The effects of melatonin administration in determined times of day on the kidney in rats with high-calorie diet-induced obesity

The effect of a high-calorie diet in obesity on the morphological structure of the kidneys. Correction of their condition with using melatonin. Evaluation of pathological changes in the tubules, glomeruli of the kidneys in comparison with obese animals.

Рубрика Медицина
Вид статья
Язык английский
Дата добавления 20.09.2020
Размер файла 977,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

The effects of melatonin administration in determined times of day on the kidney in rats with high-calorie diet-induced obesity

O. Kalmukova, Ph. D stud., T. Kushmyruk, stud., M. Dzerzhynsky, Dr. Sc. Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

Kidneys, like the cardiovascular system, are one of the main target organs, the most vulnerable to obesity, because the first take on the metabolism correction function at an increasing excess of fat tissue in the body. Kidney affection under obesity is a multifactorial thing that is caused by a number of processes, including inflammation, oxidative stress, lipid metabolism disorders, renin-angiotensin-aldosterone system activation, insulin resistance and other factors. An optimal candidate for reducing the harmful effects of kidneys obesity should be a compound that simultaneously exhibits anti-inflammatory and antioxidant properties, controls the circadian rhythm, and also affects on the adipokines secretion.

The molecule that meets these conditions is melatonin.The aim of our study was to determine morpho-functional state (morphology characteristic of kidney glomeruli and tubules; morphometric parameters: area and density of glomeruli) of kidney in rats with high-calorie (high fat) diet-induced obesity after melatonin administration in determined time of the day. Melatonin was administered daily by gavage for 7 weeks in dose 30 mg/kg 1 h before lights-off (ZT11) rats with high-calorie diet (HCD). Rats with HCD had huge changes in kidney morphology, which manifested in presence of numerous mesangial cells outside glomeruli and lipid droplets in tubules epithelial cells, while area and density of glomeruli in cm2 decrease.

In general kidney with above mentioned characteristic from HCD rats lose their ability to conduct strongly renal function. After melatonin used in rats with HCD arise leveling of pathological changes, which associated with consumption of HCD. Namely, in rats with development obesity melatonin administrations led to increase area and density in comparison to HCD group, moreover glomeruli density reach control values.

This is suggest that melatonin have protecting effect against glomerular degeneration. In conclusions, melatonin influence on kidney morpho-functional state in rats with HCD and turn back pathological its changes, moreover evening administration can use for obesity therapy via its strong action on conservation glomerular morphology.

Key words: melatonin, obesity, chronotherapy, kidney, high-fat diet, glomeruli.

О.Калмикова, асп., Т. Кушмирук, студ., М. Дзержинський, д-р біол. наук Київський національний університет імені Тараса Шевченка, Київ, Україна

ВПЛИВ ВВЕДЕННЯ МЕЛАТОНІНУ В ПЕВНИЙ ЧАС ДОБИ НА НИРКИ ЩУРІВ ІЗ ОЖИРІННЯМ, ІНДУКОВАНИМ ВИСОКОКАЛОРІЙНОЮ ДІЄТОЮ

Нирки, як і серцево-судинна система, є одним із основних органів-мішеней, уразливих до ожиріння, тому що першими беруть на себе функцію компенсації метаболізму при надлишку жирової тканини в організмі. Ураження нирок при ожирінні є багатофакторним процесом, що викликано рядом подій, включаючи запалення, оксидативний стрес, порушення ліпідного обміну, активацію системи ренін- ангіотензин-альдостерон, інсулінорезистентність тощо. Оптимальним кандидатом для зниження шкідливого впливу ожиріння на нирки має бути сполука, яка одночасно виявляє протизапальні та антиоксидантні властивості, контролює циркадний ритм, а також впливає на секрецію адипокінів. Молекула, що відповідає цим умовам, - це мелатонін. Метою нашого дослідження було дослідити мор- фофункціональний стан (морфологічну характеристику клубочків та канальців нирок, оцінити морфометричні параметри: площу та кількість клубочків) нирок у щурів із ожирінням, індукованим висококалорійною дієтою (ВКД), при введенні мелатоніну в певний час доби. Мелатонін уводили щоденно перорально за допомогою зонда протягом семи тижнів у дозі 30 мг/кг за 1 год до вимикання світла (ZT11). Щури із ВКД мали значні зміни в морфології нирок, що виявлялися у наявності численних мезангіальних клітин позаклубочками і ліпідних крапель в епітеліальних клітинах канальців; окрім цього, площа і кількість клубочків на см2 зменшувалися. Нирки з вищезазначеними характеристиками у щурів із ВКД утрачають здатність до виконання своїх функцій у повному обсязі. При введенні мелатоніну щурам із ВКД виникає нівелювання патологічних змін, які пов'язані з розвитком ожиріння. А саме: у щурів на фоні розвитку ожиріння введення мелатоніну призводило до збільшення площі й кількості клубочків порівняно із группою ВКД, причому кількість клубочків досягала контрольних значень. Це говорить про те, що мелатонін чинить захисний ефект проти гломерулярної дегенерації. Отже, мелатонін впливає на морфофункціональний стан нирок у щурів при розвитку ожиріння і зменшує патологічні його зміни, причому вечірнє введення може застосовуватися для терапії ожиріння шляхом його дії на збереження морфології клубочків.

Ключові слова: мелатонін, ожиріння, хронотерапія, нирки, висококалорійна дієта, ниркові клубочки.

О.Калмыкова, асп., Т. Кушмирук, студ., Н. Дзержинский, д-р биол. наук Киевский национальный университет имени Тараса Шевченко, Киев, Украина

ВЛИЯНИЕ ВВЕДЕНИЯ МЕЛАТОНИНА В ОПРЕДЕЛЕННОЕ ВРЕМЯ СУТОК НА ПОЧКИ КРЫС С ОЖИРЕНИЕМ, ИНДУЦИРОВАННЫМ ВЫСОКОКАЛОРИЙНОЙ ДИЕТОЙ

Почки, как и сердечно-сосудистая система, являются одним из основных органов-мишеней, уязвимых при развитии ожирения, так как первыми принимают на себя функцию компенсации метаболизма при избытке жировой ткани в организме. Поражение почек при ожирении является многофакторным процессом, что вызвано рядом событий, включая воспаление, оксидативный стресс, нарушения липидного обмена, активация ренин-ангиотензин-альдостерон, инсулинорезистентность также. Оптимальным кандидатом для снижения вредного влияния ожирения на почки должно быть соединение, которое одновременно проявляет противовоспалительные и антиоксидантные свойства, контролирует циркадный ритм, а также влияет на секрецию адипокинов. Молекула, которая отвечает этим условиям, - это мелатонин. Целью нашего исследования было изучить морфофункциональное состояние (морфологическую характеристику клубочков и канальцев почек, оценить морфометрические параметры: площадь и количество клубочков) почек у крыс с ожирением, индуцированной высококалорийной диетой (ВКД), при введении мелатонина в определенное время суток. Мелатонин вводили ежедневно перорально с помощью зонда в течении семи недель в дозе 30 мг/кг за 1 ч до выключения света (ZT11). Крысы с ВКД имели значительные изменения в морфологии почек, проявлявшиеся в присутствии многочисленных мезангиальных клеток вне клубочка и липидных капель в эпителиальных клетках канальцев; кроме этого, площадь и количество клубочков на см2 уменьшались. Почки с вышеупомянутыми характеристиками у крыс с ВКД теряют способность к выполнению своих функций в полном объеме. При введении мелатонина крысам с ВКД возникает нивелирования патологических изменений, связанных с развитием ожирения. В частности, у крыс на фоне развития ожирения введение мелатонина приводит к увеличению площади и количества клубочков по сравнению с группой ВКД, при чем количество клубочков достигала контрольных значений. Это говорит о том, что мелатонин оказывает защитный эффект против клубочковой дегенерации. Итак, мелатонин влияет на морфофункциональное состояние почек у крыс при развитии ожирения и уменьшает патологические его изменения, причем вечернее введение может применяться для терапии ожирения путем его действия на сохранение морфологии клубочков.

Ключевые слова: мелатонин, ожирение, хронотерапия, почки, высококалорийная диета, почечные клубочки.

Introduction

Obesity is one of the main problems of modern society. According to the World Health Organization (WHO), overweight and obesity have become one of the most serious health problems of the 21st century and are recognized as an emerging chronic non-infectious "pandemic" [1]. Obesity is a chronic, reverse disease characterized by fat deposits and an increase in body weight due to adipose tissue. It can be the cause the development of type 2 diabetes, impaired reproductive system functions, cardiovascular, and is accompanied by complications such as chronic kidney disease. Kidneys, like the cardiovascular system, are the main target organs, which sensitive to obesity, because some of the first take on the metabolism correction function during increasing excess of adipose tissue in the body [2].

Kidney affection during obesity is a multifactorial phenomenon caused by a number of processes, including inflammation, oxidative stress, lipid metabolism disorders, activation of the renin-angiotensin-aldosterone system, increased insulin production, and the formation of insulin resistance and other factors [3]. At present, obesity has not identified a clear specific clinical and morphological variant of kidney damage, but, according to the study, the most frequent manifestations of nephropathy in obesity in adults are microalbuminuria, proteinuria, hyperfiltration and, less often - a decrease in the filtration function of the kidneys [4]. Obesity is a proven factor for the progression of many variants of chronic kidney disease and terminal renal failure. The formation of kidney damage in obesity is realized in several ways [5]:

• auto- and paracrine effects of adipose tissue hormones and cytokines;

• the effect of insulin resistance, hyperinsulinemia and dyslipidemia;

• disorders of systemic and renal hemodynamics;

• the role of relative oligonephronia with the formation of intra-glomerular hypertension.

Melatonin is an indole hormone produced by the pineal gland and carries out a number of functions in the body: metabolic (lipolytic and hypoglycemic); rhythm control; immunomodulatory antioxidant and mitochondrial-protector. The effect of melatonin on weight loss can be explained by numerous physiological processes of indolamine, which are provided by various mechanisms [6-10]:

• activation of ATP synthesis in mitochondria;

• regulation of expression of the insulin receptor gene, providing a normal glucose metabolism;

• participating in the activation of gonadotropins secretion in the pituitary gland, which leads to suitable producing of testosterone - an important fat burning hormone;

• complicity in the metabolism of serotonin and vitamin D, essential for the implementation of eating behavior within the framework of the functioning of the "brain reward system", as well as for maintaining a normal body shape, primarily due to the optimal amount and quality of muscle mass;

• Antioxidant effect;

• Interaction with leptin.

Thus, melatonin is a universal endogenous adaptogen that regulates homeostasis according to changes in the environment and the influence of pathogenic factors on the body.

In humans blood pressure, body temperature, blood concentrations of melatonin, insulin, corticosteroids and adrenalin display nearly 24-hour (circadian) cyclic rhythms. Chronotherapy aims to reduce adverse drug reactions and optimize drug efficacy by timing drug administrations in accordance with the body's circadian rhythms [11-12]. Peak of melatonin synthesis at mid night, and also receptors mainly are presented after light-off mostly. Thus, melatonin administration after 1 hour light-off supposedly will be more effective than others routs of administrations [13].

Materials and methods

White nonlinear male rats weighing 100-120 g were used in this study. The light cycle was 12-h light and 12-h darkness, with lights-off at 19:00 h. All experiments on animals were carried out in compliance with the international principles of the European Convention for the Protection of Vertebrate Animals used for experimental and other scientific purposes (European Convention, Strasburg, 1986), Article 26 of the Law of Ukraine "On the Protection of Animals from Cruelty" (No. 3447-IV, February 21, 2006) as well as all norms of bioethics and biological safety.

During the first week, all animals received standard rodent chow. On the 8th day, the animals were randomized into 2 groups: control animals received standard chow (3,81 kcal/g) for 10 weeks and experimental rats received high-calorie diet (5,35 kcal/g) consisting of standard chow (60 %), lard (10 %), eggs (10 %), sugar (9 %), peanut (5 %), dry milk (5 %) and vegetable oil (1 %) [14]. Food and water were available ad libitum. To confirm the development of obesity the animals were weighed one times a week until the average body gain reached a significant difference of at least 30% between the two groups and the respective animals were classified as having the normal body mass (Control) and those with development of obesity (HCD). Rats of HCD and Control groups were divided into two subgroups: one subgroup received no MT, animals of the second and subgroups obtained MT administrations - single peroral by gavage introductions, 1 h before light-off (group HCD ZT11 and M ZT11). Thus, the experimental subgroups are indicated below as normal body mass (control), HCD, M ZT11, HCD ZT11.

Melatonin (Alcon Biosciences, USA) was administered daily by gavage for 7 wk (30 mg/kg) 1 h before lights-off (ZT11). Melatonin treatment was began at 6th week of study after obesity is developed.

Food and water consumption were measured daily at the same time (09:00 to 10:00 h) and body weights were determined once a week. Body weight gain, relative daily food (kcal/day/g body weight) and relative daily water consumption (ml/day/g body weight) was determined for each rat.

On the last day of the experiment, the animals were decapitated, and then the kidney was isolated. Also the visceral (epididymal, retroperitoneal, mesenteric, perirenal) fat pads were dissected and immediately weighed.

Histological examination was performed to characterize the morphology and functional status of kidney. Fragments of kidney in the size of 1 x 1 cm were fixed in 4 % of paraformaldehyde in 0.1 M phosphate buffer for 72 hours, after which they were dehydrated and embedded into paraffin according to a standard procedure. From the paraffin blocks, 5 pm sections were performed and stained with Bemer's hematoxylin and eosin. Further examination of sections was performed using a light microscope BX41 (Olympus, Japan). Microphotographs were taken using the DP20 (Olympus, Japan) digital camera and the QuickPHOTO MiCrO software (Promicra, Czech Republic).

The cross-sectional area of the kidney glomeruli and the numerical density of the glomeruli were used as criteria for assessing the morphology and functional kidney cortex status of glomerular zone. All parameters were measured using the ImageJ software (National Institutes of Heath, USA).

Statistical data analysis was performed using the Statistica 6.0 (Stat- Soft, USA) and Microsoft Excel 2010 software (Microsoft, USA). The distribution of values was estimated using Shapiro-Wilk W-test. Since the deviation of these values distribution of from the normality was minor, to evaluate the differences between the values we used Student's t-test. The differences with probability of the null hypothesis p < 0.05 were considered significant. The obtained results are presented as the mean ±standard error of mean.

Results and discussion

In the sections of the kidney cortical part (tubular zone) HCD group rats were fixed changes in tubular epitheliocytes, namely, cytoplasm accommodate a few amount lipid droplets (Fig. 1, B, arrow), which did not stain with water-soluble dyes. Accumulation of lipid droplets is due to the fact that during obesity as a result of intensive lipolysis, a large number of circulating free fatty acids have been in blood flow. Low levels of adiponectin, tissue resistance to leptin, and cytokines prevent the capture of free fatty acids by mitochondria, inhibit their oxidation and contribute to the accumulation of free fatty acids in the cell [15].

In HCD group also (Fig. 1 B, asterisk) marked protein aggregates in the lumen of the renal tubule, which may be the first signs of proteinuria. One mechanism for the appearance of such changes is an elevated angiotensin II level during obesity development, which can directly increase the permeability of the basal membrane of the glomeruli,thereby contributing to increased proteinuria [16]. Violation of the renal tubules morpho-functional state may be due to hyperinsulinemia during obesity development. Excess insulin stimulates mesangial and proximal tubular cells to produce TGF-Я(transforming growth factor Я) [17] and contribute to the formation of IGF-1 (insulin-like growth factor 1) in vascular smooth muscle cells and other cell types. In turn, IGF-1 and TGF-Яincreases the activity of the cytokines [18]. This is manifested by the effect of fibrogenesis on renal tubular cells and interstitial fibroblasts [19].

Fig. 1. Microphotographs of rats'kidney sections of the cortical part (tubules):

A - control group, B - HCD group; hematoxylin-eosin staining; oc. x10, ob. x100 Notes: * - lipid droplets, asterisk - protein aggregates in the lumen of the renal tubule

In the kidney cortical part (glomerular zone) under conditions of obesity, expanded space of the capsule (Fig. 2, B, asterisk) and enlarged mesangial region from extra-glomerular cells (Fig. 2, B, arrow) are observed. One of the mechanisms for the development of such changes is the increase in the level of proinflammatory cytokines, in particular TNF-a, as one of the key pro-inflammatory factors that stimulates the activation of proliferation and sclerosis in mesangial cells of the renal tissue [20], since obesity leads to infiltration of adipose tissue by macrophages. TNF-ais expressed and secreted by adipose tissue. Its concentration correlates with the degree of obesity and its associated insulin resistance, reducing the activity of the insulin receptor. In addition, an increase in the levels of TNF-apromotes the generation of reactive oxygen species (ROS) in glomerular and proximal tubular cells. The enhancement of ROS activity leads to kidney damage in several ways, which include increased renal endothelial dysfunction, microalbuminuria, mesangial expansion, and fibrosis [21]. Another idea to increase the mesangial area is the endothelia (ET) signal system [22]. Internal renal arteries are characterized by the highest sensitivity to ET-1 compared with other organs. Like AT II, ET-1 causes spasm of the glomeruli arterioles, moreover constrict efferent arterioles more pronounced than the degree of narrowing afferent. Together with the ability to modulate the tone of the vascular wall, ET-1 has the properties of a growth factor that promotes proliferation of mesangial cells, smooth muscle cells of vessels, fibroblasts and endothelial cells, and enhances the production of fibronectin and collagen IV by mesangial cells, as well as the synthesis of soluble and insoluble fibrin by smooth vascular cells of the vessels [23].

The obtained data indicate the negative effect of obesity on the morpho-funtional structure of the kidneys (Fig. 3). Thus, the cross-sectional area of the renal glomeruli for the HCD group is by 20 % less than for the control group. In general, there is a decrease in the number of renal glomeruli by 36% compared with control values. An explanation for such a decrease in the number of renal glomeruli is that obesity leads to the formation of a relative deficit of nephrons to total body weight, therefore, even with the normal number of nephrons at birth, the condition of comparative oligonephronia [24]. During obesity the total area of the filtration surface in a nephrons with normal number can not withstand against metabolites excessive loading at an adequate level for a long time. The deficiency of nephrons in relation to body weight at the initial stages is offset by hypertrophy of glomeruli and hyperfiltration, which develop under the influence of hormones and growth factors, that are produced by adipose tissue, and leads to an increase in total renal filtration relative to the body surface [25].

Melatonin administration during obesity development has led to an increase the renal glomeruli area and the number of glomeruli - 10 % and 35 % both, respectively in compare with HCD group. Interestingly, the glomeruli number reached control values (no significant difference), and the glomeruli area in the HCD ZT11 group take an intermediate position - that is, they significantly differ from the control by 10 %. This mechanism initially is compensatory, but with prolonged increase in the volume of adipose tissue, a steady violation of hemodynamics in each individual nephron is formed. As a result, intraglomerular hypertension develops, which is considered one of the main factors in the progression of kidney damage [26]. Prolonged action of increased hydrodynamic pressure as a result leads to renal glomeruli fibrosis, reduction of the active nephrons mass, attenuation of functional renal reserve, the development of true oligonephronia [27].

Melatonin administration to rats with standard diet (M ZT11) did not affect the renal glomeruli area and the number of glomeruli in relation to control group.

Fig. 2. Microphotographs of rats'kidney sections of the cortical part (tubules):

A - control group, B - HCD group; hematoxylin-eosin staining; oc. x10, ob. x100 Notes: * - expanded space of the capsule, asterisk - enlarged mesangial region from extraglomerular cells

The results of this study about thehigh-calorie diet- induced obesity effects on the morpho-functional state of rats kidney, in many manifestations, coincide with the studies of other authors. In a significant number of studies catch out intracellular lipid inclusion in renal epithelium cells [28-30], reduction the total area and number of glomeruli, expansion of the Bowman space, accumulation of fibrin [31-32]. Thus, an increased mesangial region was noted in this work, also was detected in the kidneys of rats with obesity-induced type 2 diabetes [33].

Fig. 3. The morphometric analysis data of the rats'kidney glomeruli area and number (numerical density)

Notes: * - a significant difference between the control and experimental groups, p < 0.05;

# -a significant difference between the HCD and experimental groups, p < 0.05

Other studies also noted the beneficial effects of melatonin therapy on the kidney morpho-functional state of in animals with obesity and other metabolic diseases. In various animal models associated with experimental pyelonephritis, renal insufficiency, hypertension, diabetes and various variants of nephrotoxicity, melatonin reduces oxidative stress, suppresses chronic inflammation and limit apoptosis [34-36].

Melatonin had also effect on the general body weight. During obesity development relative visceral fat weight is the most sensitive criterion for assessing obesity in animals [37].

Relative visceral fat weight (Fig. 4) in HCD increased by 65 % compare to control. HCD ZT11 did not differ from control, but show significance to HCD: by 38,5 %. Melatonin administration in group M ZT11 did not influence on relative visceral fat weight.

Fig. 4. The morphometric analysis data of the rats' relative visceral fat weight

Notes: * -a significant difference between the control and experimental groups, p < 0.05; # -a significant difference between the HCD and experimental groups, p < 0.05

In the same study melatonin also demonstrate attenuation of pathology changes during obesity: in rabbits with HCD induced obesity melatonin administration (subcutaneously in a dose of 1 mg/kg daily 2-3 h before lights- off for 4 weeks) provide disappearance of interstitial foam cells with multiple tiny intracytoplasmic fat droplets that displace in the renal tubules [38]. In alloxan-treated diabetic rats after melatonin (200 |jg/ animal/day by gavage for 8 weeks in the morning between 9 AM and 11 AM) intervention ameliorated degenerative changes in Bowman's capsule with marked expansion in Bowman's space and necrosed tubular wall [39]. Amelioration of streptozotocin-induced diabetic nephropathy in rats by melatonin (dose of 10 mg/kg/day for 30 day by intraperitoneal injection) that manifestation in tubules was markedly reduced of TGFЯ-1, but also explored mild epithelial desquamation in tubules and hydropic degeneration in some tubular cells [40]. For the choose a uni effective protocol of melatonin administration further study are needed in the chronotherapy key [41].

Conclusions

melatonin kidney obesity

Thus, it has been established that obesity induced high-calorie diet leads to significant changes in the morphological structure of the kidneys. It has been shown that daily administration of melatonin in a dose of 30 mg/kg for 1 hour before light-off to obese rats leads to improvement of the kidneys morpho-functional state. Namely, the reduction of the pathological changes manifestation in the tubules (the disappearance of intracellular lipid droplets and protein aggregates in the lumen of the tubule) and in the glomeruli (reduction of mesangial site with extraglomerular cells and capsule space) of the kidneys compared with obese animals. In this case, the cross-sectional area of the kidney glomeruli grows, but does not reach the level of control values. While the number of renal glomeruli returns to the level of control groups.

Reference

1. The official data of the WHO Bulletin published in May 2017. Available from: http://www.who.int.

2. Chen H. M. Evaluation of metabolic risk marker in obesity-related glomerulopathy / H. M. Chen, Y. Chen, Y. D. Zhang [et al.] // Journal of Renal Nutrition. - 2011. - Vol. 21, № 4. - Р. 309-315.

3. Jeffrey L. Obesity-Related Hypertension and Other Renal issues / L. Jeffrey, M. Martin // J. Lancaster General Hospital. - 2010. - Vol. 5, № 1. - Р. 14-15.

4. Redon J. The kidney in obesity / J. Redon, E. Lurbe // Current hypertension reports. - 2015. - Vol. 17, № 6. - Р. 43.

5. Garofalo C. A systematic review and meta-analysis suggests obesity predicts onset of chronic kidney disease in the general population / C. Garofalo, S. Borrelli, R. Minutolo [et al.] // Kidney international. - 2017. - Vol. 91, № 5. - Р. 1224-1235.

6. She M. Melatonin receptors in diabetes: a potential new therapeutical target? / M. She, M. Laudon, W. Yin // European journal of pharmacology. - 2014. - Vol. 744. - Р. 220-223.

7. Tokonami N. Local renal circadian clocks control fluid-electrolyte homeostasis and BP / N. Tokonami, D. Mordasini, S. Pradervand [et al.] // Journal of the American Society of Nephrology. - 2014. - Vol. 25, № 7. - Р.1430-1439.

8. Stacchiotti A. Melatonin drives beneficial Sirtuin 1 expression in leptin-deficient mice liver through MT1 receptor / A. Stacchiotti, L. Nardo,

D. Rizzoni [et al.] // Italian Journal of Anatomy and Embryology. - 2015. - Vol. 120, № 1. - Р. 70.

9. Khoshvakhti H. Effects of melatonin on diclofenac sodium treated rat kidney: a stereological and histopathological study / H. Khoshvakhti, K. K. Yurt, B. Z. Altunkaynak [et al.] // Renal failure. - 2015. - Vol. 37, № 8. - Р. 1379-1383.

10. Baltatu O. C. Melatonin, mitochondria and hypertension / O. C. Baltatu, F. G. Amaral, L. A. Campos [et al.] // Cellular and molecular life sciences. - 2017. - Vol. 74, № 21. - Р. 3955-3964.

11. Selfridge J. M. Chronotherapy: intuitive, sound, founded...but not broadly applied / J. M. Selfridge, T. Gotoh, S. Schiffhauer [et al.] // Drugs. - 2016. - Vol. 76, № 16. - P. 1507-1521.

12. Mьnch M., Kramer A. Timing matters: new tools for personalized chronomedicine and circadian health / M. Mьnch, A. Kramer // Acta Physiologica. - 2019. - P. e13300.

13. Sulli G. Training the circadian clock, clocking the drugs, and drugging the clock to prevent, manage, and treat chronic diseases / G. Sulli,

E. N. Manoogian, P. R. Taub [et al.] // Trends in pharmacological sciences. -2018. doi.org/10.1016/j.tips.2018.07.003

14. Halenova T. et al. Effect of C60 fullerene nanoparticles on the diet- induced obesity in rats / T. Halenova, N. Raksha, T. Vovk [et al.] // International journal of obesity (2005). - 2018. - Vol. 42, № 12. - Р.1987-1998.

15. Eknoyan G. Obesity and chronic kidney disease / G. Eknoyan // Nefrologia (English Edition). - 2011. - Vol. 31, № 4. - Р. 397-403.

16. Ahn S. Y. Weight loss has an additive effect on the proteinuria reduction of angiotensin II receptor blockers in hypertensive patients with chronic kidney disease / S. Y. Ahn, D. K. Kim, S. S. Han [et al.] // Kidney research and clinical practice. - 2018. - Vol. 37, № 1. - Р. 49.

17. Khamaisi M. Effect of mild hypoinsulinemia on renal hypertrophy: growth hormone/insulinlike growth factor 1 system in mild streptozotocin diabetes / M. Khamaisi, A. Flyvbjerg, Z. Haramati [et al.] // Int J Exp Diab Res. - 2002. - Vol. 3, № 4. - P. 257-264.

18. Sarafidis P. A. Insulin resistance, hyperinsulinemia, and renal injury: mechanisms and implications / P. A. Sarafidis, L. M. Ruilope // Amer.

J.Nephrol. - 2006. - Vol. 26, № 3. - P. 232-244.

19. Higgins S. P. TGF-Я1/p53 signaling in renal fibrogenesis / S. P. Higgins, Y. Tang, C. E. Higgins [et al.] // Cellular signalling. - 2018. - Vol. 43. - Р. 1-10.

20. Ma S. Perirenal fat promotes renal arterial endothelial dysfunction in obese swine through tumor necrosis factor-a / S. Ma, X. Y. Zhu, A. Eirin [et al.] // The Journal of urology. - 2016. - Vol. 195, № 4. Part 1. - Р. 1152-1159.

21. Huang J. Genetic targeting of arginase-ii in mouse prevents renal oxidative stress and inflammation in diet-induced obesity / J. Huang, A. Rajapakse, Y. Xiong [et al.] // Frontiers in physiology. - 2016. - Vol. 7. -Р. 560.

22. Wang C. Thromboxaneprostanoid receptors enhance

contractions, endothelin-1, and oxidative stress in microvessels from mice with chronic kidney disease / C. Wang, Z. Luo, D. Kohan [et al.] // Hypertension. - 2015. - Vol. 65, № 5. - Р. 1055-1063.

23. Zanatta C. M. Endothelin-1 gene polymorphisms and diabetic kidney disease in patients with type 2 diabetes mellitus / C. M. Zanatta,

D. Crispim, D. A. Sortica [et al.] // Diabetology & metabolic syndrome. - 2015. -Vol. 7,№. 1. -Р. 103.

24. Abitbol C. L. Obesity and preterm birth: additive risks in the progression of kidney disease in children / C. L. Abitbol, J. Chandar,

M.M. Rodriguez [et al.] // Pediatric Nephrology. - 2009. - Vol. 24 ,№. 7. - РС. 1363.

25. Briffa J. F. Adipokines as a link between obesity and chronic kidney disease / J. F. Briffa, A. J. McAinch, P. Poronnik [et al.] // American Journal of Physiology-Renal Physiology. - 2013. - Vol. 305, № 12. - Р. 1629-1636.

26. Young C. N. The brain subfornical organ mediates leptin-induced increases in renal sympathetic activity but not its metabolic effects / C. N. Young, D. A. Morgan, S. D. Butler [et al.] // Hypertension. - 2013. - Vol. 61, № 3. - Р. 737-744

27. Felizardo R. J. F. Obesity in kidney disease: a heavyweight opponent / R. J. F. Felizardo, M. B. da Silva, C. F. Aguiar [et al.] // World journal of nephrology. - 2014. - Vol. 3, № 3. - Р. 50.

28. Declиves A. E. Regulation of lipid accumulation by AMK-activated kinase in high fat diet-induced kidney injury / A. E. Declиves, Z. Zolkipli, J. Satriano [et al.] // Kidney international. - 2014. - Vol. 85, № 3. - Р. 611-623.

29. Naumnik B. Renal consequences of obesity / B. Naumnik, M. Mysliwiec // Medical Science Monitor. - 2010. - Vol. 16, № 8. - Р. 163-170.

30. Nasrallah M. P. Overview of the physiology and pathophysiology of leptin with special emphasis on its role in the kidney / M. P. Nasrallah,

F. N. Ziyadeh // Seminars in nephrology. - WB Saunders, 2013. - Vol. 33, № 1. - Р. 54-65.

31. Yurt K. K. Effects of the melatonin on the kidney of high fat diet fed obese rats: a stereological and histological approach / K. K. Yurt,

E. Kayhan, B. Z. Altunkaynak [et al.] // J Exp Clin Med. - 2013. - Vol. 30, Р. 153-158.

32. Rajan T. Low birth weight and nephron mass and their role in the progression of chronic kidney disease: a case report on identical twins with Alport disease / T. Rajan, S. J. Barbour, C. T. White [et al.] // Nephrology Dialysis Transplantation. - 2011. - Vol. 26, № 12. - Р. 4136-4139.

33. Winiarska K. Melatonin nephroprotective action in Zucker diabetic fatty rats involves its inhibitory effect on NADPH oxidase / K. Winiarska, J. M. Dzik, M. Labudda [et al.] // Journal of pineal research. - 2016. - Vol. 60, № 1. - Р. 109-117.

34. Stacchiotti A. Mitochondrial and metabolic dysfunction in renal

convoluted tubules of obese mice:protective role of melatonin

/ A. Stacchiotti, G. Favero, L. Giugno [et al.] // PloS one. - 2014. - Vol. 9, № 10. - Р. e111141.

35. Aperis G. The role of melatonin in patients with chronic kidney disease undergoing haemodialysis / G. Aperis, P. Prakash, C. Paliouras [et al.] // Journal of renal care. - 2012. - Vol. 38, № 2. - Р. 86-92.

36. Russcher M. The role of melatonin treatment in chronic kidney disease / M. Russcher, B. Koch, E. Nagtegaal [et al.] // Front Biosci (Landmark Ed). - 2012. - Vol. 17. - Р. 2644-56.

37. Hariri N. High-fat diet-induced obesity in animal models / N. Hariri, L. Thibault // Nutrition research reviews. - 2010. - Vol. 23, № 2. - Р. 270-299.

38. Hussein M. R. Intake of melatonin is associated with amelioration of physiological changes, both metabolic and morphological pathologies associated with obesity: an animal model / M. R. Hussein, O. G. Ahmed,

A. F. Hassan [et al.] // International journal of experimental pathology. -

2007. - Vol. 88, № 1. - P. 19-29.

39. Doddigarla Z. Effect of Chromium Picolinate and Melatonin either in Single or in a Combination in Alloxan Induced Male Wistar Rats / Z. Doddigarla, I. Parwez, S. Abidi [et al.] // Journal of Biomedical Sciences. - 2016. - Vol. 6. - P. 1-7.

40. Elbe H. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats / H. Elbe,

N.Vardi, M. Esrefoglu [et al.] // Human & experimental toxicology. - 2015. - Vol. 34, № 1. - P. 100-113.

41. Kaur G. Chronotherapy in practice: the perspective of the community pharmacist / G. Kaur, Y. L. Gan, C. L. Phillips [et al.] // International journal of clinical pharmacy. - 2016. - Vol. 38, № 1. -

P.171-182.

Reference(Scopus)

1. The official data of the WHO Bulletin published in May 2017. Available from: http://www.who.int

2. Chen H. M., Chen Y., Zhang Y. D., Zhang P. P., Chen H. P., Wang

Q.W., et al. Evaluation of metabolic risk marker in obesity-related glomerulopathy. Journal of Renal Nutrition. 2011; 21(4): 309-315.

3. Jeffrey L., Martin M. Obesity-Related Hypertension and Other Renal issues. J. Lancaster General Hospital. 2010; 5(1): 14-15.

4. Redon J., Lurbe E. The kidney in obesity. Current hypertension reports. 2015;17(6): 43.

5. Garofalo C., Borrelli S., Minutolo R., Chiodini P., De Nicola L., Conte G. A systematic review and meta-analysis suggests obesity predicts onset of chronic kidney disease in the general population. Kidney international. 2017;91(5): 1224-1235.

6. She M., Laudon M., Yin W. Melatonin receptors in diabetes: a potential new therapeutical target?. European journal of pharmacology. 2014; 744: 220-223.

7. Tokonami N., Mordasini D., Pradervand S., Centeno G., Jouffe C., Maillard M., et al. Local renal circadian clocks control fluid-electrolyte homeostasis and BP. Journal of the American Society of Nephrology. 2014; 25(7): 1430-1439.

8. Stacchiotti A., Nardo L., Rizzoni D., Rezzani R., Reiter R. J. Melatonin drives beneficial Sirtuin 1 expression in leptin-deficient mice liver through MT1 receptor. Italian Journal of Anatomy and Embryology. 2015; 120(1): 70.

9. Khoshvakhti H., Yurt K. K., Altunkaynak B. Z., Tьrkmen A. P., Elibol E., Aydin I., et al. Effects of melatonin on diclofenac sodium treated rat kidney: a stereological and histopathological study. Renal failure. 2015; 37(8): 1379-1383.

10. Baltatu O. C., Amaral F. G., Campos L. A., Cipolla-Neto J. Melatonin, mitochondria and hypertension. Cellular and molecular life sciences. 2017; 74(21): 3955-3964.

11. Selfridge J. M., Gotoh T., Schiffhauer S., Liu J., Stauffer P. E., Li A., et al. Chronotherapy: intuitive, sound, founded...but not broadly applied. Drugs. 2016; 76(16): 1507-1521.

12. Mьnch M., Kramer A. Timing matters: new tools for personalized chronomedicine and circadian health. Acta Physiologica. 2019; e13300.

13. Sulli G., Manoogian E. N., Taub P. R., Panda S. Training the circadian clock, clocking the drugs, and drugging the clock to prevent, manage, and treat chronic diseases. Trends in pharmacological sciences. 2018. doi.org/10.1016/j.tips.2018.07.003.

14. Halenova T., Raksha N., Vovk T., Savchuk O., Ostapchenko L., Prylutskyy Y., et al. Effect of C60 fullerene nanoparticles on the diet- induced obesity in rats. International journal of obesity (2005). 2018; 42 (12): 1987-1998.

15. Eknoyan G. Obesity and chronic kidney disease. Nefrologia (English Edition). 2011; 31(4): 397-403.

16. Ahn S. Y., Kim D. K., Han S. S., Park J. H., Shin S. J., Lee S. H., et al. Weight loss has an additive effect on the proteinuria reduction of angiotensin II receptor blockers in hypertensive patients with chronic kidney disease. Kidney research and clinical practice. 2018; 37(1): 49.

17. Khamaisi M., Flyvbjerg A., Haramati Z., Raz G., Wexler I. D., Raz I.

Effect of mild hypoinsulinemia on renal hypertrophy:growth

hormone/insulin-like growth factor I system in mild streptozotocin diabetes. Journal of Diabetes Research. 2002; 3 (4): 257-264.

18. Sarafidis P. A., Ruilope L. M. Insulin resistance, hyperinsulinemia, and renal injury: mechanisms and implications. American journal of nephrology. 2006; 26(3): 232-244.

19. Higgins S. P., Tang Y., Higgins C. E., Mian B., Zhang W., Czekay

R.P.,et al. TGF-Я1/p53 signaling in renal fibrogenesis. Cellular signalling. 2018; 43: 1-10.

20. Ma S., Zhu X. Y., Eirin A., Woollard J. R., Jordan K. L., Tang H., et al. Perirenal fat promotes renal arterial endothelial dysfunction in obese swine through tumor necrosis factor-а. The Journal of urology. 2016; 195 (4 Part 1): 1152-1159.

21. Huang J., Rajapakse A., Xiong Y., Montani J. P., Verrey F., Ming X. F., et al. Genetic targeting of arginase-ii in mouse prevents renal oxidative stress and inflammation in diet-induced obesity. Frontiers in physiology. 2016; 7: 560.

22. Wang C., Luo Z., Kohan D., Wellstein A., Jose P. A., Welch W. J., et al. Thromboxane prostanoid receptors enhance contractions, endothelin-1, and oxidative stress in microvessels from mice with chronic kidney disease. Hypertension. 2015; 65(5): 1055-1063.

23. Zanatta C. M., Crispim D., Sortica D. A., Klassmann L. P., Gross J. L., Gerchman F., et al. Endothelin-1 gene polymorphisms and diabetic kidney disease in patients with type 2 diabetes mellitus. Diabetology & metabolic syndrome. 2015; 7(1): 103.

24. Abitbol C. L., Chandar J., Rodriguez M. M., Berho M., Seeherunvong W., Freundlich M., et al. Obesity and preterm birth: additive risks in the progression of kidney disease in children. Pediatric Nephrology.2009; 24(7): 1363.

25. Briffa J. F., McAinch A. J., Poronnik P., Hryciw D. H. Adipokines as a link between obesity and chronic kidney disease. American Journal of Physiology-Renal Physiology. 2013; 305(12): F1629-F1636.

26. Young C. N., Morgan D. A., Butler S. D., Mark A. L., Davisson R. L. The brain subfornical organ mediates leptin-induced increases in renal sympathetic activity but not its metabolic effects. Hypertension. 2013; 61(3): 737-744.

27. Felizardo R. J. F., da Silva M. B., Aguiar C. F., Cвmara N. O. S. Obesity in kidney disease: a heavyweight opponent. World journal of nephrology. 2014; 3(3): 50.

28. Declиves A. E., Zolkipli Z., Satriano J., Wang L., Nakayama T., Rogac M., et al. Regulation of lipid accumulation by AMK-activated kinase in high fat diet-induced kidney injury. Kidney international. 2014; 65(3): 611-623.

29. Naumnik B., Mysliwiec M. Renal consequences of obesity. Medical Science Monitor. 2010; 16(8): 163-170.

30. Nasrallah M. P., Ziyadeh F. N. Overview of the physiology and pathophysiology of leptin with special emphasis on its role in the kidney. In Seminars in nephrology. 2013; 33(1): 54-65.

31. Yurt K. K., Kayhan E., Altunkaynak B. Z., Tьmentemur G., Kaplan S. Effects of the melatonin on the kidney of high fat diet fed obese rats: a stereological and histological approach. J Exp Clin Med. 2013; 30: 153-158.

32. Rajan T., Barbour S. J., White C. T., Levin A. Low birth weight and nephron mass and their role in the progression of chronic kidney disease: a case report on identical twins with Alport disease. Nephrology Dialysis Transplantation. 2011; 26(12): 4136-4139.

33. Winiarska K., Dzik J. M., Labudda M., Focht D., Sierakowski B., Owczarek A., et al. Melatonin nephroprotective action in Zucker diabetic fatty rats involves its inhibitory effect on NADPH oxidase. Journal of pineal research. 2016; 60(1): 109-117.

34. Stacchiotti A., Favero G., Giugno L., Lavazza A., Reiter R. J., Rodella L. F., et al. Mitochondrial and metabolic dysfunction in renal convoluted tubules of obese mice: protective role of melatonin. PloS one. 2014; 9(10): e111141.

35. Aperis G., Prakash P., Paliouras C., Papakonstantinou N., Alivanis P. The role of melatonin in patients with chronic kidney disease undergoing haemodialysis. Journal of renal care. 2012; 36(2): 86-92.

36. Russcher M., Koch B., Nagtegaal E., van der Putten K., ter Wee P., Gaillard C. The role of melatonin treatment in chronic kidney disease. Front Biosci (Landmark Ed). 2012; 17: 2644-56.

37. Hariri N., Thibault L. High-fat diet-induced obesity in animal models. Nutrition research reviews. 2010; 23(2): 270-299.

38. Hussein M. R., Ahmed O. G., Hassan A. F., Ahmed M. A. Intake of melatonin is associated with amelioration of physiological changes, both metabolic and morphological pathologies associated with obesity: an animal model. International journal of experimental pathology. 2007; 66(1): 19-29.

39. Doddigarla Z., Parwez I., Abidi S., Ahmad J. (). Effect of Chromium Picolinate and Melatonin either in Single or in a Combination in Alloxan Induced Male Wistar Rats. Journal of Biomedical Sciences. 2016; 6: 1-7.

40. Elbe H., Vardi N., Esrefoglu M., Ates B., Yologlu S., Taskapan C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats. Human & experimental toxicology. 2015; 34(1): 100-113.

41. Kaur G., Gan Y. L., Phillips C. L., Wong K., Saini B. Chronotherapy in practice: the perspective of the community pharmacist. International journal of clinical pharmacy. 2016; 36(1): 171-182.

Размещено на Allbest.ru

...

Подобные документы

  • Food and Drug Administration как орган общественного здравоохранения федерального уровня. Закон о предотвращении вирусных инфекций в ответ на распространение зараженного столбняком дифтерийного токсина. Меры против нарушителей в отношении продуктов.

    презентация [4,5 M], добавлен 27.05.2014

  • Frequency of distribution of a pseudo erosion of neck of uterus. Stydying of clinico–morphological types of pseudo erosion of neck of uterus. Stydying of a age features. Damages at abortion or at the time of delivery, infections transmittable sexual ways.

    реферат [2,5 M], добавлен 13.10.2013

  • Nature of infrared analysis and nature of mass spectrometry. Summary of the uses in forensic analysis. Critical comparison of infrared analysis and spectrometry. Gathering of the information about positional isomers with the help of infrared analysis.

    эссе [21,8 K], добавлен 08.12.2011

  • The history of plague. The disease. Mortality. Physicians. The physicians of the fourteenth century and the Black Death. Effects of The Black Death: religion, other effects. The Black Death in European architecture as in literature.

    реферат [23,1 K], добавлен 23.01.2008

  • Features of the structure and anatomy of the heart, it's main functions and tasks in the body. Changes taking place in the human heart in the course of his life from birth to aging. Age-related disorders in the blood supply system and the heart.

    презентация [725,8 K], добавлен 16.10.2016

  • Respiratory system brief. Structure of the Lungs. Structure of the Lungs. Examples of ailments of the lung: asthma, emphysema, pneumonia, tuberculosis. The characteristics and causes of diseases that cause them.. Visual of healthy vs. non healthy lungs.

    презентация [162,8 K], добавлен 27.11.2013

  • Anatomical and physiological concepts about the structure and functions of the peripheral nervous system. Role of the autonomic nervous system in the regulation of the internal organs of the organism. The structure of the cranial and spinal nerves PNS.

    презентация [326,9 K], добавлен 21.05.2014

  • Structure of a clinical term. The suffixes and prefixes. The final combining forms partaining to diagnostic methods, therapy, pathology, surgical interventions. Pharmaceutical term structure. The forms of medicines. Chemical, botanical terminology.

    методичка [458,1 K], добавлен 29.03.2012

  • Classification of the resistance. External and internal barnry protecting the human body from pathological factors of the environment. The chemical composition of the blood, its role and significance. Influence the age on individual reactivity progeria.

    презентация [4,5 M], добавлен 17.10.2016

  • The pathological process Acute Respiratory Distress Syndrome (ARDS). Specific challenges in mechanical ventilation of patients with ARDS. Causes of ARDS, and differential diagnosis. Treatment strategies and evidence behind them. Most common causes ARDS.

    презентация [2,6 M], добавлен 21.05.2015

  • Agranulocytosis - pathologic condition, which is characterized by a greatly decreased number of circulating neutrophils. Epidemiology and pathophysiology of this disease. Hereditary disease due to genetic mutations. Signs and symptoms, treatment.

    презентация [1,8 M], добавлен 25.02.2014

  • Coma - a life-threatening condition characterized by loss of consciousness, the lack of response to stimuli. Its classification, mechanism of development and symptoms. Types of supratentorial and subtentorial brain displacement. Diagnosis of the disease.

    презентация [1,4 M], добавлен 24.03.2015

  • Pneumonia is an inflammatory condition of the lung—affecting primarily the microscopic air sacs known as alveoli. The bacterium Streptococcus pneumoniae is a common cause of pneumonia. Symptoms, diagnostics, treatment and prevention of this disease.

    презентация [279,8 K], добавлен 12.11.2013

  • Orderliness (methodical) of the general inspection. The patient's position in bed. Constitution types - set of congenital and acquired the morphological and functional characteristics of the organism. Distinctive features of the constitutional types.

    презентация [2,1 M], добавлен 22.02.2015

  • Teratology is the science of the etiology, pathogenesis, clinical and morphological characteristics, prevention and treatment of congenital malformations. History and the stages of its formation and development. Etiology of congenital malformations.

    презентация [873,8 K], добавлен 23.09.2014

  • 8 bad habits that reduce youth and life. Effect of nicotine to the brain, nervous system and the associated excess sweating. The composition of tobacco smoke. Closely relation of sport and health. The harm of smoking for women, the human psyche.

    презентация [777,7 K], добавлен 07.11.2014

  • Disease of the calcified tissues of the teeth. Demineralization of the mineral portion of enamel and dentine followed by disintegration of their organic material. Classification of caries. Prevention and treatment of caries. The composition of the pulp.

    презентация [424,6 K], добавлен 14.12.2016

  • Physical meaning of electron paramagnetic resonance and nuclear magnetic resonance. Splitting of energy levels. Zeeman effect. Spin probe. Device and mechanism of spectrometer and introscopy. The usage of EPR specters, NMR in medico-biological researches.

    контрольная работа [153,5 K], добавлен 15.12.2015

  • Ensuring access to health care (on the example, Novo Nordisk). Comparison of of different companies: sales growth and margin, ROE, returns stock price. Relationship between ATM index and stock returns. Strategic pillars of the pharmaceutical companies.

    презентация [935,7 K], добавлен 18.10.2015

  • The concept and the internal structure of the lungs, the main components and their interaction. Functional features of the lungs in the human body, their relationship with other anatomical systems. Existing pathology of respiratory organ and control.

    презентация [2,5 M], добавлен 12.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.