Modulation of the visual cortex by non invasive brain stimulation

Visual awareness, neural correlations. Non-invasive brain stimulation. Modulation of visual awareness by nibs. Effects of anodal, cathodal stimulation on motor evoked potentials. Evidences of neuromodulation visual awareness. Data from anodal condition.

Рубрика Медицина
Вид дипломная работа
Язык английский
Дата добавления 30.08.2020
Размер файла 3,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

For the interaction Stimulation*Time we had some time windows not far from being significant (1-p=.495; 2-p=.158; 3-p=.106; 4-p=.124; 5-p=.318). This might be solved with a bigger sample too. Regarding the tendency in the actual data, with little effect for the first measure, increasing for the second and third and the reducing again on the fourth and fifth; we can presume that if getting significant results with this disposition we could see an increase in the after effect of anodal tDCS and how it fades, consistent with previous reports about the temporal line of tDCS effects (Lуpez-Alonso, Fernбndez-del-Olmo, Costantini, Gonzalez-Henriquez, & Cheeran, 2015; Nitsche & Paulus, 2000) increasing during a period of time after stimulation and then progressively dissipating.

In summary, in the current project we found that anodal tDCS over V1 tends to inhibit the cortical excitability of the visual cortex. A bigger sample size is needed to test the reliability of such effect.

Due to corona virus lockdown we were unable to collect more subjects but for the current project we plan to collect the estimated number of subjects. It will be interesting to find if this inhibition effect will be consistent or if it is because of the sample size and if we will find the expected facilitatory effect.

References

1. Amassian, V. E., Cracco, R. Q., Maccabee, P. J., Cracco, J. B., Rudell, A., & Eberle, L. (1989). Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 74(6), 458-462. https://doi.org/10.1016/0168-5597(89)90036-1

2. Antal, A., Ambrus, G. G., &Chaieb, L. (2014). Toward unraveling reading-related modulations of tDCS-induced neuroplasticity in the human visual cortex. Frontiers in Psychology, 5, 642. https://doi.org/10.3389/fpsyg.2014.00642

3. Antal, A., Kincses, T. Z., Nitsche, M. A., & Paulus, W. (2003). Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human. Neuropsychologia, 41(13), 1802-1807.

4. Antal, A., Kincses, T. Z., Nitsche, M. A., & Paulus, W. (2003). Manipulation of phosphene thresholds by transcranial direct current stimulation in man. Experimental brain research, 150(3), 375-378.

5. Antal, A., Nitsche, M. A., & Paulus, W. (2001). External modulation of visual perception in humans. Neuroreport, 12(16), 3553-3555.

6. Antal, A., Nitsche, M. A., & Paulus, W. (2006). Transcranial direct current stimulation and the visual cortex. Brain Research Bulletin, 68(6), 459-463. https://doi.org/10.1016/j.brainresbull.2005.10.006

7. Antal, A., Terney, D., Poreisz, C., & Paulus, W. (2007). Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. The European Journal of Neuroscience, 26(9), 2687-2691. https://doi.org/10.1111/j.1460-9568.2007.05896.x

8. Bachmann, T. (2011). Attention as a Process of Selection, Perception as a Process of Representation, and Phenomenal Experience as the Resulting Process of Perception Being Modulated by a Dedicated Consciousness Mechanism. Frontiers in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00387

9. Barker, A. T., Freeston, I. L., Jalinous, R., & Jarratt, J. A. (1987). Magnetic stimulation of the human brain and peripheral nervous system: an introduction and the results of an initial clinical evaluation. Neurosurgery, 20(1), 100-109. https://doi.org/10.1097/00006123-198701000-00024

10. Barnes, C. A. (2003). Long-term potentiation and the ageing brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1432), 765-772. https://doi.org/10.1098/rstb.2002.1244

11. Baudewig, J., Nitsche, M. A., Paulus, W., & Frahm, J. (2001). Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 45(2), 196-201.

12. Beck, D. M., Muggleton, N., Walsh, V., &Lavie, N. (2006). Right parietal cortex plays a critical role in change blindness. Cerebral Cortex (New York, N.Y.: 1991), 16(5), 712-717. https://doi.org/10.1093/cercor/bhj017

13. Boes, A., Kelly, M., Trapp, N., Stern, A., Press, D., & Pascual-Leone, A. (2018). Noninvasive Brain Stimulation: Challenges and Opportunities for a New Clinical Specialty. The Journal of neuropsychiatry and clinical neurosciences, 30. appineuropsych17110262. 10.1176/appi.neuropsych.17110262.

14. Bramham, C. R. (2008). Local protein synthesis, actin dynamics, and LTP consolidation. Current Opinion in Neurobiology, 18(5), 524-531. https://doi.org/10.1016/j.conb.2008.09.013

15. Brьckner, S., &Kammer, T. (2016). No Modulation of Visual Cortex Excitability by Transcranial Direct Current Stimulation. PLOS ONE, 11(12), e0167697. https://doi.org/10.1371/journal.pone.0167697

16. Caumo, W., Souza, I. C., Torres, I. L., Medeiros, L., Souza, A., Deitos, A., Fregni, F., & Volz, M. S. (2012). Neurobiological effects of transcranial direct current stimulation: a review. Frontiers in psychiatry, 3, 110.

17. Chaieb, L., Antal, A., & Paulus, W. (2008). Gender-specific modulation of short-term neuroplasticity in the visual cortex induced by transcranial direct current stimulation. Visual Neuroscience, 25(1), 77-81. https://doi.org/10.1017/S0952523808080097

18. Driver, J., &Mattingley, J. B. (1998). Parietal neglect and visual awareness. Nature Neuroscience, 1(1), 17-22. https://doi.org/10.1038/217

19. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175-191.

20. Filmer, H. L., Dux, P. E., &Mattingley, J. B. (2015). Dissociable effects of anodal and cathodal tDCS reveal distinct functional roles for right parietal cortex in the detection of single and competing stimuli. Neuropsychologia, 74, 120-126.

21. Gandiga, P. C., Hummel, F. C., & Cohen, L. G. (2006). Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology, 117(4), 845-850. https://doi.org/10.1016/j.clinph.2005.12.003

22. Heinen, K., Sagliano, L., Candini, M., Husain, M., Cappelletti, M., & Zokaei, N. (2016). Cathodal transcranial direct current stimulation over posterior parietal cortex enhances distinct aspects of visual working memory. Neuropsychologia, 87, 35-42.

23. Horvath, J. C., Forte, J. D., & Carter, O. (2015). Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review. Neuropsychologia, 66, 213-236.

24. Hsieh, P.-J., Colas, J. T., & Kanwisher, N. (2011). Pop-Out Without Awareness: Unseen Feature Singletons Capture Attention Only When Top-Down Attention Is Available. Psychological Science, 22(9), 1220-1226.

25. Huerta, P. T., & Lisman, J. E. (1995). Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron, 15(5), 1053-1063.

26. Im, C. H., Lee, S. J., & Lee, C. (2017). P095 Optimal tDCS electrode montages to stimulate nonsuperficial cortex: A simulation study. Clinical Neurophysiology, 128(3), e56.

27. Jacobson, L., Koslowsky, M., &Lavidor, M. (2012). tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Experimental Brain Research, 216(1), 1-10. https://doi.org/10.1007/s00221-011-2891-9

28. Kar, K., &Krekelberg, B. (2012). Transcranial electrical stimulation over visual cortex evokes phosphenes with a retinal origin. Journal of Neurophysiology, 108(8), 2173-2178. https://doi.org/10.1152/jn.00505.2012

29. Kramer, A. F., & Erickson, K. I. (2007). Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. Trends in Cognitive Sciences, 11(8), 342-348. https://doi.org/10.1016/j.tics.2007.06.009

30. Lamme, V. A. F. (2000). Neural Mechanisms of Visual Awareness: A Linking Proposition. Brain and Mind, 1(3), 385-406. https://doi.org/10.1023/A:1011569019782

31. Lamme, V. A. F. (2003). Why visual attention and awareness are different. Trends in Cognitive Sciences, 7(1), 12-18.

32. Lamme, V. A. F., Supиr, H., Landman, R., Roelfsema, P. R., &Spekreijse, H. (2000). The role of primary visual cortex (V1) in visual awareness. Vision Research, 40(10-12), 1507-1521. https://doi.org/10.1016/S0042-6989(99)00243-6

33. Lennie, P. (1998). Single units and visual cortical organization. Perception, 27(8), 889-935. https://doi.org/10.1068/p270889

34. Lуpez-Alonso, V., Fernбndez-del-Olmo, M., Costantini, A., Gonzalez-Henriquez, J. J., & Cheeran, B. (2015). Intra-individual variability in the response to anodal transcranial direct current stimulation. Clinical Neurophysiology, 126(12), 2342-2347.

35. Lцvsund, P., Цberg, P. Е., & Nilsson, S. E. G. (1980). Magneto-and electrophosphenes: a comparative study. Medical and Biological Engineering and Computing, 18(6), 758-764.

36. Mazzi, C., Savazzi, S., Abrahamyan, A., & Ruzzoli, M. (2017). Reliability of TMS phosphene threshold estimation: Toward a standardized protocol. Brain stimulation, 10(3), 609-617.

37. McEwen, B. S. (1994). How do sex and stress hormones affect nerve cells? Annals of the New York Academy of Sciences, 743, 1-16; discussion 17-18.

38. Miniussi, C., Harris, J. A., & Ruzzoli, M. (2013). Modelling non-invasive brain stimulation in cognitive neuroscience. Neuroscience &Biobehavioral Reviews, 37(8), 1702-1712. https://doi.org/10.1016/j.neubiorev.2013.06.014

39. Molaee-Ardekani, B., Mбrquez-Ruiz, J., Merlet, I., Leal-Campanario, R., Gruart, A., Sбnchez-Campusano, R.,... & Wendling, F. (2013). Effects of transcranial Direct Current Stimulation (tDCS) on cortical activity: a computational modeling study. Brain stimulation, 6(1), 25-39.

40. Monte-Silva, K., Kuo, M.-F., Hessenthaler, S., Fresnoza, S., Liebetanz, D., Paulus, W., &Nitsche, M. A. (2013). Induction of Late LTP-Like Plasticity in the Human Motor Cortex by Repeated Non-Invasive Brain Stimulation. Brain Stimulation, 6(3), 424-432. https://doi.org/10.1016/j.brs.2012.04.011

41. Moos, K., Vossel, S., Weidner, R., Sparing, R., & Fink, G. R. (2012). Modulation of top-down control of visual attention by cathodal tDCS over right IPS. Journal of Neuroscience, 32(46), 16360-16368.

42. Moreno-Duarte, Ingrid, Nigel Gebodh, Pedro Schestatsky, BerkanGuleyupoglu, Davide Reato, MaromBikson, and Felipe Fregni. `Chapter 2 - Transcranial Electrical Stimulation: Transcranial Direct Current Stimulation (TDCS), Transcranial Alternating Current Stimulation (TACS), Transcranial Pulsed Current Stimulation (TPCS), and Transcranial Random Noise Stimulation (TRNS)'. In The Stimulated Brain, edited by Roi Cohen Kadosh, 35-59. San Diego: Academic Press, 2014.

43. Moutoussis, K. (2009). Brain activation and the locus of visual awareness. Communicative & Integrative Biology, 2(3), 265-267. https://doi.org/10.4161/cib.2.3.8039

44. Moutoussis, K., Keliris, G., Kourtzi, Z., &Logothetis, N. (2005). A binocular rivalry study of motion perception in the human brain. Vision Research, 45(17), 2231-2243. https://doi.org/10.1016/j.visres.2005.02.007

45. Moutoussis, K., & Zeki, S. (2002). The relationship between cortical activation and perception investigated with invisible stimuli. Proceedings of the National Academy of Sciences of the United States of America, 99(14), 9527-9532. https://doi.org/10.1073/pnas.142305699

46. Moutoussis, K., & Zeki, S. (2006). Seeing invisible motion: a human FMRI study. Current Biology: CB, 16(6), 574-579. https://doi.org/10.1016/j.cub.2006.01.062

47. Muckli, L., Kriegeskorte, N., Lanfermann, H., Zanella, F. E., Singer, W., & Goebel, R. (2002). Apparent motion: event-related functional magnetic resonance imaging of perceptual switches and States. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22(9), RC219. https://doi.org/20026362

48. Nicholson, P. (2002). The Soma Code, Parts I-III: Luminous Visions in the RIG VEDA. ELECTRONIC JOURNAL OF VEDIC STUDIES, Vol. 8, 1-64. https://doi.org/10.11588/ejvs.2002.3.940

49. Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527 Pt 3, 633-639. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x

50. Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899-1901.

51. Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., &Tergau, F. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of cognitive neuroscience, 15(4), 619-626.

52. Obeso, I., Oliviero, A., & Jahanshahi, M. (2016). Editorial: Non-invasive Brain Stimulation in Neurology and Psychiatry. Frontiers in Neuroscience. 10. 10.3389/fnins.2016.00574.

53. Oliviero, A., Mordillo-Mateos, L., Arias, P., Panyavin, I., Foffani, G., & Aguilar, J. (2011). Transcranial static magnetic field stimulation of the human motor cortex. The Journal of Physiology, 589(Pt 20), 4949-4958. https://doi.org/10.1113/jphysiol.2011.211953

54. Pascual-Leone, A., & Walsh, V. (2001). Fast Backprojections from the Motion to the Primary Visual Area Necessary for Visual Awareness. Science, 292(5516), 510-512. https://doi.org/10.1126/science.1057099

55. Paulus, W. (2010). On the difficulties of separating retinal from cortical origins of phosphenes when using transcranial alternating current stimulation (tACS).

56. Paulus, W. (2011). Transcranial electrical stimulation (tES-tDCS; tRNS, tACS) methods. Neuropsychological rehabilitation, 21(5), 602-617.

57. Peters, M. A., Thompson, B., Merabet, L. B., Wu, A. D., & Shams, L. (2013). Anodal tDCS to V1 blocks visual perceptual learning consolidation. Neuropsychologia, 51(7), 1234-1239.

58. Pirulli, C., Fertonani, A., & Miniussi, C. (2014). Is neural hyperpolarization by cathodal stimulation always detrimental at the behaviorallevel?.Frontiers in Behavioral Neuroscience, 8, 226.

59. Radman, T., Ramos, R. L., Brumberg, J. C., &Bikson, M. (2009). Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain stimulation, 2(4), 215-228.

60. Rees, G. (2007). Neural correlates of the contents of visual awareness in humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1481), 877-886. https://doi.org/10.1098/rstb.2007.2094

61. Ridding, M. C., & Ziemann, U. (2010). Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. The Journal of Physiology, 588(Pt 13), 2291-2304. https://doi.org/10.1113/jphysiol.2010.190314

62. Roe, J. M., Nesheim, M., Mathiesen, N. C., Moberget, T., Alnжs, D., &Sneve, M. H. (2016). The effects of tDCS upon sustained visual attention are dependent on cognitive load. Neuropsychologia, 80, 1-8.

63. Rosenkranz, K., Nitsche, M. A., Tergau, F., & Paulus, W. (2000). Diminution of training-induced transient motor cortex plasticity by weak transcranial direct current stimulation in the human. Neuroscience letters, 296(1), 61-63.

64. Rossi S, Hallett M, Rossini PM, Pascual-Leone A. the Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology, 120. 2008-39. 10.1016/j.clinph.2009.08.016.

65. Rossini, P., Burke, D., Chen, R., Daskalakis, Z.,Iorio, R., Lazzaro, V., Ferreri, F., Fitzgerald, P., George, M., Hallett, M.,Lefaucheur, J.P.,Langguth, B., Matsumoto, H.,Miniussi, C.,Nitsche, M., Pascual-Leone, A., Paulus, W., Rossi, S.,&Ziemann, U. (2015). Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clinical Neurophysiology, 89. 10.1016/j.clinph.2015.02.001.

66. Sale, M. V., Ridding, M. C., & Nordstrom, M. A. (2008). Cortisol inhibits neuroplasticity induction in human motor cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(33), 8285-8293. https://doi.org/10.1523/JNEUROSCI.1963-08.2008

67. Schutter, D. J., &Hortensius, R. (2010). Retinal origin of phosphenes to transcranial alternating current stimulation. Clinical Neurophysiology, 121(7), 1080-1084.

68. Sczesny-Kaiser, M., Beckhaus, K., Dinse, H. R., Schwenkreis, P., Tegenthoff, M., &Hцffken, O. (2016). Repetitive Transcranial Direct Current Stimulation Induced Excitability Changes of Primary Visual Cortex and Visual Learning Effects-A Pilot Study. Frontiers in Behavioral Neuroscience, 10, 116. https://doi.org/10.3389/fnbeh.2016.00116

69. Thickbroom, G. W. (2007). Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models. Experimental Brain Research, 180(4), 583-593. https://doi.org/10.1007/s00221-007-0991-3

70. Thielscher, A., Antunes, A. and Saturnino, G.B. (2015), Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? IEEE EMBS 2015, Milano, Italy

71. Tong, F., & Engel, S. A. (2001). Interocular rivalry revealed in the human cortical blind-spot representation. Nature, 411(6834), 195-199. https://doi.org/10.1038/35075583

72. Turatto, M., Sandrini, M., &Miniussi, C. (2004). The role of the right dorsolateral prefrontal cortex in visual change awareness: NeuroReport, 15(16), 2549-2552. https://doi.org/10.1097/00001756-200411150-00024

73. Vestito, L., Rosellini, S., Mantero, M., & Bandini, F. (2014). Long-Term Effects of Transcranial Direct-Current Stimulation in Chronic Post-Stroke Aphasia: A Pilot Study. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00785

74. Wagner, T., Valero-Cabre, A., & Pascual-Leone, A. (2007). Noninvasive human brain stimulation. Annual Review of Biomedical Engineering, 9, 527-565. https://doi.org/10.1146/annurev.bioeng.9.061206.133100

75. Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., Cohen, L. G., Fregni, F., Herrmann, C. S., Kappenman, E. S., Knotkova, H., Liebetanz, D., Miniussi, C., Miranda, P. C., Paulus, W., Priori, A., Reato, D., Stagg, C., Wenderoth, N., &Nitsche, M. A. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology, 127(2), 1031-1048. https://doi.org/10.1016/j.clinph.2015.11.012

76. Ziemann, U., Meintzschel, F., Korchounov, A., &Iliж, T. V. (2006). Pharmacological Modulation of Plasticity in the Human Motor Cortex. Neurorehabilitation and Neural Repair, 20(2), 243-251. https://doi.org/10.1177/1545968306287154

Appendix 1

SPSS Output of Two-Way Repeated Measures ANOVA for Sham Condition

Within-Subjects Factors

Measure: MEASURE_1

PrePos

Time

Dependent Variable

1

1

ShamPre1

2

ShamPre2

3

ShamPre3

4

ShamPre4

5

ShamPre5

2

1

ShamPost1

2

ShamPost2

3

ShamPost3

4

ShamPost4

5

ShamPost5

Descriptive Statistics

Mean

Std. Deviation

N

Sham Pre 1

60,00

5,033

7

Sham Pre 2

60,57

5,062

7

Sham Pre 3

60,00

6,831

7

Sham Pre 4

61,86

6,719

7

Sham Pre 5

62,86

4,811

7

Sham Post 1

61,29

4,716

7

Sham Post 2

61,57

5,028

7

Sham Post 3

63,43

6,161

7

Sham Post 4

60,71

8,098

7

Sham Post 5

63,00

5,888

7

Multivariate Testsa

Effect

Value

F

Hypothesis df

Error df

Sig.

Noncent. Parameter

Observed Powerc

PrePost

Pillai's Trace

,195

1,451b

1,000

6,000

,274

1,451

,175

Wilks' Lambda

,805

1,451b

1,000

6,000

,274

1,451

,175

Hotelling's Trace

,242

1,451b

1,000

6,000

,274

1,451

,175

Roy's Largest Root

,242

1,451b

1,000

6,000

,274

1,451

,175

Time

Pillai's Trace

,799

2,976b

4,000

3,000

,199

11,902

,268

Wilks' Lambda

,201

2,976b

4,000

3,000

,199

11,902

,268

Hotelling's Trace

3,967

2,976b

4,000

3,000

,199

11,902

,268

Roy's Largest Root

3,967

2,976b

4,000

3,000

,199

11,902

,268

PrePost * Time

Pillai's Trace

,936

10,928b

4,000

3,000

,039

43,711

,706

Wilks' Lambda

,064

10,928b

4,000

3,000

,039

43,711

,706

Hotelling's Trace

14,570

10,928b

4,000

3,000

,039

43,711

,706

Roy's Largest Root

14,570

10,928b

4,000

3,000

,039

43,711

,706

a. Design: Intercept

Within Subjects Design: PrePos + Time + PrePos * Time

b. Exact statistic

c. Computed using alpha =,05

Mauchly's Test of Sphericitya

Measure: MEASURE_1

Within Subjects Effect

Mauchly's W

Approx. Chi-Square

df

Sig.

Epsilonb

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

PrePost

1,000

,000

0

.

1,000

1,000

1,000

Time

,003

26,254

9

,003

,323

,375

,250

PrePost * Time

,003

25,330

9

,004

,384

,490

,250

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

a. Design: Intercept

Within Subjects Design: PrePos + Time + PrePos * Time

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source

Type III Sum of Squares

df

Mean Square

F

Sig.

Noncent. Parameter

Observed Powera

PrePost

Sphericity Assumed

15,557

1

15,557

1,451

,274

1,451

,175

Greenhouse-Geisser

15,557

1,000

15,557

1,451

,274

1,451

,175

Huynh-Feldt

15,557

1,000

15,557

1,451

,274

1,451

,175

Lower-bound

15,557

1,000

15,557

1,451

,274

1,451

,175

Error(PrePost)

Sphericity Assumed

64,343

6

10,724

Greenhouse-Geisser

64,343

6,000

10,724

Huynh-Feldt

64,343

6,000

10,724

Lower-bound

64,343

6,000

10,724

Time

Sphericity Assumed

42,657

4

10,664

1,548

,220

6,192

,405

Greenhouse-Geisser

42,657

1,294

32,976

1,548

,260

2,002

,209

Huynh-Feldt

42,657

1,499

28,456

1,548

,258

2,320

,226

Lower-bound

42,657

1,000

42,657

1,548

,260

1,548

,184

Error(Time)

Sphericity Assumed

165,343

24

6,889

Greenhouse-Geisser

165,343

7,762

21,303

Huynh-Feldt

165,343

8,994

18,383

Lower-bound

165,343

6,000

27,557

PrePost * Time

Sphericity Assumed

39,514

4

9,879

1,623

,201

6,492

,423

Greenhouse-Geisser

39,514

1,535

25,736

1,623

,245

2,492

,238

Huynh-Feldt

39,514

1,959

20,167

1,623

,238

3,180

,273

Lower-bound

39,514

1,000

39,514

1,623

,250

1,623

,190

Error(PrePost*Time)

Sphericity Assumed

146,086

24

6,087

Greenhouse-Geisser

146,086

9,212

15,858

Huynh-Feldt

146,086

11,756

12,426

Lower-bound

146,086

6,000

24,348

a. Computed using alpha =,05

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

Source

PrePos

Time

Type III Sum of Squares

df

Mean Square

F

Sig.

Noncent. Parameter

Observed Powera

PrePos

Linear

15,557

1

15,557

1,451

,274

1,451

,175

Error(PrePos)

Linear

64,343

6

10,724

Time

Linear

32,064

1

32,064

3,796

,099

3,796

,375

Quadratic

1,842

1

1,842

,139

,722

,139

,062

Cubic

4,829

1

4,829

1,028

,350

1,028

,138

Order 4

3,922

1

3,922

3,259

,121

3,259

,331

Error(Time)

Linear

50,686

6

8,448

Quadratic

79,265

6

13,211

Cubic

28,171

6

4,695

Order 4

7,220

6

1,203

PrePos * Time

Linear

Linear

6,864

1

6,864

,503

,505

,503

,093

Quadratic

3,719

1

3,719

,663

,447

,663

,106

Cubic

3,457

1

3,457

2,750

,148

2,750

,288

Order 4

25,473

1

25,473

6,650

,042

6,650

,579

Error(PrePos*Time)

Linear

Linear

81,886

6

13,648

Quadratic

33,673

6

5,612

Cubic

7,543

6

1,257

Order 4

22,984

6

3,831

a. Computed using alpha =,05

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average

Source

Type III Sum of Squares

df

Mean Square

F

Sig.

Noncent. Parameter

Observed Powera

Intercept

265003,557

1

265003,557

916,998

,000

916,998

1,000

Error

1733,943

6

288,990

a. Computed using alpha =,05

Estimated Marginal Means

1. Grand Mean

Measure: MEASURE_1

Mean

Std. Error

95% Confidence Interval

Lower Bound

Upper Bound

61,529

2,032

56,557

66,500

2. PrePos

Estimates

Measure: MEASURE_1

PrePos

Mean

Std. Error

95% Confidence Interval

Lower Bound

Upper Bound

1

61,057

1,933

56,328

65,786

2

62,000

2,197

56,623

67,377

Pairwise Comparisons

Measure: MEASURE_1

(I) PrePos

(J) PrePos

Mean Difference (I-J)

Std. Error

Sig.a

95% Confidence Interval for Differencea

Lower Bound

Upper Bound

1

2

-,943

,783

,274

-2,858

,973

2

1

,943

,783

,274

-,973

2,858

Based on estimated marginal means

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Multivariate Tests

Value

F

Hypothesis df

Error df

Sig.

Noncent. Parameter

Observed Powerb

Pillai's trace

,195

1,451a

1,000

6,000

,274

1,451

,175

Wilks' lambda

,805

1,451a

1,000

6,000

,274

1,451

,175

Hotelling's trace

,242

1,451a

1,000

6,000

,274

1,451

,175

Roy's largest root

,242

1,451a

1,000

6,000

,274

1,451

,175

Each F tests the multivariate effect of PrePos. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means.

a. Exact statistic

b. Computed using alpha =,05

3. Time

Estimates

Measure: MEASURE_1

Time

Mean

Std. Error

95% Confidence Interval

Lower Bound

Upper Bound

1

60,643

1,748

56,365

64,920

2

61,071

1,866

56,506

65,637

3

61,714

2,395

55,854

67,575

4

61,286

2,661

54,774

67,797

5

62,929

1,804

58,514

67,343

Pairwise Comparisons

Measure: MEASURE_1

(I) Time

(J) Time

Mean Difference (I-J)

Std. Error

Sig.b

95% Confidence Interval for Differenceb

Lower Bound

Upper Bound

1

2

-,429

,528

,448

-1,721

,864

3

-1,071

1,307

,444

-4,269

2,126

4

-,643

1,650

,710

-4,680

3,395

5

-2,286*

,747

,022

-4,113

-,458

2

1

,429

,528

,448

-,864

1,721

3

-,643

,843

,475

-2,706

1,420

4

-,214

1,149

,858

-3,025

2,597

5

-1,857*

,389

,003

-2,809

-,905

3

1

1,071

1,307

,444

-2,126

4,269

2

,643

,843

,475

-1,420

2,706

4

,429

,550

,466

-,918

1,775

5

-1,214

,858

,207

-3,314

,885

4

1

,643

1,650

,710

-3,395

4,680

2

,214

1,149

,858

-2,597

3,025

3

-,429

,550

,466

-1,775

,918

5

-1,643

1,164

,208

-4,490

1,204

5

1

2,286*

,747

,022

,458

4,113

2

1,857*

,389

,003

,905

2,809

3

1,214

,858

,207

-,885

3,314

4

1,643

1,164

,208

-1,204

4,490

Based on estimated marginal means

*. The mean difference is significant at the,05 level.

b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Multivariate Tests

Value

F

Hypothesis df

Error df

Sig.

Noncent. Parameter

Observed Powerb

Pillai's trace

,799

2,976a

4,000

3,000

,199

11,902

,268

Wilks' lambda

,201

2,976a

4,000

3,000

,199

11,902

,268

Hotelling's trace

3,967

2,976a

4,000

3,000

,199

11,902

,268

Roy's largest root

3,967

2,976a

4,000

3,000

,199

11,902

,268

Each F tests the multivariate effect of Time. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means.

a. Exact statistic

b. Computed using alpha =,05

4. PrePos * Time

Estimates

Measure: MEASURE_1

PrePos

Time

Mean

Std. Error

95% Confidence Interval

Lower Bound

Upper Bound

1

1

60,000

1,902

55,345

64,655

2

60,571

1,913

55,890

65,253

3

60,000

2,582

53,682

66,318

4

61,857

2,539

55,643

68,071

5

62,857

1,818

58,408

67,306

2

1

61,286

1,782

56,924

65,647

2

61,571

1,901

56,921

66,222

3

63,429

2,328

57,731

69,126

4

60,714

3,061

53,225

68,203

5

63,000

2,225

57,555

68,445

<...

Pairwise Comparisons

Measure: MEASURE_1

Time

(I) PrePos

(J) PrePos

Mean Difference (I-J)

Std. Error

Sig.b

95% Confidence Interval for Differenceb

Lower Bound

Upper Bound

1

1

2

-1,286

1,169

,314

-4,147

1,576

2

1

1,286

1,169

,314

-1,576

4,147

2

1

2

-1,000

,787

,251

-2,925

,925

2

1

1,000

,787

,251

-,925

2,925

3

1

2

-3,429*

1,110

,021

-6,144

-,713

2

1

3,429*

1,110

,021

,713

6,144

4

1

2

1,143

1,818

,553

-3,306

5,592

2

1

-1,143

1,818

,553

-5,592

3,306

5

1

2

-,143

1,870

,942

-4,718

4,433

2

1

,143

1,870

,942

-4,433

4,718

Based on estimated marginal means

*. The mean difference is significant at the,05 level.

b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Multivariate Tests

Time

Value

F

Hypothesis df

Error df

Sig.

Noncent. Parameter

Observed Powerb

1

Pillai's trace

,168

1,209a

1,000

6,000

,314

1,209

,154

Wilks' lambda

,832

1,209a

1,000

6,000

,314

1,209

,154

Hotelling's trace

,201

1,209a

1,000

6,000

,314

1,209

,154

Roy's largest root

,201

1,209a

1,000

6,000

,314

1,209

,154


Подобные документы

  • Coma - a life-threatening condition characterized by loss of consciousness, the lack of response to stimuli. Its classification, mechanism of development and symptoms. Types of supratentorial and subtentorial brain displacement. Diagnosis of the disease.

    презентация [1,4 M], добавлен 24.03.2015

  • The brain as one of the largest and most complex organ in the human body. The physiological function of the brain, its divisions and share. The cerebral cortex of man. The principles of domination of the right and left hemispheres of different people.

    презентация [1,1 M], добавлен 20.11.2014

  • Respiratory system brief. Structure of the Lungs. Structure of the Lungs. Examples of ailments of the lung: asthma, emphysema, pneumonia, tuberculosis. The characteristics and causes of diseases that cause them.. Visual of healthy vs. non healthy lungs.

    презентация [162,8 K], добавлен 27.11.2013

  • 8 bad habits that reduce youth and life. Effect of nicotine to the brain, nervous system and the associated excess sweating. The composition of tobacco smoke. Closely relation of sport and health. The harm of smoking for women, the human psyche.

    презентация [777,7 K], добавлен 07.11.2014

  • Definition, pathophysiology, aetiologies (structural lesions, herniation syndromes, metabolic disturbances) of coma. Physical examination and investigations. Differential diagnosis - the pseudocomas. Prognostic signs in coma from global cerebral ischemia.

    презентация [875,4 K], добавлен 24.03.2015

  • Addiction as a brain disease. Why Some are Addicted and others not. Symptoms of drug addiction. Local treatment facilities. Tips for recovery. Interesting statistics. Mental disorders, depression or anxiety. Method of drug use: smoking or injecting.

    презентация [4,7 M], добавлен 26.03.2016

  • The history of plague. The disease. Mortality. Physicians. The physicians of the fourteenth century and the Black Death. Effects of The Black Death: religion, other effects. The Black Death in European architecture as in literature.

    реферат [23,1 K], добавлен 23.01.2008

  • Agranulocytosis - pathologic condition, which is characterized by a greatly decreased number of circulating neutrophils. Epidemiology and pathophysiology of this disease. Hereditary disease due to genetic mutations. Signs and symptoms, treatment.

    презентация [1,8 M], добавлен 25.02.2014

  • Pneumonia is an inflammatory condition of the lung—affecting primarily the microscopic air sacs known as alveoli. The bacterium Streptococcus pneumoniae is a common cause of pneumonia. Symptoms, diagnostics, treatment and prevention of this disease.

    презентация [279,8 K], добавлен 12.11.2013

  • Disease of the calcified tissues of the teeth. Demineralization of the mineral portion of enamel and dentine followed by disintegration of their organic material. Classification of caries. Prevention and treatment of caries. The composition of the pulp.

    презентация [424,6 K], добавлен 14.12.2016

  • Информатизация общества в целом и медицины в частности: экспертные, самообучающиеся интеллектуальные системы и примеры их использования в медицине в лечебно-диагностических технологиях, телемедицине. искусственные нейронные сети, система Data Mining.

    реферат [332,7 K], добавлен 24.12.2009

  • Искусственные нейронные сети как математические модели и их программные реализации, строящиеся по образу биологических нейронных сетей. Знакомство с основными особенностями применения экспертных систем в медицине. Общая характеристика методов Data Mining.

    презентация [141,0 K], добавлен 17.05.2014

  • Язык программирования Visual Basic: краткая история возникновения, значение и общая характеристика. Изучение основных свойств Visual Basic, синтаксис языка. Обзор ключевых операторов Visual Basic, пользовательские процедуры и функции данного языка.

    контрольная работа [36,4 K], добавлен 23.07.2014

  • Основы языка Visual Prolog. Введение в логическое программирование. Особенности составления прологов, синтаксис логики предикатов. Программы на Visual Prolog. Унификация и поиск с возвратом. Использование нескольких значений как единого целого.

    лекция [120,5 K], добавлен 28.05.2010

  • Рождение и развитие Basic. Краткое описание Visual Basic for Applications. Новые возможности Visual Basic 5.0. Пример взаимодействия Excel и Visual Basic. Программирование табличных функций. Встраивание, применение функций. Формы, средства управления OLE.

    реферат [20,7 K], добавлен 11.03.2010

  • Программный проект Баз данных средствами Visual Basic 6.0. Проектирование структуры таблицы базы данных Visual Basic 6.0. Заполнение созданных таблиц БД исходными данными. Создание пользовательского меню. Вид формы и свойства элементов управления.

    курсовая работа [3,0 M], добавлен 19.06.2010

  • Программирование и структура программы на языке Turbo Pascal и MS Visual C++6.0. Вычисление площади круга. Реализация программы в системе Turbo Pascal и MS VISUAL C++6.0 для Windows. Структура окна ТРW. Сохранение текста программы в файле на диске.

    лабораторная работа [3,7 M], добавлен 22.03.2012

  • Характеристика мови програмування VBA (Visual Basic for Application): можливості й засоби. Використання редактора Visual Basic. Створення та виконання VBA-програм. Типи даних, змінні й константи, операції й вирази. Керуючі оператори, процедури й функції.

    реферат [29,9 K], добавлен 28.06.2011

  • Стандартные функции для работы с динамической памятью. Представление списков цепочками звеньев. Организация файлового каталога в файловой системе в виде линейного списка на языке Visual C++. Создание блок-схемы и инструкции по работе с программой.

    курсовая работа [252,0 K], добавлен 22.01.2015

  • Разработка программного продукта с помощью языка программирования Visual Basic. Описание интерфейса пользователя и возможностей программы. Исходный код основных модулей. Программа, демонстрирующая основные возможности диаграмм и среды Visual Basic.

    контрольная работа [989,9 K], добавлен 29.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.