Показатели углеводного и жирового обмена

Переваривание углеводов в кишечнике. Структура альфа-амилазы слюнных желез. Транспорт глюкозы из крови в клетки. Распределение белков-транспортеров глюкозы. Анализ нарушений всасывания моносахаридов. Фруктоза и другие углеводы в процессе гликолиза.

Рубрика Медицина
Вид курс лекций
Язык русский
Дата добавления 18.04.2020
Размер файла 90,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Неокислительная фаза

Неокислительная фаза пентозофосфатного пути включает серию обратимых реакций, в результате которых рибулозо-5-фосфат превращается в рибозо-5-фосфат и ксилулозо-5-фосфат, и далее за счёт переноса углеродных фрагментов в метаболиты гликолиза -- фруктозо-6-фосфат и глицеральдегид-3-фосфат. В этих превращениях принимают участие ферменты: эпимераза, изомераза, транскетолаза и трансальдолаза. Транскетолаза в качестве кофермента использует тиаминдифосфат. Неокислительный этап пентозофосфатного пути не включает реакции дегидрирования и поэтому используется только для синтеза пентоз.

Неокислительная фаза пентозофосфатного пути

Гидролиз 6-фосфоглюконолактона с образованием 6-фосфоглюконата

Образовавшийся в результате 1-й реакции глюконолактон-6-фосфат быстро превращается в 6-фосфоглюконат при участии фермента глюконолактонгидратазы.

Взаимопревращение, или изомеризация, пентозофосфатов

Рибулозо-5-фосфат может обратимо изомеризоваться в другие пентозофосфаты -- ксилулозо-5-фосфат и рибозо-5-фосфат. катализируют эти реакции два разных фермента: пентозофосфат-эпимераза и пентозофосфат-изомераза по уравнениям:

Образование из рибулозо-5-фосфата двух других пентозофосфатов -- ксилулозо-5-фосфата и рибозо-5-фосфата необходимо для последующих реакций цикла. Причём требуется две молекулы ксилулозо-5-фосфата и одна молекула рибозо-5-фосфата.

Первая транскетолазная реакция

В этой реакции, катализируемой транскетолазой, используется образовавшиеся в предыдущей реакции пентозофосфаты:

Транскетолаза -- димер с молекулярной массой 140 000. Реакция требует ионов Mg2+. Коферментом в транскетолазной реакции служит ТПФ, играющий роль промежуточного переносчика гликольальдегидной группы от ксилулозо-5-фосфата к рибозо-5-фосфату. В результате образуется семиуглеродный моносахарид седогептулозо-7-фосфат и глицеральдегид-3-фосфат. Оба продукта транскетолазной реакции используются на следующей стадии цикла в качестве субстратов.

Перенос дигидроксиацетонового фрагмента с седогептулозо-7-фосфата на глицеральдегид-3-фосфат

Фермент трансальдолаза катализирует перенос остатка диоксиацетона (но не свободного диоксиацетона) от седогептулозо-7-фосфата на глицеральдегид-3-фосфат. Эта обратимая реакция:

Трансальдолаза -- димер с молекулярной массой около 70 000 Да. Молекула фруктозо-6-фосфата, образующаяся в этой реакции, подключается к гликолизу, а эритрозо-4-фосфат используется как субстрат для последующих стадий цикла.

Вторая транскетолазная реакция

Эта реакция сродни первой транскетолазной реакции и катализируется тем же ферментом. Отличие её в том, что акцептором гликолевого альдегида служит эритрозо-4-фосфат.

Фруктозо-6-фосфат и глицеральдегид-3-фосфат подключаются к гликолизу.

Так как все реакции неокислительного этапа обратимы, образование рибозо-5-фосфата может происходить не только в результате изомерного превращения продукта окислительной фазы пентозофосфатного пути рибулозо-5-фосфата в рибозо-5-фосфат под действием изомеразы, но также и из промежуточных продуктов гликолиза -- фруктозо-6-фосфата и глицеральдегид-3-фосфата. Последовательность превращений, приводящих к образованию рибозо-5-фосфата из таких продуктов гликолитического пути, можно представить в виде:

2Фруктозо-6-фосфат + Глицеральдегид-3-фосфат = 2Ксилулозо-5-фосфат + Рибозо-5-фосфат + 2Ксилулозо-5-фосфат = 2Рибулозо-5-фосфат + 2Рибулозо-5-фосфат = 2Рибозо-5-фосфат.

Суммарный результат метаболизма 3 молекул рибулозо-5-фосфата в неокислительной фазе пентозофосфатного пути -- образование 2 молекул фруктозо-6-фосфата и 1 молекулы глицеральдегид-3-фосфата. Далее фруктозо-6-фосфат и глицеральдегид-3-фосфат могут превратиться в глюкозу. С учётом стехиометрического коэффициента, равного 2, для образования 5 молекул глюкозы (содержащих 30 атомов углерода) потребуются 4 молекулы фруктозо-6-фосфата и 2 молекулы глицеральдегид-3-фосфата (в сумме содержащие также 30 атомов углерода) или, соответственно, 6 молекул рибулозо-5-фосфата. Таким образом, неокислительный путь можно представить как процесс возвращения пентоз в фонд гексоз.

Пентозофосфатный цикл

Окислительный этап образования пентоз и неокислительный этап (путь возвращения пентоз в гексозы) составляют вместе циклический процесс.

Такой процесс можно описать общим уравнением:

6Глюкозо-6-фосфат + 12НАДФ+ + 6Н2О = 5Глюкозо-6-фосфат + 12НАДФН + 12Н+ + 6СO2.

Шесть молекул глюкозо-6-фосфата, вступая в пентозофосфатный цикл, образуют 6 молекул рибулозо-5-фосфата и 6 молекул СО2, после чего из 6 молекул рибулозо-5-фосфата снова регенерируется 5 молекул глюкозо-6-фосфата. Однако это не означает, что молекула глюкозо-6-фосфата, вступающая в цикл, полностью окисляется. Все 6 молекул СО2 образуются из С1-атомов 6 молекул глюкозо-6-фосфата.

Протекание пентозофосфатного цикла позволяет клеткам продуцировать НАДФН, необходимый для синтеза жиров, не накапливая пентозы.

Энергия, выделяющаяся при распаде глюкозы, трансформируется в энергию высокоэнергетического донора водорода -- НАДФН. Гидрированный НАДФН служит источником водорода для восстановительных синтезов, а энергия НАДФН преобразуется и сохраняется во вновь синтезированных веществах, например жирных кислотах, высвобождается при их катаболизме и используется клетками.

В последние годы появились работы, которые дают основание предполагать, что в некоторых тканях схема пентозофосфатного превращения углеводов сложнее, чем это представлено схемой (смотрите выше). Согласно этой более полной схеме пентозофосфатного пути, первые этапы превращения совпадают с прежней схемой, однако после первой транскетолазной реакции начинаются некоторые отклонения.

Считают, что пентозофосфатный путь и гликолиз, протекающие в цитозоле, взаимосвязаны и способны переключаться друг на друга в зависимости от соотношения концентраций промежуточных продуктов, образовавшихся в клетке.

Взаимосвязь пентозофосфатного цикла и гликолиза

Оба превращения углеводов тесно связаны. продукты пентозофосфатного пути -- фруктозо-6-фосфата и глицеральдегид-3-фосфат -- являются также метаболитами гликолиза, поэтому они вовлекаются в гликолизе и превращаются его ферментами. Две молекулы фруктозо-6-фосфата могут регенерироваться в две молекулы глюкозо-6-фосфата с помощью глюкофосфатизомеразы -- фермента гликолиза. В этом случае пентозофосфатный путь выглядит как цикл. Другой продукт -- глицеральдегид-3-фосфат, включившись в гликолиз, превращается в анаэробных условиях в лактат, а в аэробных сгорает до CO2 и H2O[11].

Сравнение с гликолизом

Пентозофосфатный путь существенно отличается от гликолиза. Окисление осуществляется на первой стадии, и в нём участвует не НАД, как в гликолизе, a НАДФ; одним из продуктов пентозофосфатного пути является СО2, который в реакциях гликолиза не образуется. Наконец, пентозофосфатный путь не генерирует АТФ.

Образование рибозы

Пентозофосфатный путь поставляет рибозу для синтеза нуклеотидов и нуклеиновых кислот. Источником рибозы является интермедиат рибозо-5-фосфат, который в реакции с АТФ образует PRPP -- 5-фосфорибозил-1-пирофосфат, используемый в биосинтезе нуклеотидов. Мышечная ткань содержит очень малые количества глюкозо-6-фосфатдегидрогеназы и 6-фосфоглюконатдегидрогеназы. Тем не менее скелетная мышца способна синтезировать рибозу. Вероятно, это осуществляется при обращении неокислительной фазы пентозофосфатного пути, утилизирующей фруктозо-6-фосфат. Таким образом, синтез рибозы может осуществляться в ткани, если в ней протекает часть реакций пентозофосфатного пути.

Биологическая функция пентозофосфатного цикла

Пентозофосфатный цикл не приводит к синтезу АТФ, он выполняет две главные функции:

образование НАДФН для восстановительных синтезов, таких, как синтез жирных кислот и стероидов;

Обеспечение рибозой синтеза нуклеотидов и нуклеиновых кислот.

Регуляция

Судьба глюкозо-6-фосфата -- вступит ли он в гликолиз или пентозофосфатный путь -- определяется потребностями клетки в данный момент, а также концентрацией НАДФ+ в цитозоле. Без наличия акцептора электронов первая реакция пентозофосфатного пути (катализируемая глюкозо-6-фосфатдегидрогеназой) не будет идти. Когда клетка быстро переводит НАДФН в НАДФ+ в биосинтетических восстановительных реакциях, уровень НАДФ+ поднимается, аллостерически стимулируя глюкозо-6-фосфатдегидрогензазу и тем самым увеличивая ток глюкозо-6-фосфата через пентозофосфатный путь. Когда потребление НАДФН замедляется, уровень НАДФ+ снижается, и глюкозо-6-фосфат утилизируется гликолитически[12].

Метилглиоксалевый шунт

Основная статья: Метилглиоксалевый шунт

Метилглиоксалевый шунт -- метаболический путь, встречающийся у некоторых бактерий и представляющий собой отличный от гликолитических реакций путь окисления дигидроксиацетонфосфата до пирувата[13]. Метилглиоксаль был обнаружен в тканевых автолизатах полвека назад. Позднее было убедительно доказано широкое распространение глиоксалазы, катализирующей превращение метилглиоксаля в лактат. Однако смысл этих данных оставался непонятным, поскольку источник метилглиоксаля не был выявлен. Это соединение приобрело новое значение в связи с описанием метилглиоксальсинтазы, изолированной из Е. coli и P. vulgaris.

Аэробный метаболизм пирувата

Клетки недостаточно снабжаемые кислородом, могут частично или полностью существовать за счет энергии гликолиза. Однако большинство животных и растительных клеток в норме в аэробных условиях и все своё «органическое топливо» окисляет до углекислого газа и воды. В этих условиях пируват, образовавшийся при расщеплении глюкозы, не восстанавливается до лактата, а постепенно окисляется до CO2 и H2O в аэробной стадии катаболизма, при этом первоначально происходит окислительное декарбоксилирование пирувата с образованием ацетил-КоА.

Окислительное декарбоксилирование пирувата

Дополнительные сведения: Пируватдегидрогеназный комплекс

Пируватдегидрогеназный комплекс (PDH)

Трёхмерная модель PDH

Схематическое изображение PDH с указанием ферментов (Е1, Е2, Е3). Зелёным цветом выделена коровая часть, синим -- липоильный домен Е2, который продолжается вперёд до соприкосновения с активными центрами молекул Е1 (жёлтый цвет). С кором также связано несколько субъединиц Е3 (красный), и, раскачиваясь, «рука» Е2 может достать до их активных центров

Окисление пирувата до ацетил-КоА происходит при участии ряда ферментов и коферментов, объединённых структурно в мультиферментную систему, получившую название «пируватдегидрогеназный комплекс».

На I стадии этого процесса пируват теряет свою карбоксильную группу в результате взаимодействия с тиаминпирофосфатом (ТПФ) в составе активного центра фермента пируватдегидрогеназы (E1). На II стадии оксиэтильная группа комплекса E1-ТПФ-СНОН-СН3 окисляется с образованием ацетильной группы, которая одновременно переносится на амид липоевой кислоты (кофермент), связанной с ферментом дигидролипоилацетилтрансферазой (Е2). Этот фермент катализирует III стадию -- перенос ацетильной группы на коэнзим КоА (HS-KoA) с образованием конечного продукта ацетил-КоА, который является высокоэнергетическим (макроэргическим) соединением.

На IV стадии регенерируется окисленная форма липоамида из восстановленного комплекса дигидролипоамид-Е2. При участии фермента дигидролипоилдегидрогеназы (Е3) осуществляется перенос атомов водорода от восстановленных сульфгидрильных групп дигидролипоамида на ФАД, который выполняет роль простетической группы данного фермента и прочно с ним связан. На V стадии восстановленный ФАДН2 дигидролипоилдегидрогеназы передает водород на кофермент НАД с образованием НАДН + Н+.

Процесс окислительного декарбоксилирования пирувата происходит в матриксе митохондрий. В нём принимают участие (в составе сложного мультиферментного комплекса) 3 фермента (пируватдегидрогеназа, дигидролипоилацетилтрансфераза, дигидролипоилдегидрогеназа) и 5 коферментов (ТПФ, амид липоевой кислоты, коэнзим А, ФАД и НАД), из которых три относительно прочно связаны с ферментами (ТПФ-E1, липоамид-Е2 и ФАД-Е3), а два -- легко диссоциируют (HS-KoA и НАД).

Все эти ферменты, имеющие субъединичное строение, и коферменты организованы в единый комплекс. Поэтому промежуточные продукты способны быстро взаимодействовать друг с другом. Показано, что составляющие комплекс полипептидные цепи субъединиц дигидролипоил-ацетилтрансферазы составляют как бы ядро комплекса, вокруг которого расположены пируватдегидрогеназа и дигидролипоилдегидрогеназа. Принято считать, что нативный ферментный комплекс образуется путём самосборки.

Суммарную реакцию, катализируемую пируватдегидрогеназным комплексом, можно представить следующим образом:

Пируват + НАД+ + HS-KoA = Ацетил-КоА + НАДН + Н+ + СO2.

Реакция сопровождается значительным уменьшением стандартной свободной энергии и практически необратима.

Образовавшийся в процессе окислительного декарбоксилирования ацетил-КоА подвергается дальнейшему окислению с образованием СО2 и Н2О. Полное окисление ацетил-КоА происходит в цикле трикарбоновых кислот (цикл Кребса). Этот процесс, так же как окислительное декарбоксилирование пирувата, происходит в митохондриях клеток.

Клинические аспекты метаболизма пирувата

Арсенат, а также ионы ртути образуют комплексы с --SH-группами липоевой кислоты и ингибируют пируватдегидрогеназу; при недостаточном содержании тиамина в диете активность пируватдегидрогеназы снижается и пируват может накапливаться. Недостаток тиамина возникает у алкоголиков с нарушенным режимом питания; при введении им глюкозы может происходить быстрое накопление пирувата и лактата, приводящее к лактатацидозу, нередко с летальным исходом. У больных с наследственной недостаточностью пируватдегидрогеназы также может развиваться лактатацидоз, особенно после глюкозной нагрузки. Зарегистрированы мутации практически всех ферментов углеводного метаболизма, и в каждом случае их следствием является заболевание человека.

Взаимопревращения гексоз

Основная статья: Взаимопревращения гексоз

Процесс взаимопревращения или изомеризации является реакция, приводящая к обратимому равновесию между б-D и в-D-формами гексоз, например, глюкозы. Этот процесс аномеризации протекает при физиологических значениях pH очень большой скоростью. Тем не менее существуют целый ряд специфических ферментов (муторотазы, альдозоизомеразы) ещё более его ускоряющие.

Энергетика окисления углеводов

При сжигании в калориметре 1 моль глюкозы с образованием СО2 и Н2О выделяется приблизительно 2780 кДж теплоты. Когда окисление глюкозы происходит в тканях, часть высвобождаемой энергии не теряется в форме теплоты, а «улавливается» в виде высокоэнергетических фосфатных связей. На молекулу глюкозы, окисляющуюся до СО2 и Н2О, образуется примерно 38 высокоэнергетических фосфатных связей. Если принять, что энергия высокоэнергетической связи равна 30,5 кДж, то суммарная энергия, запасаемая в форме АТФ, составит 1159 кДж на 1 моль глюкозы (приблизительно 41,7 % от энергии сгорания). Большая часть АТФ образуется в процессе окислительного фосфорилирования при окислении восстановленных коферментов дыхательной цепью. Другая часть АТФ образуется в результате фосфорилирования, происходящего «на субстратном уровне».

Анаболизм глюкозы

Анаболизм глюкозы -- образование глюкозы в организме, под действием ферментативных процессов, в основном из неуглеводных продуктов, таких как -- ПВК, лактата и др.

Глюконеогенез

Ханс Адольф Кребс -- лауреат Нобелевской премии в области медицины и физиологии 1953 года, за открытие цикла лимонной кислоты или, его современное название -- Цикла Кребса (Цикл трикарбоновых кислот), описал орнитиновый цикл мочевины, работал над проблемами глюконеогенеза.

Глюконеогенез -- синтез глюкозы из неуглеводных источников. Например: анаэробная фаза расщепления глюкозы -- гликолиз -- заканчивается образованием ПВК или лактата. Они при определённых условиях (при голоде и т. д.) могут вновь ресинтезироваться в глюкозу. Из двух молекул молочной кислоты образуется одна молекула глюкозы, то есть происходит как бы обращение гликолиза. Это означает, что глюконеогенез -- процесс противоположный гликолизу. Однако у гликолиза существуют четыре необратимые стадии, протекающие с выделением значительного количества энергии, поэтому глюконеогенез идет в обход этих стадий.

Кребс отметил, что простому обращению гликолиза препятствуют энергетические барьеры на ряде стадий: 1) и 2) между пируватом и фосфоенолпируватом, 3) между фруктозо-1,6-дисфосфатом и фруктозо-6-фосфатом, 4) между глюкозо-6-фосфатом и глюкозой, а также между глюкозо-1-фосфатом и гликогеном. Эти барьеры обходятся с помощью специальных реакций.

Gluconeogenesis - ru.svg

Первая необратимая стадия

Первой необратимой реакцией глюконеогенеза -- является превращение пирувата в оксалоацетат под действием фермента пируваткарбоксилаза, CO2 и АТФ. Реакция протекает в митохондриях, куда проникает пируват, и катализируется пируваткарбоксилазой по уравнению:

Пируват + НСО3- + АТФ > оксалоацетат + AДФ + Фi

Этот фермент в качестве кофактора, как и ферменты, усваивающие CO2, содержит, биотин.

Вторая необратимая стадия

На этой стадии образовавшийся в 1-й стадии оксалоацетат поступает из митохондрий в цитоплазму, где подвергается декарбоксилированию и фосфорилированию под влиянием фермента фосфоенолпируваткарбоксикиназы превращается в фосфоенолпируват. Донором фосфатного остатка в реакции служит гуанозинтрифосфат (ГТФ).

От фосфоенолпирувата до фруктозо-1,6-дифосфата все реакции гликолиза обратимы, поэтому молекулы образовавшегося фосфоенолпирувата используются для образования фруктозо-1,6-дифосфата теми же ферментами гликолиза.

Третья необратимая стадия

Третья необратимая стадия глюконеогенеза это -- превращение фруктозо-1,6-дисфосфата во фруктозо-6-фосфат, необходимое для обращения гликолиза на рассматриваемой стадии, катализируется специфическим ферментом фруктозо-1,6-дисфосфатазой. Это -- ключевой фермент в том смысле, что именно его присутствием определяется, способна ли ткань ресинтезировать гликоген из пирувата и триозофосфатов. Этот фермент имеется в печени и почках, он был также обнаружен в поперечнополосатых мышцах. Считают, что в сердечной мышце и гладких мышцах он отсутствует.

Фруктозо-6-фосфат изомеризуется в глюкозо-6-фосфат глюкозофосфатизомеразой.

Четвёртая необратимая стадия

Четвёртая и последняя необратимая стадия глюконеогенеза это -- превращение глюкозо-6-фосфата в глюкозу. Реакция катализируется другой специфической фосфатазой -- глюкозо-6-фосфатазой (реакция идет в обход гексокиназной реакции). Она присутствует в печени и почках, но отсутствует в мышцах и жировой ткани. Наличие этого фермента позволяет ткани поставлять глюкозу в кровь.

При распаде гликогена образуется глюкозо-1-фосфат

Распад гликогена с образованием глюкозо-1-фосфата осуществляется фосфорилазой. Синтез гликогена идет по совершенно другому пути, через образование уридиндифосфатглюкозы, и катализируется гликогенсинтазой.

На примере глюконеогенеза можно видеть экономичность организации путей обмена, поскольку помимо 4-х специальных ферментов глюконеогенеза: пируваткарбоксилазы, фосфоенолпируваткарбоксилазы, фруктозо-1,6-дифосфатазы и глюкозо-6-фосфатазы для новообразования глюкозы используются отдельные ферменты гликолиза.

Синтез глюкозы из лактата

Дополнительные сведения: Цикл Кори

Лактат, образованный в анаэробном гликолизе, не является конечным продуктом метаболизма. Использование лактата связано с его превращением в печени в пируват. Лактат как источник пирувата важен не столько при голодании, сколько при нормальной жизнедеятельности организма. Его превращение в пируват и дальнейшее использование последнего являются способом утилизации лактата.

Лактат, образовавшийся в интенсивно работающих мышцах или в клетках с преобладающим анаэробным способом катаболизма глюкозы, поступает в кровь, а затем в печень. В печени отношение НАДН/НАД+ ниже, чем в сокращающейся мышце, поэтому лактатдегидрогеназная реакция протекает в обратном направлении, то есть в сторону образования пирувата из лактата. Далее пируват включается в глюконеогенез, а образовавшаяся глюкоза поступает в кровь и поглощается скелетными мышцами. Эту последовательность событий называют «глюкозо-лактатным циклом», или «циклом Кори». Цикл Кори выполняет 2 важнейшие функции:

-- обеспечивает утилизацию лактата;

-- предотвращает накопление лактата и, как следствие этого, опасное снижение рН (лактоацидоз). Часть пирувата, образованного из лактата, окисляется печенью до СО2 и Н2О. Энергия окисления может использоваться для синтеза АТФ, необходимого для реакций глюконеогенеза.

Лактатацидоз

Основная статья: Лактатацидоз

Дополнительные сведения: Ацидоз

Термин «ацидоз» обозначает увеличение кислотности среды организма (снижение рН) до значений, выходящих за пределы нормы. При ацидозе либо увеличивается продукция протонов, либо происходит снижение их экскреции (в некоторых случаях и то и другое). Метаболический ацидоз возникает при увеличении концентрации промежуточных продуктов обмена (кислотного характера) вследствие увеличения их синтеза или уменьшения скорости распада или выведения. При нарушении кислотно-основного состояния организма быстро включаются буферные системы компенсации (через 10-15 мин). Лёгочная компенсация обеспечивает стабилизацию соотношения гидрокарбонатного буфера НСО3-/Н2СО3, которая в норме соответствует 1:20, а при ацидозе уменьшается. Лёгочная компенсация достигается увеличением объёма вентиляции и, следовательно, ускорением выведения СО2 из организма. Однако основную роль в компенсации ацидоза играют почечные механизмы с участием аммиачного буфера. Одной из причин метаболического ацидоза может быть накопление молочной кислоты. В норме лактат в печени превращается обратно в глюкозу путём глюконеогенеза либо окисляется. Кроме печени, другим потребителем лактата служат почки и сердечная мышца, где лактат может окисляться до СО2 и Н2О и использоваться как источник энергии, особенно при физической работе.

Уровень лактата в крови -- результат равновесия между процессами его образования и утилизации. Кратковременный компенсированный лактатацидоз встречается довольно часто даже у здоровых людей при интенсивной мышечной работе. У нетренированных людей лактатацидоз при физической работе возникает как следствие относительного недостатка кислорода в мышцах и развивается достаточно быстро. Компенсация осуществляется путём гипервентиляции.

При некомпенсированном лактоацидозе содержание лактата в крови увеличивается до 5 ммоль/л (в норме до 2 ммоль/л). При этом рН крови может составлять 7,25 и менее (в норме 7,36-7,44)

Повышение содержания лактата в крови может быть следствием нарушения метаболизма пирувата.

Так, при гипоксии, возникающей вследствие нарушения снабжения тканей кислородом или кровью, уменьшается активность пируватдегидрогеназного комплекса и снижается окислительное декарбоксилирование пирувата. В этих условиях равновесие реакции пируват - лактат сдвинуто в сторону образования лактата. Кроме того, при гипоксии уменьшается синтез АТФ, что следовательно, ведёт к снижению скорости глюконеогенеза -- другого пути утилизации лактата. Повышение концентрации лактата и снижение внутриклеточного рН отрицательно влияют на активность всех ферментов, в том числе и пируваткарбоксилазы, катализирующей начальную реакцию глюконеогенеза.

Возникновению лактатацидоза также способствуют нарушения глюконеогенеза при печёночной недостаточности различного происхождения. Кроме того, лактоацидозом может сопровождаться гиповитаминоз В1, так как производное этого витамина (тиаминдифосфат) выполняет коферментную функцию в составе пируватдекарбоксилазы (ПДК) при окислительном декарбоксилировании пирувата. Дефицит тиамина может возникать, например, у алкоголиков с нарушенным режимом питания.

Итак, причинами накопления молочной кислоты и развития лактатацидоза могут быть:

активация анаэробного гликолиза вследствие тканевой гипоксии различного происхождения;

поражения печени (токсические дистрофии, цирроз и др.);

нарушение использования лактата вследствие наследственных дефектов ферментов глюконеогенеза, недостаточности глюкозо-6-фосфатазы;

нарушение работы ПДК вследствие дефектов ферментов или гиповитаминозов;

применение ряда лекарственных препаратов, например бигуанидов (блокаторы глюконеогенеза, используемые при лечении сахарного диабета).

Глюконеогенез из других неуглеводных источников

Субстратами для синтеза глюкозы служат не только пируват или лактат, поступающие в печень и почки, но и другие неуглеводные соединения.

Синтез глюкозы из аминокислот

В условиях голодания часть белков мышечной ткани распадается до аминокислот, которые далее включаются в процесс катаболизма. Аминокислоты, которые при катаболизме превращаются в пируват или метаболиты цитратного цикла, могут рассматриваться как потенциальные предшественники глюкозы и гликогена и носят название гликогенных. Например, оксалоацетат, образующийся из аспарагиновой кислоты, является промежуточным продуктом как цитратного цикла, так и глюконеогенеза.

Из всех аминокислот, поступающих в печень, примерно 30 % приходится на долю аланина. Это объясняется тем, что при расщеплении мышечных белков образуются аминокислоты, многие из которых превращаются сразу в пируват или сначала в оксалоацетат, а затем в пируват. Последний превращается в аланин, приобретая аминогруппу от других аминокислот. Аланин из мышц переносится кровью в печень, где снова преобразуется в пируват, который частично окисляется и частично включается в глюконеогенез. Следовательно, существует следующая последовательность событий (глюкозо-аланиновый цикл): глюкоза в мышцах > пируват в мышцах > аланин в мышцах > аланин в печени > глюкоза в печени > глюкоза в мышцах. Весь цикл не приводит к увеличению количества глюкозы в мышцах, но он решает проблемы транспорта аминного азота из мышц в печень и предотвращает лактоацидоз.

Синтез глюкозы из глицерина

Глицерин образуется при гидролизе триацилглицеринов (жиров), главным образом в жировой ткани. Использовать его могут только те ткани, в которых имеется фермент глицерол киназа, например печень, почки. Этот АТФ-зависимый фермент катализирует превращение глицерина в б-глицерофосфат (глицерол-3-фосфат). При включении глицерол-3-фосфата в глюконеогенез происходит его дегидрирование НАД-зависимой дегидрогеназой с образованием дигидроксиацетонфосфата, который далее превращается в глюкозу.

Глюконеогенез требует значительных затрат энергии

В таблице представлены реакции, ведущие от пирувата к глюкозе крови. Суммарная реакция имеет вид:

2Пируват + 4АТФ + 2ГТФ + 2НАДН + 2Н+ + 4Н2О > Глюкоза + 2НАД+ + 4АДФ + 2ГДФ + 6Фi.

Последовательные реакции глюконеогенеза, ведущие от пирувата к глюкозе Количество повторенных реакций*

Пируват + СО2 + АТФ > Оксалоацетат + АДФ + Фi х 2

Оксалоацетат + ГТФ - Фосфоенолпируват + СО2 + ГДФ x 2

Фосфоенолпируват + Н2О - 2-фосфоглицерат x 2

2-фосфоглицерат - 3-фосфоглицерат x 2

3-фосфоглицерат + АТФ - 3-фосфоглицероилфосфат + АДФ x 2

3-фосфоглицероилфосфат + НАДН + Н+ > Глицеральдегид-3-фосфат + НАД+Фi x 2

Глицеральдегид-3-фосфат - Дигидроксиацетонфосфат x 2

Глицеральдегид-3-фосфат + Дигидроксиацетонфосфат - Фруктозо-1,6-дифосфат x 2

Фруктозо-1,6-дифосфат + Н2О > Фруктозо-6-фосфат + Фi x 2

Фруктозо-6-фосфат - Глюкозо-6-фосфат x 2

Глюкозо-6-фосфат + Н2О -- Глюкоза + Фi x 2

Суммарная реакция:

2Пируват + 4АТФ + 2ГТФ + 2НАДН + 2Н+ + 4Н2О > Глюкоза + 2НАД+ + 4АДФ + 2ГДФ + 6Фi

*Цифры справа указывают, что данная реакция должна быть повторена дважды, потому что для образования одной молекулы глюкозы требуется два трёхуглеродных предшественника[14].

На каждую молекулу глюкозы, образующуюся из пирувата, расходуется шесть высокоэнергетических фосфатных групп -- четыре от АТФ и две от ГТФ. Кроме того, для восстановительных этапов требуются ещё две молекулы НАДH. Ясно, что это уравнение не является простым обращением уравнения, описывающего превращение глюкозы в пируват в процессе гликолиза, поскольку такое превращение сопровождается образованием всего лишь двух молекул АТФ[14]:

Глюкоза + 2АДФ + 2Фi + 2НАД+ > 2Пируват + 2АТФ + 2НАДН + 2Н+ + 2Н2О.

Таким образом, синтез глюкозы из пирувата обходится организму довольно дорого. Однако немалая часть этой платы расходуется лишь на то, чтобы обеспечить необратимость глюконеогенеза. В условиях, существующих в клетке, в которых величина ДGP для АТФ может достигать 16 ккал/моль, общее изменение свободной энергии в процессе гликолиза составляет по меньшей мере -- 15 ккал/моль. В тех же условиях общее изменение свободной энергии при глюконеогенезе (синтезе глюкозы из пирувата) выражается гораздо большей величиной. Поэтому в нормальных внутриклеточных условиях и гликолиз, и глюконеогенез представляют собой необратимые процессы[14].

«Холостые» циклы в метаболизме углеводов

В нормальных условиях холостые циклы, вероятно, не имеют места, так как их появлению препятствуют реципрокные регуляторные механизмы (механизмы обратного направления). Всякий раз, когда преобладает катаболизм, то есть когда суммарный поток направлен в сторону гликолиза, фруктозодифосфатазная активность выключается. И наоборот, когда суммарный поток направлен в сторону глюконеогенеза, выключается фосфофруктокиназа.

Недавние исследования показали, однако, что иногда холостые циклы могут происходить и в физиологических условиях, имея при этом вполне определенный биологический смысл -- производство тепла. Любопытный пример подобного холостого цикла обнаружен у некоторых насекомых. В холодную погоду шмель не может летать до тех пор, пока он не прогреет свой «мотор»; температура мышц должна подняться у него примерно до 30 °С и поддерживаться на этом уровне за счет холостого цикла с участием фруктозо-6-фосфата и фруктозо-1,6-дифосфата и последующим гидролизом АТФ, который служит источником тепла. Полагают также, что холостые циклы, генерирующие тепло, имеют место, возможно, и у некоторых животных, пробуждающихся после зимней спячки, то есть в период, когда температура тела животного бывает гораздо ниже нормы.

Регуляция метаболизма углеводов

Пути регуляции метаболизма углеводов крайне разнообразны. На любых уровнях организации живых организма обмен углеводов регулируется факторами, влияющими на активность ферментов, участвующих в реакциях углеводного обмена. К этим факторам относятся концентрация субстратов, содержание продуктов (метаболитов) отдельных реакций, кислородный режим, проницаемость биологических мембран, концентрация коферментов, необходимых для отдельных реакций и т. д.

Регуляция содержания глюкозы в крови

Результат регуляции метаболических путей превращения глюкозы -- постоянство концентрации глюкозы в крови.

Источники глюкозы крови

Дополнительные сведения: цикл Кори

А.Углеводы, содержащиеся в пищевом рационе.

Большинство углеводов, поступающих в организм с пищей, гидролизуется с образованием глюкозы, галактозы или фруктозы, которые через воротную вену поступают в печень. Галактоза и фруктоза быстро превращаются в печени в глюкозу.

Б. Различные глюкозообразующие соединения, вступающие на путь глюконеогенеза. Эти соединения можно разделить на две группы:

соединения, превращающиеся в глюкозу и не являющиеся продуктами её метаболизма, например аминокислоты и пропионат;

соединения, которые являются продуктами частичного метаболизма глюкозы в ряде тканей; они переносятся в печень и почки, где из них ресинтезируется глюкоза.

Так, лактат, образующийся в скелетных мышцах и эритроцитах из глюкозы, транспортируется в печень и почки, где из него вновь образуется глюкоза, которая затем поступает в кровь и ткани. Этот процесс называется циклом Кори, глюколактатным или циклом молочной кислоты.

Cori Cycle.svg

Источником глицерина, необходимого для синтеза триацилглицеридов (ТАГ) в жировой ткани, является глюкоза крови, поскольку использование свободного глицерола в этой ткани затруднено. Ацилглицериды (АГ) жировой ткани подвергаются постоянному гидролизу, в результате которого образуется свободный глицерин, который диффундирует из ткани в кровь. В печени и почках он вступает на путь глюконеогенеза и вновь превращается в глюкозу. Таким образом, постоянно функционирует цикл, в котором глюкоза из печени и почек транспортируется в жировую ткань, а глицерин из этой ткани поступает в печень и почки, где превращается в глюкозу. Следует отметить, что среди аминокислот, транспортируемых при голодании из мышц в печень, преобладает аланин. Это позволило постулировать существование глюкозоаланинового цикла, по которому глюкоза поступает из печени в мышцы, а аланин -- из мышц в печень, за счет чего обеспечивается перенос аминоазота из мышц в печень и «свободной энергии» из печени в мышцы. Энергия, необходимая для синтеза глюкозы из пирувата в печени, поступает за счет окисления жирных кислот.

В. Гликоген печени.

Регуляция содержания глюкозы в крови в абсорбтивном и постабсорбтивном периодах

Для предотвращения чрезмерного повышения концентрации глюкозы в крови при пищеварении основное значение имеет потребление глюкозы печенью и мышцами, в меньшей мере -- жировой тканью. Следует напомнить, что более половины всей глюкозы (60 %), поступающей из кишечника в воротную вену, поглощается печенью. Около 2/3 этого количества откладывается в печени в форме гликогена, остальная часть превращается в жиры и окисляется, обеспечивая синтез АТФ. Ускорение этих процессов инициируется повышением инсулинглюкагонового индекса. Другая часть глюкозы, поступающей из кишечника, попадает в общий кровоток. Примерно 2/3 этого количества поглощается мышцами и жировой тканью. Это обусловлено увеличением проницаемости мембран мышечных и жировых клеток для глюкозы под влиянием высокой концентрации инсулина. Глюкоза в мышцах откладывается в форме гликогена, а в жировых клетках превращается в жиры. Остальная часть глюкозы общего кровотока поглощается другими клетками (инсулинонезависимыми).

При нормальном ритме питания и сбалансированном рационе концентрация глюкозы в крови и снабжение глюкозой всех органов поддерживается главным образом за счёт синтеза и распада гликогена. Лишь к концу ночного сна, то есть к концу самого большого перерыва между приёмами пищи, может несколько увеличиться роль глюконеогенеза, значение которого будет возрастать, если завтрак не состоится и голодание продолжится

Регуляция содержания глюкозы в крови при предельном голодании

Дополнительные сведения: инсулин

Дополнительные сведения: глюкагон

При голодании в течение первых суток исчерпываются запасы гликогена в организме, и в дальнейшем источником глюкозы служит только глюконеогенез (из лактата, глицерина и аминокислот). Глюконеогенез при этом ускоряется, а гликолиз замедляется вследствие низкой концентрации инсулина и высокой концентрации глюкагона. Но, кроме того, через 1-2 сут существенно проявляется действие и другого механизма регуляции -- индукции и репрессии синтеза некоторых ферментов: снижается количество гликолитических ферментов и, наоборот, повышается количество ферментов глюконеогенеза. Изменение синтеза ферментов также связано с влиянием инсулина и глюкагона.

Начиная со второго дня голодания достигается максимальная скорость глюконеогенеза из аминокислот и глицерина. Скорость глюконеогенеза из лактата остаётся постоянной. В результате синтезируется около 100 г глюкозы ежесуточно, главным образом в печени.

Следует отметить, что при голодании глюкоза не используется мышечными и жировыми клетками, поскольку в отсутствие инсулина не проникает в них и таким образом сберегается для снабжения мозга и других глюкозозависимых клеток; обеспечение энергетических потребностей мышц и других тканей происходит за счёт жирных кислот и кетоновых тел. Поскольку при других условиях мышцы -- один из основных потребителей глюкозы, то прекращение потребления глюкозы мышцами при голодании имеет существенное значение для обеспечения глюкозой мозга. При достаточно продолжительном голодании (несколько дней и больше) мозг начинает использовать и другие источники энергии (например жиры).

Вариантом голодания является несбалансированное питание, в частности такое, когда по калорийности рацион содержит мало углеводов -- углеводное голодание. В этом случае также активируется глюконеогенез, и для синтеза глюкозы используются аминокислоты и глицерол, образующиеся из пищевых белков и жиров.

Регуляция содержания глюкозы в крови в период покоя и во время физической нагрузки

Как в период покоя, так и во время продолжительной физической работы сначала источником глюкозы для мышц служит гликоген, запасённый в самих мышцах, а затем глюкоза крови. Известно, что 100 г гликогена расходуется на бег примерно в течение 15 мин, а запасы гликогена в мышцах после приёма углеводной пищи могут составлять 200--300 г.

На рисунке представлены значения гликогена печени и глюконеогенеза для обеспечения глюкозой работы мышц разной интенсивности и продолжительности.

Регуляция гликолиза и глюконеогенеза в печени

По сравнению с другими органами печень отличается наиболее сложным обменом глюкозы. Кроме пары противоположных процессов (синтеза и распада гликогена), в печени могут происходить ещё два противоположно направленных процесса -- гликолиз и глюконеогенез. В большинстве других органов происходит только гликолиз. Переключение печени с гликолиза на глюконеогенез и обратно происходит с участием инсулина и глюкагона и осуществляется с помощью:

аллостерической регуляции активности ферментов;

ковалентной модификации ферментов путём фосфорилирования/дефосфорилирования;

индукции/репрессии синтеза ключевых ферментов.

Регуляторные воздействия направлены на ферменты, катализирующие необратимые стадии гликолиза и глюконеогенеза, сочетание которых называют «субстратными», или «холостыми» циклами.

Регуляция скорости реакции гликолиза и глюконеогенеза, составляющих субстратные циклы

«Субстратные» циклы -- парные комбинации процессов синтеза и распада метаболитов. Как уже упоминалось, сочетание процессов синтеза и распада гликогена или необратимых реакций гликолиза и соответствующих им необратимых реакций глюконеогенеза может составить подобный цикл. Название «субстратный цикл» означает объединение реакций синтеза и распада субстрата. Название «холостой» отражает результат работы подобного цикла, заключающийся в бесполезном расходовании АТФ. Хотя существование «холостых» циклов нелогично, тем не менее они могут функционировать. Более того, эти циклы могут быть мишенью регуляторных воздействий, так как составляющие их реакции катализируют разные ферменты. Реципрокное изменение активности этих ферментов предотвращает одновременное протекание противоположных процессов.

Изменение в печени гликолитического направления на глюконеогенез и обратно при смене абсорбтивного состояния на постабсорбтивное или при голодании происходит главным образом в результате регуляции активности ферментов, катализирующих реакции субстратных циклов. Эти циклы обозначены цифрами I, II, III на рисунке, представляющем общую картину регуляции гликолиза и глюконеогенеза в печени.

Направление реакции первого субстратного цикла регулируется главным образом концентрацией глюкозы. При пищеварении концентрация глюкозы в крови повышается (до 8-10 ммоль/л). Активность глюкокиназы в этих условиях максимальна. Вследствие этого ускоряется гликолитическая реакция образования глюкозо-6-фосфата. Кроме того, инсулин индуцирует синтез глюкокиназы и ускоряет тем самым фосфорилирование глюкозы. Поскольку глюкокиназа печени не ингибируется глюкозо-6-фосфатом (в отличие от гексокиназы мышц), то основная часть глюкозо-6-фосфата в абсорбтивном периоде направляется на синтез гликогена и по гликолитическому пути.

Направление реакций второго субстратного цикла зависит от активности фосфофруктокиназы и фосфатазы фруктозо-1,6-бисфосфата. Активность этих ферментов зависит от концентрации фруктозо-2,6-бисфосфата. Фруктозо-2,6-бисфосфат -- метаболит, образующийся в незначительных количествах из фруктозо-6-фосфата и выполняющий только регуляторные функции. Образование фруктозо-2,6-бисфосфата путём фосфорилирования фруктозо-6-фосфата катализирует бифункциональный фермент (БИФ), который катализирует также и обратную реакцию. Однако превращение фруктозо-2,6-бисфосфата во фруктозо-6-фосфат не является обратимым процессом. Образование фруктозо-2,6-бисфосфата требует затрат АТФ, а при образовании фруктозо-6-фосфата из фруктозо-2,6-бисфосфата гидролитически отщепляется неорганический фосфат.

В реакции фосфорилирования фруктозо-6-фосфата фермент проявляет киназную активность, а при дефосфорилировании образованного фруктозо-2,6-бисфосфата -- фосфатазную. Это обстоятельство и определило название фермента «бифункциональный».

Киназная активность БИФ проявляется, когда фермент находится в дефосфорилированной форме (БИФ-ОН). Дефосфорилированная форма БИФ характерна для абсорбтивного периода, когда инсулин/глюкагоновый индекс высокий. В этот период количество фруктозо-2,6-бисфосфата увеличивается.

Киназную и фосфатазную реакции катализируют разные активные центры БИФ, но в каждом из двух состояний фермента (фосфорилированном и дефосфорилированном) один из активных центров ингибирован. Регуляторное влияние фруктозо-2,6-бисфосфата заключается в том, что он аллостерически активирует фосфофруктокиназу (фермент гликолиза). При этом фруктозо-2,6-бисфосфат снижает ингибирующее действие АТФ на этот фермент в абсорбтивном периоде и повышает его сродство к фруктозо-6-фосфату. В то же время фруктозо-2,6-бисфосфат ингибирует фруктозо-1,6-бисфосфатазу (фермент глюконеогенеза). Итак, в абсорбтивном периоде уровень фруктозо-2,6-бисфосфата повышается, что приводит к активации фосфофруктокиназы и ускорению гликолиза.

Результатом уменьшения количества фруктозо-2,6-бисфосфата в постабсорбтивном периодебудет снижение активности фосфофруктокиназы, замедление гликолиза и переключение гликолиза на глюконеогенез. Регуляторное влияние фруктозо-2,6-бисфосфата представлено на рисунке:

В регуляции третьего субстратного цикла основная роль принадлежит пируваткиназе, фосфорилированная форма которой неактивна, а дефосфорилированная -- активна.

период пищеварения инсулин активирует фосфопротеинфосфатазу, которая дефосфорилирует пируваткиназу, переводя её в активное состояние. Кроме того, инсулин в печени влияет на количество ферментов, индуцируя синтез пируваткиназы и репрессируя синтез фосфоенолпируваткарбоксикиназы. Следовательно, гликолитическая реакция фосфоенолпируват > пируват ускоряется при пищеварении. Эта же реакция замедляется в постабсорбтивном состоянии под влиянием глюкагона, который опосредованно через цАМФ-зависимую протеинкиназу фосфорилирует и инактивирует пируваткиназу.

При длительном голодании глюкагон ускоряет глюконеогенез. Это достигается не только путём фосфорилирования пируваткиназы и снижением скорости гликолиза, но и путём индукции синтеза ферментов глюконеогенеза: фосфоенолпируваткарбоксикиназы, фруктозо-1,6-бисфосфатазы и глюкозо-6-фосфатазы. Известно, что глюкагон, фосфорилируя опосредованно транскрипционные факторы, влияет на их активность и таким образом индуцирует синтез этих ферментов глюконеогенеза. Кроме того, синтез фосфоенолпируваткарбоксикиназы при длительном голодании индуцируется кортизолом, однако это происходит в результате включения другого механизма действия, характерного для стероидных гормонов.

Координация скорости реакции II и III субстратных циклов достигается с помощью фруктозо-1,6-бисфосфата -- продукта II субстратного цикла (гликолитическое направление), который является аллостерическим активатором пируваткиназы. В период пищеварения вследствие ускорения начальных стадий гликолиза концентрация фруктозо-1,6-бисфосфата повышается, что приводит к дополнительной активации пируваткиназы.

Необходимо отметить, что противоположные реакции каждого из субстратных циклов могут протекать одновременно. Соответственно, гликолиз и глюконеогенез в печени в какой-то мере тоже могут происходить одновременно, хотя их относительные скорости изменяются. Так, при пищеварении преобладает гликолитическое направление, а в постабсорбтивном состоянии -- направление глюконеогенеза. Например, реакция глюконеогенеза пируват > оксалоацетат может протекать при любых состояниях организма. Это объясняется необходимостью поддерживать концентрацию оксалоацетата на определенном уровне, потому что оксалоацетат используется не только в глюконеогенезе, но и в других процессах, таких как цитратный цикл, трансмембранный перенос веществ, синтез аминокислот.

Значение гликолиза в печени для синтеза жиров

Дополнительные сведения: липидный обмен

Основным значением ускорения гликолиза в печени в период пищеварения является образование дигидроксиацетонфосфата и ацетил-КоА -- исходных веществ для синтеза жира. Образование ацетил-КоА из пирувата в ходе реакции, катализируемой пируватдегидрогеназным комплексом (ПДК), регулируется разными способами.

В абсорбтивном периоде ПДК (пируватдикарбоксилаза) находится в дефосфорилированной (активной) форме, следовательно, декарбоксилирование пирувата ускоряется. Образуемый ацетил-КоА используется в основном двумя путями: для синтеза жирных кислот и в цитратном цикле. В период пищеварения ускоряются образование ацетил-КоА и его использование для синтеза жирных кислот. Необходимый для синтеза жира б-глицерофосфат образуется в реакции восстановления из дигидроксиацетонфосфата.

Аллостерическая регуляция аэробного распада глюкозы и глюкогенеза в печени энергетическим статусом клетки

Дополнительные сведения: Общий путь катаболизма

Аллостерическая регуляция скорости гликолиза, зависимая от изменения соотношения АТФ/АДФ, направлена на изменение скорости использования глюкозы непосредственно клетками печени. Глюкоза в клетках печени используется не только для синтеза гликогена и жиров, но также и как источник энергии для синтеза АТФ. Основными потребителями АТФ в гепатоцитах являются процессы трансмембранного переноса веществ, синтез белков, гликогена, жиров, глюконеогенез. От скорости утилизации АТФ в этих процессах зависит скорость его синтеза. АТФ, АДФ и АМФ, а также НАД+ и НАДН служат аллостерическими эффекторами некоторых гликолитических ферментов и ферментов глюконеогенеза. В частности, АМФ активирует фосфофруктокиназу и ингибирует фруктозо-1,6-бисфосфатазу. АТФ и НАДН ингибируют пируваткиназу, а АДФ активирует пируваткарбоксилазу.

Следовательно, при усилении расходования АТФ и снижении его концентрации с одновременным увеличением концентрации АМФ, активируется гликолиз и образование АТФ, а глюконеогенез при этом замедляется. Кроме того, от соотношения АТФ/АДФ, АМФ и НАД/НАДН зависит скорость реакций общего пути катаболизма.

Влияние алкоголя на углеводный обмен

Дополнительные сведения: Токсикология этанола

Дополнительные сведения: Диетотерапия сахарного диабета

Алкоголь снижает активность ферментов гликолиза, глюконеогенеза[14], пентозофосфатного цикла, цикла Кребса. В результате чего в тканях печени, крови, ликворе и, в особенности, в мозге, накапливаются промежуточные продукты метаболизма углеводов, которые приводят к «глюкозному голоду» клеток -- то есть нарушению утилизации глюкозы клетками тканей[15].

Алкоголь вызывает дегенерацию клеток поджелудочной железы, что приводит к дефициту выделения многих ферментов, гормонов влияющих на углеводный обмен -- инсулина и глюкагона. Вследствие чего, повышается риск возникновения хронического панкреатита[16].

Особенно опасно принимать алкоголь лицам страдающим сахарным диабетом[16] ибо действие алкоголя лишь усугубляет те изменения, которые уже имеют место у лиц с сахарным диабетом в результате нарушенного метаболизма и сосудистых поражений (хронические дистрофические процессы с трагическим финалом развиваются быстрее).

Нарушения метаболизма углеводов

Многочисленные расстройства метаболизма углеводов условно объединяют в несколько групп: гипогликемии, гипергликемии, гликогенозы, гексоз- и пентоземии, агликогенозы. Перечисленные расстройства рассматривают как типовые формы нарушений углеводного обмена.

Гипогликемия

Гипогликемия (от др.-греч. ?рь -- снизу, под + глхкэт -- сладкий + б?мб -- кровь)[17] -- патологическое состояние, характеризующееся снижением концентрации глюкозы в крови ниже 3,5 ммоль/л периферической крови ниже нормы (3,3 ммоль/л), вследствие чего возникает гипогликемический синдром.

Механизм развития гипогликемии может значительно отличаться в зависимости от этиологии. Так, например, при употреблении этанола, наблюдается следующая картина.

Метаболизм этанола в печени катализируется алкогольдегидрогеназой. Кофактором этого фермента служит НАД -- вещество, необходимое для глюконеогенеза. Приём этанола приводит к быстрому расходованию НАД и резкому торможению глюконеогенеза в печени. Поэтому алкогольная гипогликемия возникает при истощении запасов гликогена, когда для поддержания нормогликемии особенно необходим глюконеогенез. Такая ситуация наиболее вероятна при недостаточном питании. Чаще всего алкогольная гипогликемия наблюдается у истощенных больных алкоголизмом, но бывает и у здоровых людей после эпизодических приёмов большого количества алкоголя или даже небольшой дозы алкоголя, но натощак. Необходимо подчеркнуть, что алкоголь снижает концентрацию глюкозы в плазме больных с нормальной функцией печени. Особенно чувствительны к алкоголю дети.

Сахарный диабет

Основная статья: сахарный диабет

Среди заболеваний, имеющих в основе нарушения углеводного обмена, сахарный диабет занимает особое место. Это связано с частотой его распространения и относительно изученной биохимической характеристикой. Основными биохимическими симптомами сахарного диабета являются гипергликемия, глюкозурия, кетонимия и некоторые другие.

Эффект инсулина в захвате и метаболизме глюкозы. Связывание рецептора с инсулином(1) запускает активацию большого количества белков (2). Например: перенос ГЛЮТ-4-переносчика на плазматическую мембрану и поступление глюкозы внутрь клетки(3), синтез гликогена(4), гликолиз (5), синтез жирных кислот (6).

Пищевые продукты содержат различные типы углеводов. Некоторые из них, такие как глюкоза, состоят из одного шестичленного гетероциклического углеводного кольца и всасываются в кишечнике без изменений. Другие, такие как сахароза (дисахарид) или крахмал (полисахарид), состоят из двух или более связанных между собой пятичленных или шестичленных гетероциклов. Эти вещества подвергаются расщеплению под действием различных ферментов желудочно-кишечного тракта до молекул глюкозы и других простых сахаров, и, в конечном счёте, также всасываются в кровь. Помимо глюкозы в кровь поступают и такие простые молекулы, как фруктоза, которые в печени превращаются в глюкозу. Таким образом, глюкоза является основным углеводом крови и всего организма. Ей принадлежит исключительная роль в обмене веществ организма человека: она является основным и универсальным источником энергии для всего организма. Многие органы и ткани (например, мозг) могут использовать в качестве источника энергии только глюкозу[18].

...

Подобные документы

  • Физические свойства глюкозы. Основные пищевые продукты, насыщенные углеводами. Правильное соотношение углеводов, жиров и белков как основа здорового питания. Поддержание уровня глюкозы в крови, иммунной функции. Повышение содержания инсулина в крови.

    презентация [2,1 M], добавлен 15.02.2014

  • Классификация и распространение углеводов, их значение для жизнедеятельности человека. Использование рефрактометрии в анализе глюкозы. Анализ глюкозы как альдегидоспирта, влияние щелочей, окислителей и кислот на препараты. Стабилизация растворов глюкозы.

    курсовая работа [690,1 K], добавлен 13.02.2010

  • Рассмотрение этапов обмена углеводов: переваривание и всасывание, депонирование, промежуточный обмен, выделение глюкозы почками и ее реабсорбция. Основная причина инсулинрезистентности: нарушение функций мембранных рецепторов инсулина при ожирении.

    презентация [497,9 K], добавлен 26.04.2015

  • Особенности распределения глюкозы в крови. Краткая характеристика сути основных современных методов определения глюкозы в крови. Методики усовершенствования процесса измерения уровня глюкозы в крови. Оценка гликемии при диагностике сахарного диабета.

    статья [24,8 K], добавлен 08.03.2011

  • Нарушение расщепления и всасывания углеводов. Врожденная недостаточность лактазы. Основные типы регуляции углеводного обмена. Этиопатогенез, основные причины и признаки сахарного диабета, хронические осложнения. Гипергликемические состояния у человека.

    лекция [24,7 K], добавлен 13.04.2009

  • Поджелудочная железа и ее роль в обмене веществ. Механизмы нарушения функциональной деятельности поджелудочной железы при панкреатите. Определение билирубина в сыворотке крови у больных панкреатитом. Показатели активности альфа-амилазы в сыворотке крови.

    дипломная работа [72,7 K], добавлен 20.02.2016

  • Определение глюкозы в крови на анализаторе глюкозы ECO TWENTY. Определение креатинина, мочевины, билирубина в крови на биохимическом анализаторе ROKI. Исследование изменения биохимических показателей крови при беременности. Оценка полученных данных.

    отчет по практике [67,4 K], добавлен 10.02.2011

  • Хронический и острый панкреатит. Активность амилазы, липазы, трипсина. Глюкоза крови при остром и хроническом панкреатитах. Маркеры печеночной недостаточности. Определение активности альфа-амилазы, билирубина в сыворотке крови, гаммаглутаминтрансферазы.

    курсовая работа [338,7 K], добавлен 01.12.2014

  • Белки. Жиры. Углеводы. Потребность в них. Витамины - биологически активные органические соединения разнообразной химической природы. Жирорастворимыевитамины. Водорастворимые витамина. Витаминоподобные соединения.

    лекция [6,5 K], добавлен 25.02.2002

  • Молекулярные нарушения углеводного обмена. Нарушение распада галактозы в печени из-за недостатка галактозо-1-фосфата. Фруктозонемия и фруктозоурия. Патологические типы гипергликемий и гипогликемий. Нарушение инсулинзависимой реабсорбции глюкозы.

    презентация [6,8 M], добавлен 27.09.2016

  • Характеристика углеводов, природные источники и биологическая роль, номенклатура и классификация. Структура и стереохимия моносахаридов, олигосахаридов, полисахаридов; физические свойства и физико-химические методы исследования; углеводы в питании.

    дипломная работа [1,4 M], добавлен 21.08.2011

  • Анализ наличия, объема, преимущественной локализации свободных жировых веществ, относительного количества и локализации пенистых макрофагов в легочной ткани человека. Проявление нарушений жирового обмена при хроническом течении туберкулезного процесса.

    статья [2,3 M], добавлен 21.09.2017

  • Иммуноферментный анализ содержания в слюне иммуноглобулинов, провоспалительных и противовоспалительных цитокинов, уровня дефензинов у пациентов пожилого возраста с заболеваниями слюнных желез. Материалы и методы исследования, обсуждение его результатов.

    презентация [1,3 M], добавлен 21.02.2017

  • Общая характеристика полезных свойств правильного рационального питания. Химические элементы, входящие в состав пищевых веществ. Биологическая ценность белков и углеводов для организма человека, их состав и классификация. Состав и полезные свойства жиров.

    реферат [20,6 K], добавлен 09.07.2010

  • Этиология и патогенез острых сиаладенитов. Классификация заболеваний слюнных желез, их основные клинические признаки. Дифференциальная диагностика вирусного и бактериального сиаладенита. Хронический паренхиматозный сиалоаденит, методика терапии.

    презентация [694,5 K], добавлен 02.06.2014

  • Углеводы, их роль в биологических процессах живых организмов и человека. Характерные признаки фруктоземии. Мальтазная и изомальтазная недостаточность. Болезни, связанные с нарушением выработки ферментов. Наследственная непереносимость фруктозы, лактозы.

    презентация [13,3 M], добавлен 03.12.2014

  • Основные показатели биохимического анализа крови. Гестозы второй половины беременности. Оценка степени их тяжести. Определение и динамика содержания общего белка, мочевины, креатинина, глюкозы, фибриногена и трансаминаз в сыворотке и плазме крови.

    дипломная работа [50,5 K], добавлен 10.11.2015

  • Биохимические и клинические показатели сыворотки крови при заболеваниях почек. Динамика активности трансаминаз; концентрации креатинина, билирубина, электролитов и глюкозы у больных почечной недостаточностью в условиях применения метода гемосорбции.

    дипломная работа [336,1 K], добавлен 03.11.2015

  • Патогенез диабетического кетоацидоза, его клинические и метаболические признаки. Развитие диабетической комы и ее последствия. Проявления избыточного гликозилирования белков при сахарном диабете. Обнаружение нарушений углеводного обмена методом нагрузок.

    реферат [125,4 K], добавлен 13.04.2009

  • Гипогликемическая кома как крайняя степень проявления гипогликемии при быстром снижении концентрации глюкозы в плазме крови. Вегетативные и нейрогликопенические симптомы. Биохимические анализы крови и общий анализ мочи для диагностики заболевания.

    презентация [319,7 K], добавлен 11.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.