Молекулы белков в крови
Структура белка - последовательность аминокислотных остатков в полипептидной цепи. Формы гемоглобина физиологического типа. Значение гликопротеинов для организма человека. Железо, входящее в гем гемоглобина. Порядок чередования аминокислотных остатков.
Рубрика | Медицина |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 12.04.2020 |
Размер файла | 872,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http: //www. allbest. ru/
Задание 1.
1. Молекулы белков могут иметь различные пространственные конфигурации, и в их строении различают четыре уровня структурной организации.
Первичная структура белка - определенная последовательность a-аминокислотных остатков в полипептидной цепи.
Пептидная цепь имеет линейную структуру только у небольшого числа белков. В большинстве белков пептидная цепь определенным образом свернута в пространстве.
Первичная структура белков, т.е. последовательность аминокислот в нем, программируется последовательностью нуклеотидов в ДНК. Выпадение, вставка, замена нуклеотида в ДНК приводит к изменению аминокислотного состава и, следовательно, структуры синтезируемого белка.
Если изменение последовательности аминокислот носит не летальный характер, а приспособительный или хотя бы нейтральный, то новый белок может передаться по наследству и остаться в популяции. В результате возникают новые белки с похожими функциями. Такое явление называется полиморфизм белков.
Один из первых белков, первичная структура которого была установлена в 1954 г. -- гормон инсулин (регулирует содержание сахара в крови), его молекула состоит из двух полипептидных цепей, которые связаны друг с другом (в одной цепи 21 аминокислотный остаток, в другой - 30).
Последовательность и соотношение аминокислот в первичной структуре определяет формирование вторичной, третичной и четвертичной структур.
Вторичная структура белка - это способ укладки полипептидной цепи в более компактную структуру, при которой происходит взаимодействие пептидных групп с образованием между ними водородных связей.
В результате образования внутримолекулярных водородных связей между атомами водорода аминогрупп и атомами кислорода карбонильных групп полипептидные цепи многих белков скручиваются в спираль.
Существует два основных способа укладки цепи.
Одна из моделей вторичной структуры - a-спираль. Другая модель - в-форма («складчатый лист»), в которой преобладают межцепные (межмолекулярные) Н-связи.
В б-спирали на одном витке укладываются четыре аминокислотных остатка. Все радикалы аминокислот находятся снаружи спирали. Между группами NH и СО, находящимися на соседних витках, образуются водородные связи, которые стабилизируют спираль.
Данная структура является правозакрученной спиралью, образуется при помощи водородных связей между пептидными группами 1-го и 4-го, 4-го и 7-го, 7-го и 10-го и так далее аминокислотных остатков.
Формированию спирали препятствуют пролин и гидроксипролин, которые из-за своей циклической структуры обусловливают "перелом" цепи, т.е. ее принудительный изгиб как, например, в коллагене.
Высота витка спирали соответствует высоте 3,6 аминокислотных остатков, 5 полных витков соответствуют 18 аминокислотам .
В в-структуре (складчатом слое) полипептидная цепь растянута, ее участки располагаются параллельно друг другу и удерживаются водородными связями.
Большинство белков содержит как б-спирали, так и в-структуры. В глобулярных белках преобладает б-спираль, в фибриллярных - в-структура.
Вторичная структура образуется только при участии водородных связей между пептидными группами: атом кислорода одной группы реагирует с атомом водорода второй, одновременно кислород второй пептидной группы связывается с водородом третьей и т.д.
Третичная структура белка -- форма закрученной спирали в пространстве, образованная главным образом за счет дисульфидных мостиков -S-S- , водородных связей, гидрофобных и ионных взаимодействий.
Третичная структура - это трехмерная пространственная конфигурация закрученной б-спирали или в-структуры в пространстве. Благодаря третичной структуре происходит еще более компактное формирование цепи.
У большинства белков полипептидные цепи свернуты особым образом в «клубок» -- компактную «глобулу».
Белок в водном растворе свертывается таким образом, чтобы его гидрофобные (водоотталкивающие -- от греч. гидро - вода, фобос - страх) боковые цепи были внутри молекулы, а гидрофильные (растворимые) - повернуты наружу.
В образовании третичной структуры участвуют также ионные взаимодействия противоположно заряженных групп (солевые мостики) NH3+ и COO-- .
Наряду с б-спиралью и в-структурой в третичной структуре обнаруживается так называемая неупорядоченная конформация, которая может занимать значительную часть молекулы. В разных белках наблюдается разное соотношение типов структур. Например, инсулин содержит 52% б-спирали и 6% в-структуры, трипсин - 14% б-спирали и 45% в-структуры.
Аминокислоты принимают участие в формировании третичной структуры, образуя связи своими функциональными группами (радикалами), например:
· водородные - между НО-, СООН-, NH2-группами радикалов аминокислот,
· дисульфидные - между остатками цистеина,
· гидрофобные - между остатками алифатических и ароматических аминокислот,
· ионные - между СОО--группами глутамата и аспартата и NH3+-группами лизина и аргинина,
· псевдопептидные - между дополнительными СОО--группами глутамата и аспартата и дополнительными NH3+-группами лизина и аргинина.
Четвертичная структура белка -- агрегаты нескольких белковых макромолекул (белковые комплексы), образованные за счет взаимодействия разных полипептидных цепей.
Четвертичная структура - способ совместной укладки нескольких полипептидных цепей. Образующиеся структуры называются ассоциатами.
Термин «четвертичная структура» был предложен в 1958 г. Дж. Берналом.
Характерной особенностью белков с четвертичной структурой является их способность к самосборке, например, гемоглобин (белок крови) легко собирается из смеси б- и в-цепей и гема.
Если белки состоят из двух и более полипептидных цепей, связанных между собой нековалентными (не пептидными и не дисульфидными) связями, то говорят, что они обладают четвертичной структурой.
Такие агрегаты стабилизируются водородными связями, ионными связями и электростатическими взаимодействиями между остатками аминокислот, находящимися на поверхности глобулы.
Подобные белки называются олигомерами, а их индивидуальные цепи - протомерами (мономерами, субъединицами). Если белки содержат 2 протомера, то они называются димерами, если 4, то тетрамерами и т.д.
Гемоглобин -- сложный белок, макромолекула которого состоит из четырех полипептидных цепей (глобул), соединенных с четырьмя гемами - небелковыми образованиями, которые и придают крови красный цвет.
Так как субъединицы в олигомерах очень тесно взаимодействуют между собой, то любое изменение конформации какой-либо одной субъединицы обязательно влечет за собой изменение других субъединиц. Этот эффект называется кооперативное взаимодействие.
Например, в легких у гемоглобина кооперативное взаимодействие субъединиц в 300 раз ускоряет присоединение кислорода к гемоглобину. В тканях отдача кислорода также ускоряется в 300 раз.
2. Формулы аминокислот
· Глицин - NH?-CH?-COOH
· Серин - HO2C-CH (NH2) CH2OH
· Цистеин HO?CCH(NH?)CH?SH
· Аспарагиновая кислота - HO?CCH(NH?)CH?CO?H
· Лизин - HO?CCH(NH?)(CH?)?NH?
· Фенилаланин - C?H??NO?
· Пролин - C?H?NO?
3. Значение гликопротеинов
Класс под названием гликопротеины или, более корректно, гликоконъюгаты - это белки, содержащие углеводный компонент, ковалентно присоединенный к полипептидной основе. Содержание углеводов в них варьирует от 1 до 85% по массе.
Для гликопротеинов характерно низкое содержание углеводов. Углеводный остаток является олигосахаридом, имеет нерегулярное строение и содержит маннозу, галактозу, глюкозу, и их аминопроизводные, также N-ацетилнейраминовую кислоту.
Значение:
· Входя в состав клеточной оболочки, Г. играют важную роль в ионном обмене клетки," иммунологических реакциях, дифференцировке тканей, явлениях межклеточной адгезии и т. д.
· Гликопротеины являются важным структурным компонентом клеточных мембран животных и растительных организмов.
· Транспортируют гидрофобные вещества и ионы металлов.
· Выполняют защитную роль, покрывая слизистые оболочки.
· Обеспечивают антигенную активность опухолевых клеток.
· Г. Плазмы участвуют в свертывании крови, выполняют транспортную и защитную функции. ?Яндекс Директ
4. Гемоглобин (Hb) -- это сложный железосодержащий белок, который находится в эритроцитах. Именно он является основной составляющей эритроцитов и придает им характерный красный цвет. Это один из важнейших компонентов крови, так как основной функцией гемоглобина является перенос кислорода из альвеол легких к клеткам всего организма, а также углекислого газа в обратном направлении (к легким).
В одном эритроците содержится приблизительно 400 000 000 молекул гемоглобина.
Формула молекулы гемоглобина -- С2954Н4516N780O806S12Fe4.
Молекулярная масса гемоглобина -- 66 800 г/моль (66,8 кДа).
Строение молекулы гемоглобина простое -- в ее состав входит всего 2 компонента: Гем и Глобин.
1) Гем -- это природный пигмент, в состав которого входит соединение порфирина с железом. Общая доля гема в структуре гемоглобина составляет всего 4%. Железо, входящее в гем гемоглобина, имеет валентность Fe2+.
Общая формула гема -- C34H32O4N4.
Молекулярная масса гема -- 616,5 г/моль.
Наличие в крови сильных окислителей (свободных радикалов) приводит к окислению двухвалентного железа до трехвалентного (Fe3+). Гем в этом случае превращается в гематин, а сам гемоглобин в метгемоглобин. Только двухвалентное железо способно присоединять кислород и транспортировать его от альвеол легких до тканей организма, поэтому окисление железа в составе гема и образование метгемоглобина очень негативно сказывается на способности эритроцитов транспортировать кислород, что приводит к гипоксии.
Антиоксиданты (витамины С, А, Е, селен и др.) препятствуют образованию метгемоглобина за счет инактивации свободных радикалов. А вот уже образовавшийся гематин перевести обратно в гем могут только специальные ферменты -- НАДН- и НАДФН-метгемоглобинредуктаза. Именно эти ферменты восстанавливают Fe3+ в составе метгемоглобина до Fe2+ гемоглобина.
2) Глобин -- это альбуминовый белок, который составляет 96% массы гемоглобина и состоит из 4 цепей -- 2 б и 2 в .
3)
Каждая альфа-цепь глобина состоит из 141 аминокислоты, бета-цепь -- из 146 аминокислот. Всего в молекуле гемоглобина присутствует 574 аминокислотных остатка.
Глобин человека, в отличие от глобина животных не содержит в своем составе аминокислот лейцин и цистин.
Молекулярный вес глобина составляет 64 400 г/моль (64,4 кДа).
Альфа- и бета-цепи глобина образуют 4 гидрофобным кармана, в которых располагается 4 гема. Именно гидрофобный карман белка глобина позволяет железу гема присоединять кислород не окисляясь, т.е. без перехода в Fe3+. Особое значение в формировании гидрофобного кармана играют 3 аминокислотных остатка: проксимальный гистидин, дистальный гистидин и валин.
В зависимости от белкового содержания формы гемоглобина человека бывают двух видов. Это физиологические и аномальные.
Формы гемоглобина физиологического типа возникают на определенных этапах жизнедеятельности человека. А вот патологические формируются в случае неправильной последовательности размещения ряда аминокислот в глобине.
В человеческом организме могут присутствовать:
1. Оксигемоглобин -- так называется соединение гемоглобина с кислородом. Обозначается -- HbO2. Именно такой формой гемоглобина насыщена артериальная кровь от легких и до капилляров тканей.
2. Миоглобин -- мышечная разновидность гемоглобина, которая содержится в скелетной мускулатуре и миокарде. Он является не переносчиком кислорода, а его депо на случай гипоксии. При снижении кислородной емкости крови, а также при гипоксии мышечной ткани при повышенной нагрузке, миоглобин начинает отдавать тканям свой кислород. Миоглобин -- это резерв кислорода для сердца и скелетных мышц при недостаточном его поступлении с обычным гемоглобином крови.
3. Дезоксигемоглобин (HbH) -- это «пустой» гемоглобин, который отдал кислород в тканях и не присоединил углекислый газ или, наоборот, отдал углекислый газ в легких, но не присоединил кислород. В подавляющем большинстве -- это короткая промежуточная стадия в тканях или легких. В венозной или артериальной крови такой гемоглобин тоже встречается, но в небольшом количестве.
4. Карбгемоглобин (HbCO2) -- соединение гемоглобина с углекислым газом. Это соединение содержится в венозной крови, т.е. после капиллярной сети тканей и до легких.
5. Метгемоглобин (HbOH) -- образуется при окислении Fe2+ до Fe3+ под воздействием свободных радикалов, оксида азота, метиленового синего и др. Метгемоглобин утрачивает способность к переносу кислорода, поэтому повышение его в крови опасно для жизни.
6. Цианметгемоглобин (HbCN) -- патологическая форма гемоглобина, образующаяся в крови при присоединении цианидов (CN-) к метгемоглобину. Соединение цианидов с метгемоглобином применяется при лечении отравлений синильной кислотой.
7. Карбоксигемоглобин (HbCO) -- патологическая разновидность гемоглобина -- очень стойкое соединение с угарным газом. Прочность связи углекислого газа с гемоглобином в 200 раз больше, чем у кислорода. В норме содержание HbCO в крови не должно превышать 1%.
В различных информационных источниках выделяют еще и такие формы гемоглобина:
1. Гликированный гемоглобин. Эта форма представляет собой неразделимое соединение глюкозы и белка. Такая разновидность глюкозы может перемещаться по крови на протяжении длительного времени, поэтому его применяют для выявления уровня сахара.
2. Фетальный. Форма гемоглобина присутствует в крови эмбриона или новорожденного малыша в первые несколько дней жизнедеятельности. Причислен к активным видам в плане переноса кислорода, под воздействием окружающей среды подвергается быстрому разрушению.
3. Сульфгемоглобин. Представленная разновидность белка возникает в крови при употреблении большого количества медикаментозных средств. Как правило, содержание этого белка не превышает 10 %.
4. Дисгемоглобин. Формируется при таких связях, которые полностью лишают белок способности осуществлять его функции. Это указывает на то, что этот вид гемоглобина будет транспортироваться по крови в форме дополнительного вещества. По истечении времени он будет переработан селезенкой. При нормальном состоянии здоровья это вещество обнаруживается в организме каждого человека, но если случаи такого рода связок участятся, то органам, занимающимся транспортировкой крови по организму, придется функционировать с повышенной интенсивностью, в результате чего они быстрее истощатся и износятся.
Патологические формы гемоглобина
· D-Пенджаб;
· S;
· C;
· H.
1) Свое название форма гемоглобина D-Пенджаб получила благодаря широкому распространению на территории Пенджаба, в Индии и Пакистане. Возникновение белка произошло из-за распространения малярии в различных частях Азии. Согласно статистическим данным, этот белок обнаруживается в 55 % случаев от общего числа патологических форм гемоглобина.
2) Гемоглобин S сформировался на территории Западной Африки в результате пяти отдельных мутаций.
3) Белок C входит в число наиболее распространенных структурных разновидностей гемоглобина. Люди, у которых присутствует этот белок, могут страдать от такого заболевания, как гемолитическая анемия.
4) Гемоглобин H провоцирует развитие такого серьезного заболевания, как альфа-талассемия.
Задание 2
1. Белки - биополимеры, мономерами которых являются:
а) карбоновые кислоты; б) в - аминокислоты;
в) амины; г) б - аминокислоты.
2. Какой участок полипептидной цепи считается ее началом?
а) C - конец; б) N - конец.
3. Какие аминокислоты называют заменимыми?
а) Аминокислоты, не синтезируемые в организме, а поступающие в него с пищей;
б) аминокислоты, синтезируемые в организме в достаточном количестве.
4. Из приведенных ниже названий укажите названия незаменимых аминокислот:
а) глицин; б) серин;
в) лейцин; г) валин.
5. Сколько пептидных связей содержится в пентапептиде?
а) 3; б) 4; в) 6; г) 5.
6. Что представляют собой структуры белка?
а) Вторичная-3) б) четвертичная-1)
1) структура, состоящая из определенного числа полипептидных цепей, занимающих строго фиксированное положение относительно друг друга; (б)
2) порядок чередования аминокислотных остатков в полипептидной цепи; белок гемоглобин железо аминокислотный
3) способ укладки полипептидной цепи в упорядоченную структуру;(а)
4) способ укладки полипептидной цепи в пространстве.
7. Напишите полное название тетрапептида:
тре - арг- гли - гис.
Треониларгинилглицилгистидин
Размещено на Allbest.ru
...Подобные документы
Рассмотрение понятия и химического состава гемоглобина. Основные типы и формы гемоглобина. Определение функций гемоглобина, строения его молекул и содержания в крови. Процесс связывания кислорода с гемоглобином. Роль железа в жизнедеятельности человека.
курсовая работа [624,0 K], добавлен 19.05.2019Характеристика железа, его физические, химические и биологические свойства. Железо в составе гемоглобина и миоглобина человека. Количество гемоглобина в крови человека. Уровень железа в плазме крови. Процессы разрушения и образования эритроцитов.
реферат [36,1 K], добавлен 13.02.2014Причины и последствия анемии - патологического состояния организма, при котором снижается количество гемоглобина в единице объема крови. Структура гемоглобина, его роль и значения для организма. Симптомы, методы диагностики и принципы лечения малокровия.
реферат [23,0 K], добавлен 18.06.2015Анализ крови на гемоглобин в диагностике различных заболеваний, снижение уровня гликированного гемоглобина при гипогликемии, гемолитической анемии, кровотечениях и переливании крови. Способы цитологического определения типа гемоглобина в эритроцитах.
реферат [24,9 K], добавлен 07.06.2010Цианоз - синюшная окраска кожи и слизистых оболочек, обусловленная высоким содержанием в крови восстановленного гемоглобина. С клинической точки зрения присутствие цианоза свидетельствует о вероятности тканевой гипоксии. Выявление аномального гемоглобина.
доклад [24,6 K], добавлен 31.03.2009Общий анализ крови: нормы, расшифровка основных показателей: гемоглобин, лейкоциты, нейтрофилы, тромбоциты, СОЭ. Этапы свертывания крови. Физиологические формы гемоглобина, его патологические формы. Причины повышения активности креатинкиназы плазмы.
презентация [275,9 K], добавлен 04.04.2016Биосинтез гемоглобина. Обмен хромопротеидов. Биохимические процессы, протекающие в печени. Роль печени в углеводном обмене и обмене стеринов. Синтез гликогена в печени. Участие печени в распаде белка. Механизм обезвреживания токсических веществ в печени.
реферат [26,6 K], добавлен 23.01.2009Процесс взаимодействия гемоглобина с молекулами кислорода. Роль молекулярного кислорода в дыхательном процессе. Результаты абсорбционного эксперимента. Статистический анализ люминесценции пористых образцов, окрашенных раствором красителей и гемоглобина.
дипломная работа [2,5 M], добавлен 24.07.2015Общая слабость, повышенная утомляемость, вялость, сонливость, сухость во рту, жажда, запах ацетона изо рта. Уровень гликозилированного гемоглобина крови. Дневные колебания сахара крови. Инсулинотерапия при сахарном диабете I типа в стадии декомпенсации.
история болезни [23,6 K], добавлен 23.04.2012Снижение уровня гемоглобина, эритроцитов и гематокрита в единице объема крови. Клинико-патогенетическая классификация анемий. Лабораторные критерии анемии у детей по содержанию гемоглобина. Анемии, возникающие вследствие повышенной деструкции эритроцитов.
презентация [3,8 M], добавлен 27.03.2016Классификация белков - высокомолекулярных органических азотсодержащих соединений, состоящих более чем из 20 видов альфа-аминокислот. Физиологическая функция белков плазмы крови: альбумины, глобулины. Методы определения общего белка в сыворотке крови.
реферат [25,8 K], добавлен 19.01.2011Нарушение синтеза гемоглобина в результате дефицита железа. Витаминодефицитная анемия. Этиология агранулоцитоза. Устранение сенсибилизирующих факторов. Причины лейкоза у детей. Лейкемические инфильтраты десен. Геморрагические диатезы. Болезнь Верльгофа.
презентация [1008,7 K], добавлен 19.12.2014Этиопатогенетическая классификация анемий - клинико-гематологического синдрома, характеризующегося снижением содержания гемоглобина в единице объема крови. Наиболее значимые причины дефицита железа у детей раннего возраста. Принципы лечения анемии.
презентация [564,2 K], добавлен 25.09.2015Влияние витаминов и микроэлементов на организм человека и суточная потребность в них. Содержание витаминов в продуктах питания. Витамин А (ретинол, аксерофтол). Витамин В1 (тиамин, аневрин). Белки, жиры, углеводы. Образование гемоглобина, железо.
реферат [33,0 K], добавлен 27.01.2009Специальные методы исследования крови и мочи животных. Условия взятия крови и мочи, сохранность до начала лабораторных исследований. Скорость оседания эритроцитов и содержания гемоглобина. Определение времени свертываемости крови по способу Бюркера.
курсовая работа [34,0 K], добавлен 31.03.2011Биологическое значение гемоксигеназной системы. Тетрапиррольная структура уропорфиринoгена III. Ферментативный, химический механизм. Регуляция активности гемоксигеназы на уровне генома. Структура гемоглобина человека. Синтез гемма в митохондриях.
курсовая работа [2,2 M], добавлен 08.07.2016Внутренняя среда организма. Основные функции крови - жидкой ткани, состоящей из плазмы и взвешенных в ней кровяных телец. Значение белков плазмы. Форменные элементы крови. Взаимодействие веществ, приводящее к свертыванию крови. Группы крови, их описание.
презентация [2,5 M], добавлен 19.04.2016Понятие и основные причины возникновения, а также факторы развития анемии как снижения уровня гемоглобина и (или) эритроцитов в единице объема крови, диагностика и лечение. Ее формы: железодефицитная, гемолитическая, апластическая, гипопролиферативная.
разработка урока [82,5 K], добавлен 08.10.2014Снижение уровня эритроцитов и концентрации гемоглобина при анемии. Нормальные показатели красной крови по возрастам. Значение цветного показателя. Основные принципы классификации анемий, многообразие их клинических и гематологических проявлений.
презентация [19,2 M], добавлен 09.10.2012Дифференцирование наблюдаемых изменений в зависимости от причин, обусловивших развитие осложнений при переливании. Признаки гемолиза в виде скопления гемолизированных эритроцитов и свободного гемоглобина. Влияние переливания крови на детский организм.
реферат [21,4 K], добавлен 21.05.2010