11.12.2014Изучение состава и структуры вещества биологической природы при помощи сложных физико-химических методов и точных измерительных приборов. Разработка методов исследования - гидролиз, хроматография, электрофорез, рентгеноструктурный анализ. Биометрия.
реферат [24,0 K], добавлен 17.01.2009Электромагнитное излучение как фактор риска для здоровья человека, защита и характеристика защитного материала. Материалы и методы исследования, методы определения макро и микрореологических параметров крови, концентрация гемоглобина и эритроцитов.
курсовая работа [475,7 K], добавлен 11.05.2012Теоретические аспекты изготовления протезов из разных базисных материалов. Техника изготовления съемного пластиночного протеза при полном отсутствии зубов из базисного материала. Особенность снятия протезов для соблюдения должной гигиены полости рта.
курсовая работа [1,1 M], добавлен 15.11.2022Основные характеристики, свойства и ограничения в применении базисных масел. Особенности выбора базы носителя для аромосредства. Способы использования натуральных базовых масел. Противопоказания, ценность, методы хранения и лечебные свойства масел.
курсовая работа [3,9 M], добавлен 25.02.2013