Individual differences in nerve fiber myelination: A methodological study

Methods of myelination assessment. Introduction to the Principles of Magnetic Resonance Imaging. Fast Macromolecular Proton Fraction Mapping. Individual differences in myelination. Superior Longitudinal Fasciculus, Arcuate Fasciculus. Statistical Analys.

Рубрика Медицина
Вид дипломная работа
Язык английский
Дата добавления 30.08.2020
Размер файла 2,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

6.1 Diffusion tensor imaging

6.1.1 Corpus callosum

Positive correlations among age and FA in the genu and body of the CC, along with negative associations among age and RD and MD demonstrated in our study agree with previous findings (e.g., Luders et al., 2010). The results indicate an age-related increase in callosal thickness, which is more pronounced in the anterior and mid regions of the tract. Lack of correlation across the posterior surface (i.e., splenium) of the CC may reflect a greater microstructural variability in this region during the first three decades of life. Congruently, the literature shows greater age-related changes in posterior portion of the CC,than in the anterior parts in individuals aged 4-22 years(Chung et al., 2001; Giedd et al., 1999; Rajapakse et al., 1996). An anterior to posterior (i.e., rostrocaudal) gradient of callosal maturation in 3-15 years old children was proposed (Thompson et al., 2000), whereas based on structural MRI findings, aposterior to anterior gradient of callosal development was suggested(Giedd et al., 1996). Luders et al.(2010) points to the hypothesis of an anterior-to-posterior gradient of callosal maturation and indicates that the age of 9-10 years in girls and 11-12 years in boys is a key period of CC maturation and growth. The switch in callosal maturation profile from retrosplenial to a forward-moving wave of development is known to occur at the age of 15-16 in females and 18-18 in males and a peak of anterior growth of the CC in late adolescence (Luders et al., 2010). This discrepancy may be explained by the difference in age range considered in this study (8-30 years) and in previous studies (4-22 years). Since the callosal maturation was shown to significantly depend on age (Luders et al., 2010), selection of the age range may significantly influencethe outcome of the measurements. In addition, these disagreements may also be a consequence of using different approaches of structural evaluation of the tract and differences in regional specificity. The current findings point to the importance of choosing similar strategies for fiber tract division and highlight the importance of complex methodological approaches in studying white matter maturation.

Our data further demonstratethe differences in FA and RD between the anterior (genu) and mid (body) regions of the CC and the posterior portion of the tract (splenium), which are more pronounced in children and adolescents, and they almost disappear in adults, thus indicating that they may be specific to developmental profile of this fiber tract. A pronounced difference in DTI indices in the splenium of the CC compared to the genu and body (Giedd et al., 1996), and an increase in myelination with maturation(Giedd et al., 1996; Rathee et al., 2016) were demonstrated in earlier studies.

Age-related increase in myelination indicated by an increase in FA and a decrease in RD and MD observed in the body of the CC and, to a lesser extent, in the genu of the CC, reflect a greater dependence of the anterior portion of the tract on age compared to posterior regions. These changes may result not only from axonal myelination, but also redirection of the fibers and pruning(Luders et al., 2010).

The differences between the youngest and the oldest participants were similar in both genders across the anterior and mid surfaces of the CC. The only region which showed gender differences was the splenium. The observed difference in myelination (higher FA and lower RD) in the splenium of the CC between 8-12 years old males and females is consistent with DTI findings of Schmithorst and colleagues(2008) who found that girls (mean age ~12 years) have higher FA in this region than boys. This may indicate an earlier growth rate of CC white matter volume in females. Other authors show no significant gender difference in the microstructural characteristics, as well as the growth rate of callosal regions(Bishop & Wahlsten, 1997; Giedd et al., 1996; Rajapakse et al., 1996), arguing that the observed differences result from differences in the ratio of the size of the CC to the whole brain size.

Overall, results of the present study provided normative values for three subdivisions of the CC for anterior and mid regions and the posterior surface of the CC, and regional differences in maturation ratesacross development.

6.1.2 Inferior fronto-occipital fasciculus

The IFOF is proposed to be the only fiber tract that directly connects the occipital lobe with the frontal regions (Catani, 2007). In addition to its role in semantic and visual processing(Catani & Thiebaut de Schotten, 2008; Rollans et al., 2017)and attention, it is thought to be a part of the mirror system(Catani, 2007). However, there is still no consensus regarding the degree to which its anatomical and structural properties can vary in the healthy brain. Moreover, very few studies investigated this fiber tract in healthy school-age children(Qiu et al., 2007; for review Tamnes et al., 2018).

The analysis of microstructural characteristics of the IFOF revealed a gradual increase in FA and a decrease in RD in both hemispheres across the 8- to 30-year age range, which may indicate a rapid change in myelination in school-age children. The right and left IFOF exhibited a similar trend of increasing FA, while RD and MD revealed fine differences in maturation pattern between the two hemispheres. As such, age-related reduction in RD in the right IFOF was characterized by a linear pattern with a very pronounced effect of age on this variable, which was the highest across all comparisons. Interestingly, the analysis of MD did not reveal changes in the left IFOF and only revealed an age-related decrease in MD in the right hemisphere. Notably, MD was the only metric which detected hemispheric asymmetry in adult participants with MD in the left IFOF to be higher than in the right IFOF. These differences became observable during the transition from adolescence to adulthood, when the MD values in the left hemisphere started growing after the decline observed during the transition from childhood to adolescence, which may indicate reorganization of functional networks in the brain and tuning of language and visual function in late childhood and adulthood.

The asymmetry of the IFOF has not been extensively investigated yet, although some of the previous studies report leftward asymmetry in microstructural properties of this fiber tract(Qiu et al., 2007; Shu et al., 2015; Wu et al., 2016). Critically, Catani et al.(2007) revealed interhemispheric differences in pathways associated with language function in more than half of adult participants (n=50), whereas 17% of the participants exhibited bilateral symmetrical distribution. Although an apparent hemispheric asymmetry was not observed in the current study, there was a pronounced difference in maturation pattern, which may indirectly reflect asymmetry associated with functional roles of each subdivision of the IFOF.

Therefore, the results show that the right IFOF continues to grow at least until adulthood, whereas the left IFOF exhibits cyclic maturation pattern and its microstructural properties change in a nonlinear fashion. Hemispheric asymmetry becomes observable only at later stages of ontogenesis. An increase in RD and MD in the left subdivision of the IFOF between ages 12 and 30 may indicate the change in fiber orientation and pruning, rather than decline in myelin thickness. This, in turn, may be related to the formation of new functional connections between the IFOF and various brain areas as children grow.

6.1.3 Inferior longitudinal fasciculus

The inferior longitudinal fasciculus connects the anterior portion of the temporal lobe with various areas of the occipital lobe and is known to play a critical role in visual object recognition and lexical and semantic processing (Catani, 2007).Theanalysis of DTI indices in the ILF found no changes in FA in both hemispheres. Instead, there was a robust decrease in MD and RD in the right subdivision of the ILF until the age of 12 years, after which the values of these parameters almost did not change. In the left ILF, age-related changes were indicated only by a small difference in RD between adolescents and younger children, which could indicate higher maturation rate and earlier myelination of the left subdivision of the ILF. These findings confirmed the results of earlier studies which indicate that, unlike lateral tracts in dorsal regions, the inferior areas are less affected by aging (Sullivan et al., 2010). The changes in FA are proposed to reflect changes not only in myelination, but in axonal diameter and density, while RD indicates alterations in myelination thickness (Lebel et al., 2012; Tamnes et al., 2018). Therefore, lack of the differences in FA along with a decrease in RD may indicate that the axonal diameter and density remained unchanged, while myelination in the ILF slightly increased. Alternatively, this effect may reflect fine tuning of functions associated with this fiber tract (Tamnes et al., 2018). The microstructural properties of the ILF did not show gender-specific effects.

According to the literature, at the age of 3 month, the ILF can be identified with DTI (Hermoye et al., 2006). It is thought that FA in the ILF reaches its maximum values by the age of 11, and MD decreases to its minimum by the age of 20 (Lebel et al., 2008), although recent studies also suggest that the maturation of the ILF continues into adolescence and by the age of 24, the ILF is still not fully mature (Lebel & Beaulieu, 2011; Lebel & Deoni, 2018), which agrees with the results of the present study.

Our study identified no differences in FA, RD, or MD values between the two hemispheres, although the difference was found in maturation pattern, which may also indirectly indicate functional asymmetry.Several studies show lateralization of the ILF in the right hemisphere (Herbet et al., 2018; Latini et al., 2017), whereas others demonstrate leftward asymmetry of the ILF volume (Shu et al., 2015), attributing it to asymmetry of language networks in the brain.Therefore, the results of this study add to the theoretical knowledge about the maturation pattern of the ILF.

6.2 Myelin proton fraction mapping

This study provided normative MPF values for adult participants. The results of the MPF analysis should be considered in the context of methodological contribution, highlighting the advantageof short scanning time and providing a sensitive measure of myelin content in neural tissue (Yarnykh, Prihod'ko, et al., 2018). Results from children and adolescents point to the importance of applying advanced methods of spacial alignment and fiber tract segmentation, which will be considered in future studies.

Conclusion

The goal of this work was to provide normative data for DTI and MPF from healthy Russian subjects aged 8-30 years and to investigate the maturation pattern in the corpus callosum with its subdivisions, the inferior fronto-occipital fasciculus, and inferior longitudinal fasciculus in relation to age, gender, and hemispheric asymmetry. The results of the study added to existing knowledge on microstructural characteristics of these fiber tracts, which will further help to link white matter maturation with functional and behavioral indices and cognitive development. Future studies will expand the range of fiber tracts associated with complex cognitive functions and will relate microstructural properties of white matter pathways with measurements of behavioral performance. Also, more advanced methods of data processing, including atlas-based tractography approaches for DTI and the application of non-linear methods of coregistration for MPF will be used.

References

1. Akoglu, H. (2018). User's guide to correlation coefficients. Turkish Journal of Emergency Medicine, 18(3), 91-93.

2. Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion Tensor Imaging of the Brain. Neurotherapeutics?: The Journal of the American Society for Experimental NeuroTherapeutics, 4(3), 316-329.

3. Allen, J. S., Damasio, H., Grabowski, T. J., Bruss, J., & Zhang, W. (2003). Sexual dimorphism and asymmetries in the gray-white composition of the human cerebrum. NeuroImage, 18(4), 880-894.

4. Am, H., Ne,van H., Hg, S., Rs, K., & He, H. P. (2011). Human brain changes across the life span: A review of 56 longitudinal magnetic resonance imaging studies. Human Brain Mapping, 33(8), 1987-2002.

5. Asato, M. R., Terwilliger, R., Woo, J., & Luna, B. (2010). White Matter Development in Adolescence: A DTI Study. Cerebral Cortex, 20(9), 2122-2131.

6. Baird, A. A., Colvin, M. K., VanHorn, J. D., Inati, S., & Gazzaniga, M. S. (2005). Functional Connectivity: Integrating Behavioral, Diffusion Tensor Imaging, and Functional Magnetic Resonance Imaging Data Sets. Journal of Cognitive Neuroscience, 17(4), 687-693.

7. Banich, M. T., & Brown, W. S. (2000). A life-span perspective on interaction between the cerebral hemispheres. Developmental Neuropsychology, 18(1), 1-10.

8. Bartzokis, G., Beckson, M., Lu, P. H., Nuechterlein, K. H., Edwards, N., & Mintz, J. (2001). Age-related changes in frontal and temporal lobe volumes in men: A magnetic resonance imaging study. Archives of General Psychiatry, 58(5), 461-465.

9. Bartzokis, George, & Altshuler, L. (2005). Reduced intracortical myelination in schizophrenia. The American Journal of Psychiatry, 162(6), 1229-1230.

10. Basser, P. J. (1995). Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR in Biomedicine, 8(7-8), 333-344.

11. Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66(1), 259-267.

12. Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J., & Aldroubi, A. (2000). In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine, 44(4), 625-632.

13. Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance. Series B, 111(3), 209-219.

14. Basser, Peter J., & Jones, D. K. (2002). Diffusion-tensor MRI: Theory, experimental design and data analysis - a technical review. NMR in Biomedicine, 15(7-8), 456-467.

15. Bathelt, J., Johnson, A., Zhang, M., & Astle, D. E. (2019). The cingulum as a marker of individual differences in neurocognitive development. Scientific Reports, 9.

16. Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous system--A technical review. NMR in Biomedicine, 15(7-8), 435-455.

17. Beaulieu, C. (2014). Chapter 8--The Biological Basis of Diffusion Anisotropy. In H. Johansen-Berg & T. E. J. Behrens (Eds.), Diffusion MRI (Second Edition) (pp. 155-183). Academic Press.

18. Bechler, M. E., Swire, M., & ffrench?Constant, C. (2018). Intrinsic and adaptive myelination--A sequential mechanism for smart wiring in the brain. Developmental Neurobiology, 78(2), 68-79. https://doi.org/10.1002/dneu.22518

19. Bendlin, B. B., Fitzgerald, M. E., Ries, M. L., Xu, G., Kastman, E. K., Thiel, B. W., Rowley, H. A., Lazar, M., Alexander, A. L., & Johnson, S. C. (2010). White Matter in Aging and Cognition: A Cross-sectional Study of Microstructure in Adults Aged Eighteen to Eighty-Three. Developmental Neuropsychology, 35(3), 257-277.

20. Bengtsson, S. L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullйn, F. (2005). Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience, 8(9), 1148-1150.

21. Berger, A. (2002). Magnetic resonance imaging. BMJ?: British Medical Journal, 324(7328), 35.

22. Bettcher, B. M., Mungas, D., Patel, N., Elofson, J., Dutt, S., Wynn, M., Watson, C. L., Stephens, M., Walsh, C. M., & Kramer, J. H. (2016). Neuroanatomical Substrates of Executive Functions: Beyond Prefrontal Structures. Neuropsychologia, 85, 100-109.

23. Bishop, K. M., & Wahlsten, D. (1997). Sex differences in the human corpus callosum: Myth or reality? Neuroscience and Biobehavioral Reviews, 21(5), 581-601.

24. Blanton, R. E., Levitt, J. G., Peterson, J. R., Fadale, D., Sporty, M. L., Lee, M., To, D., Mormino, E. C., Thompson, P. M., McCracken, J. T., & Toga, A. W. (2004). Gender differences in the left inferior frontal gyrus in normal children. NeuroImage, 22(2), 626-636.

25. Bodhireddy, S. R., Lyman, W. D., Rashbaum, W. K., & Weidenheim, K. M. (1994). Immunohistochemical detection of myelin basic protein is a sensitive marker of myelination in second trimester human fetal spinal cord. Journal of Neuropathology and Experimental Neurology, 53(2), 144-149.

26. Bourisly, A. K., Gejo, G., Hayat, A. A., Alsarraf, L., Dashti, F. M., & Di Paola, M. (2017). White Matter Sexual Dimorphism of the Adult Human Brain. Translational Neuroscience, 8, 49-53.

27. Brown, W. S., & Paul, L. K. (2000). Cognitive and psychosocial deficits in agenesis of the corpus callosum with normal intelligence. Cognitive Neuropsychiatry, 5(2), 135-157.

28. Brown, W. S., Symingtion, M., VanLancker-Sidtis, D., Dietrich, R., & Paul, L. K. (2005). Paralinguistic processing in children with callosal agenesis: Emergence of neurolinguistic deficits. Brain and Language, 93(2), 135-139.

29. Bubb, E. J., Metzler-Baddeley, C., & Aggleton, J. P. (2018). The cingulum bundle: Anatomy, function, and dysfunction. Neuroscience and Biobehavioral Reviews, 92, 104-127.

30. Buxton, R. B., Griffeth, V. E. M., Simon, A. B., & Moradi, F. (2014). Variability of the coupling of blood flow and oxygen metabolism responses in the brain: A problem for interpreting BOLD studies but potentially a new window on the underlying neural activity. Frontiers in Neuroscience, 8.

31. Cardoso, M., Olmo, N. R., & Fragoso, Y. D. (2015). Systematic Review of Cognitive Dysfunction in Pediatric and Juvenile Multiple Sclerosis. Pediatric Neurology, 53(4), 287-292.

32. Catani, M. (2007). From hodology to function. Brain, 130(3), 602-605.

33. Catani, M., Allin, M. P. G., Husain, M., Pugliese, L., Mesulam, M. M., Murray, R. M., & Jones, D. K. (2007). Symmetries in human brain language pathways correlate with verbal recall. Proceedings of the National Academy of Sciences of the United States of America, 104(43), 17163-17168.

34. Catani, M., Jones, D. K., & ffytche, D. H. (2005). Perisylvian language networks of the human brain. Annals of Neurology, 57(1), 8-16.

35. Catani, M., & Thiebaut de Schotten, M. (2008). A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 44(8), 1105-1132.

36. Chang, Y.-S., Gratiot, M., Owen, J. P., Brandes-Aitken, A., Desai, S. S., Hill, S. S., Arnett, A. B., Harris, J., Marco, E. J., & Mukherjee, P. (2016). White Matter Microstructure is Associated with Auditory and Tactile Processing in Children with and without Sensory Processing Disorder. Frontiers in Neuroanatomy, 9.

37. Charlton, R. A., Barrick, T. R., Lawes, I. N. C., Markus, H. S., & Morris, R. G. (2010). White matter pathways associated with working memory in normal aging. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 46(4), 474-489.

38. Chaudhry, R., & Varacallo, M. (2020). Biochemistry, Glycolysis. In StatPearls. StatPearls Publishing.

39. Chen, H., Cohen, P., & Chen, S. (2010). How Big is a Big Odds Ratio? Interpreting the Magnitudes of Odds Ratios in Epidemiological Studies. Communications in Statistics - Simulation and Computation, 39(4), 860-864.

40. Chevalier, N., Kurth, S., Doucette, M. R., Wiseheart, M., Deoni, S. C. L., Iii, D. C. D., O'Muircheartaigh, J., Blackwell, K. A., Munakata, Y., & LeBourgeois, M. K. (2015). Myelination Is Associated with Processing Speed in Early Childhood: Preliminary Insights. PLOS ONE, 10(10), e0139897.

41. Chicoine, A. J., Proteau, L., & Lassonde, M. (2000). Absence of interhemispheric transfer of unilateral visuomotor learning in young children and individuals with agenesis of the corpus callosum. Developmental Neuropsychology, 18(1), 73-94.

42. Chung, M. K., Worsley, K. J., Paus, T., Cherif, C., Collins, D. L., Giedd, J. N., Rapoport, J. L., & Evans, A. C. (2001). A unified statistical approach to deformation-based morphometry. NeuroImage, 14(3), 595-606.

43. Chung, S., Fieremans, E., Kucukboyaci, N. E., Wang, X., Morton, C. J., Novikov, D. S., Rath, J. F., & Lui, Y. W. (2018). Working Memory And Brain Tissue Microstructure: White Matter Tract Integrity Based On Multi-Shell Diffusion MRI. Scientific Reports, 8(1), 1-7.

44. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed). L. Erlbaum Associates.

45. Collins, S. E., Spencer-Smith, M., Mьrner-Lavanchy, I., Kelly, C. E., Pyman, P., Pascoe, L., Cheong, J., Doyle, L. W., Thompson, D. K., & Anderson, P. J. (2019). White matter microstructure correlates with mathematics but not word reading performance in 13-year-old children born very preterm and full-term. NeuroImage: Clinical, 24, 101944.

46. Conner, A. K., Briggs, R. G., Sali, G., Rahimi, M., Baker, C. M., Burks, J. D., Glenn, C. A., Battiste, J. D., & Sughrue, M. E. (2018). A Connectomic Atlas of the Human Cerebrum--Chapter 13: Tractographic Description of the Inferior Fronto-Occipital Fasciculus. Operative Neurosurgery, 15(suppl_1), S436-S443.

47. Cooper, G. M. (2000). Structure of the Plasma Membrane. The Cell: A Molecular Approach. 2nd Edition.

48. Coupй, P., Manjуn, J. V., Lanuza, E., & Catheline, G. (2019). Lifespan Changes of the Human Brain In Alzheimer's Disease. Scientific Reports, 9.

49. De Bellis, M. D., Keshavan, M. S., Beers, S. R., Hall, J., Frustaci, K., Masalehdan, A., Noll, J., & Boring, A. M. (2001). Sex Differences in Brain Maturation during Childhood and Adolescence. Cerebral Cortex, 11(6), 552-557.

50. de Faria, O., Gonsalvez, D. G., Nicholson, M., & Xiao, J. (2019). Activity?dependent central nervous system myelination throughout life. Journal of Neurochemistry, 148(4), 447-461.

51. Dekaban, A. S. (1978). Changes in brain weights during the span of human life: Relation of brain weights to body heights and body weights. Annals of Neurology, 4(4), 345-356.

52. den Braber, A., van `t Ent, D., Stoffers, D., Linkenkaer-Hansen, K., Boomsma, D. I., & de Geus, E. J. C. (2013). Sex differences in gray and white matter structure in age-matched unrelated males and females and opposite-sex siblings. International Journal of Psychological Research, 6(SPE), 7-21.

53. Denyer, R., Morris, S. R., Laule, C., Weber, R. C., & Boyd, L. A. (n.d.). Exploring associations between myelin and math ability in typically developing and learning difficulty youth. 1.

54. Deoni, S. C. L., Rutt, B. K., & Peters, T. M. (2003). Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magnetic Resonance in Medicine, 49(3), 515-526.

55. Derome, A. E. (Ed.). (1987). 5--The Nuclear Overhauser Effect. In Tetrahedron Organic Chemistry Series (Vol. 6, pp. 97-127). Elsevier.

56. Desmond, D. W. (2002). Cognition and white matter lesions. Cerebrovascular Diseases (Basel, Switzerland), 13 Suppl 2, 53-57.

57. Dick, A. S., & Tremblay, P. (2012). Beyond the arcuate fasciculus: Consensus and controversy in the connectional anatomy of language. Brain, 135(12), 3529-3550.

58. Doran, S. J., Jakob, P., & Dйcorps, M. (1996). Rapid repetition of the “burst” sequence: The role of diffusion and consequences for imaging. Magnetic Resonance in Medicine, 35(4), 547-553.

59. Duffau, H. (2019). Chapter 19--Awake Craniotomies for Neoplasms Involving Language Networks. In K. Chaichana & A. Quiсones-Hinojosa (Eds.), Comprehensive Overview of Modern Surgical Approaches to Intrinsic Brain Tumors (pp. 329-345). Academic Press.

60. Edzes, H. T., & Samulski, E. T. (1978). The measurement of cross-relaxation effects in the proton NMR spin-lattice relaxation of water in biological systems: Hydrated collagen and muscle. Journal of Magnetic Resonance (1969), 31(2), 207-229.

61. Einstein, A. (n.d.). -INVESTIGATIONS O N THE THEORY .OF ,THE BROWNIAN MOVEMENT. 11.

62. Eng, J., Ceckler, T. L., & Balaban, R. S. (1991). Quantitative 1H magnetization transfer imaging in vivo. Magnetic Resonance in Medicine, 17(2), 304-314.

63. Fields, R. D. (2010). Change in the Brain's White Matter. Science (New York, N.Y.), 330(6005), 768-769.

64. Filley, C. M., & Fields, R. D. (2016). White matter and cognition: Making the connection. Journal of Neurophysiology, 116(5), 2093-2104.

65. Fink, F., Eling, P., Rischkau, E., Beyer, N., Tomandl, B., Klein, J., & Hildebrandt, H. (2010). The association between California Verbal Learning Test performance and fibre impairment in multiple sclerosis: Evidence from diffusion tensor imaging. Multiple Sclerosis (Houndmills, Basingstoke, England), 16(3), 332-341.

66. Fitsiori, A., Nguyen, D., Karentzos, A., Delavelle, J., & Vargas, M. I. (2011). The corpus callosum: White matter or terra incognita. The British Journal of Radiology, 84(997), 5-18.

67. Flechsig Of Leipsic, P. (1901). DEVELOPMENTAL (MYELOGENETIC) LOCALISATION OF THE CEREBRAL CORTEX IN THE HUMAN SUBJECT. The Lancet, 158(4077), 1027-1030.

68. Fleischman, D. A., Yang, J., Arfanakis, K., Arvanitakis, Z., Leurgans, S. E., Turner, A. D., Barnes, L. L., Bennett, D. A., & Buchman, A. S. (2015). Physical activity, motor function, and white matter hyperintensity burden in healthy older adults. Neurology, 84(13), 1294-1300.

69. Frye, R. E., Hasan, K., Malmberg, B., Desouza, L., Swank, P., Smith, K., & Landry, S. (2010). Superior longitudinal fasciculus and cognitive dysfunction in adolescents born preterm and at term. Developmental Medicine and Child Neurology, 52(8), 760-766.

70. Fujie, S., Namiki, C., Nishi, H., Yamada, M., Miyata, J., Sakata, D., Sawamoto, N., Fukuyama, H., Hayashi, T., & Murai, T. (2008). The role of the uncinate fasciculus in memory and emotional recognition in amnestic mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 26(5), 432-439.

71. Fung, B. M. (1986). Nuclear magnetic resonance study of water interactions with proteins, biomolecules, membranes, and tissues. Methods in Enzymology, 127, 151-161.

72. Geschwind, N. (1970). The organization of language and the brain. Science (New York, N.Y.), 170(3961), 940-944.

73. Gibson, E. M., Purger, D., Mount, C. W., Goldstein, A. K., Lin, G. L., Wood, L. S., Inema, I., Miller, S. E., Bieri, G., Zuchero, J. B., Barres, B. A., Woo, P. J., Vogel, H., & Monje, M. (2014). Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science (New York, N.Y.), 344(6183), 1252304.

74. Gideon, P., Rosenbaum, S., Sperling, B., & Petersen, P. (1999). MR-visible brain water content in human acute stroke. Magnetic Resonance Imaging, 17(2), 301-304.

75. Giedd, J. N., Blumenthal, J., Jeffries, N. O., Rajapakse, J. C., Vaituzis, A. C., Liu, H., Berry, Y. C., Tobin, M., Nelson, J., & Castellanos, F. X. (1999). Development of the human corpus callosum during childhood and adolescence: A longitudinal MRI study. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 23(4), 571-588.

76. Giedd, J. N., Rumsey, J. M., Castellanos, F. X., Rajapakse, J. C., Kaysen, D., Vaituzis, A. C., Vauss, Y. C., Hamburger, S. D., & Rapoport, J. L. (1996). A quantitative MRI study of the corpus callosum in children and adolescents. Brain Research. Developmental Brain Research, 91(2), 274-280.

77. Gil-Robles, S., Carvallo, A., Jimenez, M. D. M., Gomez Caicoya, A., Martinez, R., Ruiz-Ocaсa, C., & Duffau, H. (2013). Double dissociation between visual recognition and picture naming: A study of the visual language connectivity using tractography and brain stimulation. Neurosurgery, 72(4), 678-686.

78. Glover, G. H. (2011). Overview of Functional Magnetic Resonance Imaging. Neurosurgery Clinics of North America, 22(2), 133-139.

79. Gorelick, P. B., Furie, K. L., Iadecola, C., Smith, E. E., Waddy, S. P., Lloyd-Jones, D. M., Bae, H.-J., Bauman, M. A., Dichgans, M., Duncan, P. W., Girgus, M., Howard, V. J., Lazar, R. M., Seshadri, S., Testai, F. D., van Gaal, S., Yaffe, K., Wasiak, H., & Zerna, C. (2017). Defining Optimal Brain Health in Adults. Stroke, 48(10), e284-e303.

80. Gur, R. C., Gunning-Dixon, F., Bilker, W. B., & Gur, R. E. (2002). Sex differences in temporo-limbic and frontal brain volumes of healthy adults. Cerebral Cortex (New York, N.Y.: 1991), 12(9), 998-1003.

81. Gur, R. C., Turetsky, B. I., Matsui, M., Yan, M., Bilker, W., Hughett, P., & Gur, R. E. (1999). Sex Differences in Brain Gray and White Matter in Healthy Young Adults: Correlations with Cognitive Performance. The Journal of Neuroscience, 19(10), 4065-4072.

82. Hagiwara, A., Hori, M., Kamagata, K., Warntjes, M., Matsuyoshi, D., Nakazawa, M., Ueda, R., Andica, C., Koshino, S., Maekawa, T., Irie, R., Takamura, T., Kumamaru, K. K., Abe, O., & Aoki, S. (2018). Myelin Measurement: Comparison Between Simultaneous Tissue Relaxometry, Magnetization Transfer Saturation Index, and T1w/T2w Ratio Methods. Scientific Reports, 8(1), 10554.

83. Han, Z., Ma, Y., Gong, G., He, Y., Caramazza, A., & Bi, Y. (2013). White matter structural connectivity underlying semantic processing: Evidence from brain damaged patients. Brain: A Journal of Neurology, 136(Pt 10), 2952-2965.

84. Hayasaka, S., Peiffer, A. M., Hugenschmidt, C. E., & Laurienti, P. J. (2007). Power and Sample Size Calculation for Neuroimaging Studies by Non-Central Random Field Theory. NeuroImage, 37(3), 721-730.

85. Heilbronner, S. R., & Haber, S. N. (2014). Frontal Cortical and Subcortical Projections Provide a Basis for Segmenting the Cingulum Bundle: Implications for Neuroimaging and Psychiatric Disorders. The Journal of Neuroscience, 34(30), 10041-10054.

86. Henkelman, R. M., Stanisz, G. J., & Graham, S. J. (2001). Magnetization transfer in MRI: A review. NMR in Biomedicine, 14(2), 57-64.

87. Herbet, G., Moritz-Gasser, S., & Duffau, H. (2017). Direct evidence for the contributive role of the right inferior fronto-occipital fasciculus in non-verbal semantic cognition. Brain Structure & Function, 222(4), 1597-1610.

88. Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews. Neuroscience, 8(5), 393-402.

89. Hidalgo Tobon, S. (2010). Theory of Gradient Coil Design Methods for Magnetic Resonance Imaging. Concepts in Magnetic Resonance Part A, 36A, 223-242.

90. Hiyoshi-Taniguchi, K., Oishi, N., Namiki, C., Miyata, J., Murai, T., Cichocki, A., & Fukuyama, H. (2015). The Uncinate Fasciculus as a Predictor of Conversion from Amnestic Mild Cognitive Impairment to Alzheimer Disease. Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging, 25(5), 748-753.

91. Hoeft, F., Barnea-Goraly, N., Haas, B. W., Golarai, G., Ng, D., Mills, D., Korenberg, J., Bellugi, U., Galaburda, A., & Reiss, A. L. (2007). More is not always better: Increased fractional anisotropy of superior longitudinal fasciculus associated with poor visuospatial abilities in Williams syndrome. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(44), 11960-11965.

92. Hollund, I. M. H., Olsen, A., Skranes, J., Brubakk, A.-M., Hеberg, A. K., Eikenes, L., & Evensen, K. A. I. (2017). White matter alterations and their associations with motor function in young adults born preterm with very low birth weight. NeuroImage?: Clinical, 17, 241-250.

93. Hughes, E. G., Kang, S. H., Fukaya, M., & Bergles, D. E. (2013). Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nature Neuroscience, 16(6), 668-676.

94. Indefrey, P., & Levelt, W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92(1-2), 101-144.

95. Itoyama, Y., Sternberger, N. H., Webster, H. D., Quarles, R. H., Cohen, S. R., & Richardson, E. P. (1980). Immunocytochemical observations on the distribution of myelin-associated glycoprotein and myelin basic protein in multiple sclerosis lesions. Annals of Neurology, 7(2), 167-177.

96. Jakobsson, E., & Chiu, S. W. (1988). Application of Brownian motion theory to the analysis of membrane channel ionic trajectories calculated by molecular dynamics. Biophysical Journal, 54(4), 751-756.

97. Jдncke, L. (2018). Sex/gender differences in cognition, neurophysiology, and neuroanatomy. F1000Research, 7.

98. Jang, S. H., Kwon, Y. H., Lee, M. Y., Kim, J.-R., & Seo, J. P. (2016). Aging of the cingulum in the human brain: Preliminary study of a diffusion tensor imaging study. Neuroscience Letters, 610, 213-217.

99. Joel, D., Persico, A., Salhov, M., Berman, Z., Oligschlдger, S., Meilijson, I., & Averbuch, A. (2018). Analysis of Human Brain Structure Reveals that the Brain “Types” Typical of Males Are Also Typical of Females, and Vice Versa. Frontiers in Human Neuroscience, 12.

100. Johansen-Berg, H., & Behrens, T. E. J. (2009). Diffusion MRI: From quantitative measurement to in-vivo neuroanatomy. Academic Press.

101. Johansen-Berg, H., Della-Maggiore, V., Behrens, T. E. J., Smith, S. M., & Paus, T. (2007). Integrity of white matter in the corpus callosum correlates with bimanual co-ordination skills. NeuroImage, 36, T16-T21.

102. Jones, D. K., Christiansen, K. F., Chapman, R. J., & Aggleton, J. P. (2013). Distinct subdivisions of the cingulum bundle revealed by diffusion MRI fibre tracking: Implications for neuropsychological investigations. Neuropsychologia, 51(1), 67-78.

103. Kamali, A., Flanders, A. E., Brody, J., Hunter, J. V., & Hasan, K. M. (2014). Tracing Superior Longitudinal Fasciculus Connectivity in the Human Brain using High Resolution Diffusion Tensor Tractography. Brain Structure & Function, 219(1).

104. Kanaan, R. A., Allin, M., Picchioni, M., Barker, G. J., Daly, E., Shergill, S. S., Woolley, J., & McGuire, P. K. (2012). Gender Differences in White Matter Microstructure. PLOS ONE, 7(6), e38272.

105. Kantarci, K., Senjem, M. L., Avula, R., Zhang, B., Samikoglu, A. R., Weigand, S. D., Przybelski, S. A., Edmonson, H. A., Vemuri, P., Knopman, D. S., Boeve, B. F., Ivnik, R. J., Smith, G. E., Petersen, R. C., & Jack, C. R. (2011). Diffusion tensor imaging and cognitive function in older adults with no dementia. Neurology, 77(1), 26-34.

106. Kantarci, Kejal, Murray, M. E., Schwarz, C. G., Reid, R., Przybelski, S. A., Lesnick, T., Zuk, S. M., Raman, M. R., Senjem, M. L., Gunter, J. L., Boeve, B. F., Knopman, D. S., Parisi, J. E., Petersen, R. C., Jack, C. R., & Dickson, D. (2017). White Matter Integrity on DTI and the Pathologic Staging of Alzheimer's Disease. Neurobiology of Aging, 56, 172-179.

107. Kerch, G. (2018). Distribution of tightly and loosely bound water in biological macromolecules and age-related diseases. International Journal of Biological Macromolecules, 118(Pt A), 1310-1318.

108. Khodanovich, M. Y., Sorokina, I. V., Glazacheva, V. Y., Akulov, A. E., Nemirovich-Danchenko, N. M., Romashchenko, A. V., Tolstikova, T. G., Mustafina, L. R., & Yarnykh, V. L. (2017). Histological validation of fast macromolecular proton fraction mapping as a quantitative myelin imaging method in the cuprizone demyelination model. Scientific Reports, 7, 46686.

109. Kim, E. Y., Park, H.-J., Kim, D.-H., Lee, S.-K., & Kim, J. (2008). Measuring Fractional Anisotropy of the Corpus Callosum Using Diffusion Tensor Imaging: Mid-Sagittal versus Axial Imaging Planes. Korean Journal of Radiology, 9(5), 391-395.

110. Kitis, O., Ozalay, O., Zengin, E. B., Haznedaroglu, D., Eker, M. C., Yalvac, D., Oguz, K., Coburn, K., & Gonul, A. S. (2012). Reduced left uncinate fasciculus fractional anisotropy in deficit schizophrenia but not in non-deficit schizophrenia. Psychiatry and Clinical Neurosciences, 66(1), 34-43.

111. Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang, M.-C., Christensen, G. E., Collins, D. L., Gee, J., Hellier, P., Song, J. H., Jenkinson, M., Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, R. P., Mann, J. J., & Parsey, R. V. (2009). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46(3), 786-802.

112. Kumar, R., Chavez, A. S., Macey, P. M., Woo, M. A., & Harper, R. M. (2013). Brain Axial and Radial Diffusivity Changes with Age and Gender in Healthy Adults. Brain Research, 1512, 22-36.

113. Kuntner-Hannes, C., & Haemisch, Y. (2018). Image Fusion in Preclinical Applications. Springer.

114. Le Bihan, D. (1991). Molecular diffusion nuclear magnetic resonance imaging. Magnetic Resonance Quarterly, 7(1), 1-30.

115. Lebel, C., Gee, M., Camicioli, R., Wieler, M., Martin, W., & Beaulieu, C. (2012). Diffusion tensor imaging of white matter tract evolution over the lifespan. NeuroImage, 60(1), 340-352.

116. Lebel, C., Walker, L., Leemans, A., Phillips, L., & Beaulieu, C. (2008). Microstructural maturation of the human brain from childhood to adulthood. NeuroImage, 40(3), 1044-1055.

117. Lebel, Catherine, & Beaulieu, C. (2009). Lateralization of the arcuate fasciculus from childhood to adulthood and its relation to cognitive abilities in children. Human Brain Mapping, 30(11), 3563-3573.

118. Lebel, Catherine, & Beaulieu, C. (2011). Longitudinal development of human brain wiring continues from childhood into adulthood. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(30), 10937-10947.

119. Lebel, Catherine, & Deoni, S. (2018). The development of brain white matter microstructure. NeuroImage, 182, 207-218.

120. Lebel, Catherine, Shaywitz, B., Holahan, J., Shaywitz, S., Marchione, K., & Beaulieu, C. (2013). Diffusion tensor imaging correlates of reading ability in dysfluent and non-impaired readers. Brain and Language, 125(2), 215-222.

121. Leng, Y., Shi, Y., Yu, Q., Van Horn, J. D., Tang, H., Li, J., Xu, W., Ge, X., Tang, Y., Han, Y., Zhang, D., Xiao, M., Zhang, H., Pang, Z., Toga, A. W., & Liu, S. (2016). Phenotypic and Genetic Correlations Between the Lobar Segments of the Inferior Fronto-occipital Fasciculus and Attention. Scientific Reports, 6, 33015. https://doi.org/10.1038/srep33015

122. Lin, Y.-C., Shih, Y.-C., Tseng, W.-Y. I., Chu, Y.-H., Wu, M.-T., Chen, T.-F., Tang, P.-F., & Chiu, M.-J. (2014). Cingulum correlates of cognitive functions in patients with mild cognitive impairment and early Alzheimer's disease: A diffusion spectrum imaging study. Brain Topography, 27(3), 393-402. https://doi.org/10.1007/s10548-013-0346-2

123. Logothetis, N. K. (2002). The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357(1424), 1003-1037. https://doi.org/10.1098/rstb.2002.1114

124. Luders, E., Narr, K. L., Bilder, R. M., Thompson, P. M., Szeszko, P. R., Hamilton, L., & Toga, A. W. (2007). Positive Correlations between Corpus Callosum Thickness and Intelligence. NeuroImage, 37(4), 1457-1464. https://doi.org/10.1016/j.neuroimage.2007.06.028

125. Luders, E., Thompson, P. M., & Toga, A. W. (2010). The Development of the Corpus Callosum in the Healthy Human Brain. The Journal of Neuroscience, 30(33), 10985-10990. https://doi.org/10.1523/JNEUROSCI.5122-09.2010

126. Mabbott, D. J., Rovet, J., Noseworthy, M. D., Smith, M. L., & Rockel, C. (2009). The relations between white matter and declarative memory in older children and adolescents. Brain Research, 1294, 80-90. https://doi.org/10.1016/j.brainres.2009.07.046

127. Mahoney, C. J., Beck, J., Rohrer, J. D., Lashley, T., Mok, K., Shakespeare, T., Yeatman, T., Warrington, E. K., Schott, J. M., Fox, N. C., Rossor, M. N., Hardy, J., Collinge, J., Revesz, T., Mead, S., & Warren, J. D. (2012). Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: Clinical, neuroanatomical and neuropathological features. Brain: A Journal of Neurology, 135(Pt 3), 736-750. https://doi.org/10.1093/brain/awr361

128. Makris, N., Kennedy, D. N., McInerney, S., Sorensen, A. G., Wang, R., Caviness, V. S., & Pandya, D. N. (2005). Segmentation of subcomponents within the superior longitudinal fascicle in humans: A quantitative, in vivo, DT-MRI study. Cerebral Cortex (New York, N.Y.: 1991), 15(6), 854-869. https://doi.org/10.1093/cercor/bhh186

129. Mandonnet, E., Nouet, A., Gatignol, P., Capelle, L., & Duffau, H. (2007). Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study. Brain: A Journal of Neurology, 130(Pt 3), 623-629. https://doi.org/10.1093/brain/awl361

130. Martin, K., Pйriard, J., Rattray, B., & Pyne, D. B. (2020). Physiological Factors Which Influence Cognitive Performance in Military Personnel. Human Factors, 62(1), 93-123. https://doi.org/10.1177/0018720819841757

131. Martino, J., Brogna, C., Robles, S. G., Vergani, F., & Duffau, H. (2010). Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 46(5), 691-699. https://doi.org/10.1016/j.cortex.2009.07.015

132. Matejko, A. A., & Ansari, D. (2015). Drawing connections between white matter and numerical and mathematical cognition: A literature review. Neuroscience & Biobehavioral Reviews, 48, 35-52. https://doi.org/10.1016/j.neubiorev.2014.11.006

133. Mattiello, J., Basser, P. J., & Le Bihan, D. (1997). The b matrix in diffusion tensor echo-planar imaging. Magnetic Resonance in Medicine, 37(2), 292-300. https://doi.org/10.1002/mrm.1910370226

134. McDonald, C. R., Ahmadi, M. E., Hagler, D. J., Tecoma, E. S., Iragui, V. J., Gharapetian, L., Dale, A. M., & Halgren, E. (2008). Diffusion tensor imaging correlates of memory and language impairments in temporal lobe epilepsy. Neurology, 71(23), 1869-1876. https://doi.org/10.1212/01.wnl.0000327824.05348.3b

135. McDougall, S., Vargas Riad, W., Silva-Gotay, A., Tavares, E. R., Harpalani, D., Li, G.-L., & Richardson, H. N. (2018). Myelination of Axons Corresponds with Faster Transmission Speed in the Prefrontal Cortex of Developing Male Rats. ENeuro, 5(4). https://doi.org/10.1523/ENEURO.0203-18.2018

136. McKenzie, I. A., Ohayon, D., Li, H., de Faria, J. P., Emery, B., Tohyama, K., & Richardson, W. D. (2014). Motor skill learning requires active central myelination. Science (New York, N.Y.), 346(6207), 318-322. https://doi.org/10.1126/science.1254960

137. McRobbie, D. W. (2006). MRI from picture to proton. Cambridge University Press. https://doi.org/10.1017/CBO9780511545405

138. Morell, P., & Quarles, R. H. (1999). The Myelin Sheath. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th Edition. https://www.ncbi.nlm.nih.gov/books/NBK27954/

139. Mori, S., & Zhang, J. (2006). Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron, 51(5), 527-539. https://doi.org/10.1016/j.neuron.2006.08.012

140. Moritz-Gasser, S., Herbet, G., & Duffau, H. (2013). Mapping the connectivity underlying multimodal (verbal and non-verbal) semantic processing: A brain electrostimulation study. Neuropsychologia, 51(10), 1814-1822. https://doi.org/10.1016/j.neuropsychologia.2013.06.007

141. Moseley, M., Bammer, R., & Illes, J. (2002). Diffusion-tensor imaging of cognitive performance. Brain and Cognition, 50(3), 396-413. https://doi.org/10.1016/S0278-2626(02)00524-9

142. Nelson, C. A., Luciana, M., Collins, M. L., & Nelson, P. of P. and N. C. A. (2001). Handbook of Developmental Cognitive Neuroscience. MIT Press.

143. Niogi, S. N., Mukherjee, P., Ghajar, J., Johnson, C. E., Kolster, R., Lee, H., Suh, M., Zimmerman, R. D., Manley, G. T., & McCandliss, B. D. (2008). Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. Brain: A Journal of Neurology, 131(Pt 12), 3209-3221. https://doi.org/10.1093/brain/awn247

144. O'Donnell, L. J., & Westin, C.-F. (2011). An introduction to diffusion tensor image analysis. Neurosurgery Clinics of North America, 22(2), 185-viii. https://doi.org/10.1016/j.nec.2010.12.004

145. Ohlhauser, L., Parker, A. F., Smart, C. M., & Gawryluk, J. R. (2018). White matter and its relationship with cognition in subjective cognitive decline. Alzheimer's & Dementia?: Diagnosis, Assessment & Disease Monitoring, 11, 28-35. https://doi.org/10.1016/j.dadm.2018.10.008

146. Qiu, D., Khong, P., Siok, W.T., & Tan, L.H. (2007). Asymmetrical inferior fronto-occipital fasciculus in Chinese children: correlation with Chinese reading.The 2007 ISMRM-ESMRMB Joint Annual Meeting, Berlin, Germany, 19-25 May 2007.

147. Olson, I. R., Heide, R. J. V. D., Alm, K. H., & Vyas, G. (2015). Development of the uncinate fasciculus: Implications for theory and developmental disorders. Developmental Cognitive Neuroscience, 14, 50-61. https://doi.org/10.1016/j.dcn.2015.06.003

148. Ortibus, E., Verhoeven, J., Sunaert, S., Casteels, I., de Cock, P., & Lagae, L. (2012). Integrity of the inferior longitudinal fasciculus and impaired object recognition in children: A diffusion tensor imaging study. Developmental Medicine and Child Neurology, 54(1), 38-43. https://doi.org/10.1111/j.1469-8749.2011.04147.x

149. Pajevic, S., & Pierpaoli, C. (1999). Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain. Magnetic Resonance in Medicine, 42(3), 526-540.

150. Panesar, S. S., Yeh, F.-C., Jacquesson, T., Hula, W., & Fernandez-Miranda, J. C. (2018). A Quantitative Tractography Study Into the Connectivity, Segmentation and Laterality of the Human Inferior Longitudinal Fasciculus. Frontiers in Neuroanatomy, 12, 47. https://doi.org/10.3389/fnana.2018.00047

151. Papagno, C., Miracapillo, C., Casarotti, A., Romero Lauro, L. J., Castellano, A., Falini, A., Casaceli, G., Fava, E., & Bello, L. (2011). What is the role of the uncinate fasciculus? Surgical removal and proper name retrieval. Brain: A Journal of Neurology, 134(Pt 2), 405-414. https://doi.org/10.1093/brain/awq283

152. Papez, J. W. (1995). A proposed mechanism of emotion. 1937. The Journal of Neuropsychiatry and Clinical Neurosciences, 7(1), 103-112. https://doi.org/10.1176/jnp.7.1.103

153. Park, C.-H., Kim, S.-H., & Jung, H.-Y. (2019). Characteristics of the Uncinate Fasciculus and Cingulum in Patients with Mild Cognitive Impairment: Diffusion Tensor Tractography Study. Brain Sciences, 9(12). https://doi.org/10.3390/brainsci9120377

154. Passe, T. J., Rajagopalan, P., Tupler, L. A., Byrum, C. E., MacFall, J. R., & Krishnan, K. R. (1997). Age and sex effects on brain morphology. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 21(8), 1231-1237. https://doi.org/10.1016/s0278-5846(97)00160-7

155. Paul, L. K., Corsello, C., Kennedy, D. P., & Adolphs, R. (2014). Agenesis of the corpus callosum and autism: A comprehensive comparison. Brain, 137(6), 1813-1829. https://doi.org/10.1093/brain/awu070

156. Paul, L. K., Van Lancker-Sidtis, D., Schieffer, B., Dietrich, R., & Brown, W. S. (2003). Communicative deficits in agenesis of the corpus callosum: Nonliteral language and affective prosody. Brain and Language, 85(2), 313-324. https://doi.org/10.1016/s0093-934x(03)00062-2

157. Paus, T., Collins, D. L., Evans, A. C., Leonard, G., Pike, B., & Zijdenbos, A. (2001). Maturation of white matter in the human brain: A review of magnetic resonance studies. Brain Research Bulletin, 54(3), 255-266. https://doi.org/10.1016/s0361-9230(00)00434-2

158. Peters, B. D., Szeszko, P. R., Radua, J., Ikuta, T., Gruner, P., DeRosse, P., Zhang, J.-P., Giorgio, A., Qiu, D., Tapert, S. F., Brauer, J., Asato, M. R., Khong, P. L., James, A. C., Gallego, J. A., & Malhotra, A. K. (2012). White matter development in adolescence: Diffusion tensor imaging and meta-analytic results. Schizophrenia Bulletin, 38(6), 1308-1317. https://doi.org/10.1093/schbul/sbs054

159. Petrides, M., & Pandya, D. N. (2002). Association pathways of the prefrontal cortex and functional observations. In Principles of frontal lobe function (pp. 31-50). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195134971.003.0003

160. Petrill, S. A., Lipton, P. A., Hewitt, J. K., Plomin, R., Cherny, S. S., Corley, R., & DeFries, J. C. (2004). Genetic and Environmental Contributions to General Cognitive Ability Through the First 16 Years of Life. Developmental Psychology, 40(5), 805-812. https://doi.org/10.1037/0012-1649.40.5.805

161. Poldrack, R. A. (2012). The future of fMRI in Cognitive Neuroscience. NeuroImage, 62(2), 1216-1220. https://doi.org/10.1016/j.neuroimage.2011.08.007

162. Pryweller, J. R., Schauder, K. B., Anderson, A. W., Heacock, J. L., Foss-Feig, J. H., Newsom, C. R., Loring, W. A., & Cascio, C. J. (2014). White matter correlates of sensory processing in autism spectrum disorders. NeuroImage?: Clinical, 6, 379-387. https://doi.org/10.1016/j.nicl.2014.09.018

163. Purves, D. (Ed.). (2004). Neuroscience (3rd ed). Sinauer Associates, Publishers.

164. Qiu, D., Khong, P.-L., Siok, W.-T., & Tan, L.-H. (n.d.). Asymmetrical Inferior Fronto-Occipital Fasciculus in Chinese Children: Correlation with Chinese Reading. 1.

165. Rajapakse, J. C., Giedd, J. N., Rumsey, J. M., Vaituzis, A. C., Hamburger, S. D., & Rapoport, J. L. (1996). Regional MRI measurements of the corpus callosum: A methodological and developmental study. Brain & Development, 18(5), 379-388. https://doi.org/10.1016/0387-7604(96)00034-4

...

Подобные документы

  • Causes of ischemic stroke. Assessment of individual risk for cardiovascular disease in humans. The development in patients of hypertension and coronary heart disease. Treatment in a modern hospital disorders biomarkers of coagulation and fibrinolysis.

    статья [14,8 K], добавлен 18.04.2015

  • Physical meaning of electron paramagnetic resonance and nuclear magnetic resonance. Splitting of energy levels. Zeeman effect. Spin probe. Device and mechanism of spectrometer and introscopy. The usage of EPR specters, NMR in medico-biological researches.

    контрольная работа [153,5 K], добавлен 15.12.2015

  • The concept and the internal structure of the human respiratory system, the relationship of the individual components and functions, the value in the living organism. Principles of breathing gas composition.Scheme of the human respiratory system.

    презентация [1,4 M], добавлен 08.09.2015

  • Classification of the resistance. External and internal barnry protecting the human body from pathological factors of the environment. The chemical composition of the blood, its role and significance. Influence the age on individual reactivity progeria.

    презентация [4,5 M], добавлен 17.10.2016

  • Introduction to the functionality of the most important internal organs. The main causes of supraventricular and ventricular tachycardia. Features of the structure and basic functions of the human heart. The study of the three phases of the heart.

    презентация [3,8 M], добавлен 12.05.2013

  • Body Water Compartments. The main general physico-chemical laws. Disorders of water and electrolyte balance. Methods bodies of water in the body, and clinical manifestations. Planning and implementation of treatment fluid and electrolyte disorders.

    презентация [1,1 M], добавлен 11.09.2014

  • Principles and types of screening. Medical equipment used in screening. identify The possible presence of an as-yet-undiagnosed disease in individuals without signs or symptoms. Facilities for diagnosis and treatment. Common screening programmes.

    презентация [921,2 K], добавлен 21.02.2016

  • The major pathogens and symptoms of cholera - an acute intestinal anthroponotic infection caused by bacteria of the species Vibrio cholerae. Methods of diagnosis and clinical features of disease. Traditional methods of treatment and prevention of disease.

    презентация [1,0 M], добавлен 22.09.2014

  • Строение промежности - пространства, соответствующего выходу таза и выполненного произвольными мышцами, которые покрыты фасциями. Тазовая и мочеполовая диафрагмы. Фасции: pelvis, diaphragmatis urogenitalis superior et inferior и perinei superfacialis.

    презентация [301,3 K], добавлен 09.04.2014

  • Anatomical and physiological concepts about the structure and functions of the peripheral nervous system. Role of the autonomic nervous system in the regulation of the internal organs of the organism. The structure of the cranial and spinal nerves PNS.

    презентация [326,9 K], добавлен 21.05.2014

  • A brief sketch of the life and professional development of Botkin as the Russian scientist, a gifted doctor. Botkin's value in world medicine, assessment of its scientific achievements. Analysis and themes of famous doctor, the direction of its research.

    презентация [1,7 M], добавлен 10.12.2014

  • Teratology is the science of the etiology, pathogenesis, clinical and morphological characteristics, prevention and treatment of congenital malformations. History and the stages of its formation and development. Etiology of congenital malformations.

    презентация [873,8 K], добавлен 23.09.2014

  • Different classification schemes for dementias. His reasons. Risk Factors for Dementia. Dementia is diagnosed by using many methods such as patient's medical and family history, physical exam, neurological evaluations, cognitive and neuropsychological.

    презентация [775,8 K], добавлен 10.06.2013

  • Tachycardia is a heart rate that exceeds the normal range. Symptoms and treatment methods of tachycardia. An electrocardiogram (ECG) is used to classify the type of tachycardia. It's important to get a prompt, accurate diagnosis and appropriate care.

    презентация [596,2 K], добавлен 20.11.2014

  • The brain as one of the largest and most complex organ in the human body. The physiological function of the brain, its divisions and share. The cerebral cortex of man. The principles of domination of the right and left hemispheres of different people.

    презентация [1,1 M], добавлен 20.11.2014

  • Concept and characteristics of focal pneumonia, her clinical picture and background. The approaches to the diagnosis and treatment of this disease, used drugs and techniques. Recent advances in the study of focal pneumonia. The forecast for recovery.

    презентация [1,5 M], добавлен 10.11.2015

  • The characteristic features of the two forms of eating disorders: anorexia nervosa and bulimia. Description body dysmorphic disorder syndrome as a teenager painful experiences of his "physical disability." Methods of treatment and prevention of disease.

    курсовая работа [17,9 K], добавлен 31.03.2013

  • Areas with significant numbers of malaria cases: Africa, the Middle East, India, Southeast Asia, South America, Central America and parts of the Caribbean. Etiology, symptoms and diagnosis of the disease, methods of treatment and antimalarial immunity.

    презентация [286,9 K], добавлен 02.10.2012

  • The main features of uterine fibroids. The development of a tumor from the "embryonic growth site" and a microscopic nodule without signs of cellular differentiation to a macroscopic nodule. Study of surgical and conservative treatment of leiomyoma.

    презентация [1,4 M], добавлен 31.10.2021

  • Methods of making Herbal Oils. Pain Herbs For Natural Relief. Salicin, Olive, Almond Oil, Lavender oil, Castor Oil, Jojoba oil, Safflower oil, Grapeseed oil, Hemp seed oil. Healing herbal oils. Herbal teas, tinctures, extracts and topical pain relievers.

    презентация [800,0 K], добавлен 06.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.