Моноциты при злокачественных новообразованиях: перспективы и точки приложения для диагностики и терапии
Формирование моноцитов на уровне костномозгового предшественника. Их выход в кровеносное русло, миграция и последующая направленная дифференцировка в тканях. Циркуляция моноцитов в периферической крови у пациентов со злокачественными новообразованиями.
Рубрика | Медицина |
Вид | статья |
Язык | русский |
Дата добавления | 23.10.2020 |
Размер файла | 52,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
67. Bron S., Henry L., Faes-van't Hull E., Turrini R., Van- hecke D., Guex N., Ifticene-Treboux A., Iancu E.M., Sem- ilietof A., Rufer N., Lehr H.-A., Xenarios I., Coukos G., Delaloye J.F., Doucey M.A. TIE-2-expressing monocytes are lymphangiogenic and associate specifically with lymphatics of human breast cancer. Oncoimmunology. 2016; 5 (2): e1073882. DOI: 10.1080/2162402X.2015.1073882.
68. Tsutsui S., Inoue H., Yasuda K., Suzuki K., Takeuchi H., Nishizaki T., Higashi H., Era S., Mori M. Angiopoietin-2 expression in invasive ductal carcinoma of the breast: its relationship to the VEGF expression and microvessel density. Breast Cancer Res. Treat. 2006; 98 (3): 261-266. DOI: 10.1007/s10549-005-9157-9.
69. Ji J., Zhang G., Sun B., Yuan H., Huang Y., Zhang J, Wei X., Zhang X., Hou J. The frequency of tumor-infiltrating Tie-2-expressing monocytes in renal cell carcinoma: its relationship to angiogenesis and progression. Urology. 2013; 82 (4): e9-13. DOI: 10.1016/j. urology.2013.05.026.
70. Schauer D., Starlinger P., Reiter C., Jahn N., Zajc P., Buchberger E., Bachleitner-Hofmann T., Bergmann M., Stift A., Gruenberger T., Brostjan C. Intermediate Monocytes but Not TIE2-Expressing Monocytes Are a Sensitive Diagnostic Indicator for Colorectal Cancer. PLoS One. 2012; 7 (9): e44450. DOI: 10.1371/journal.pone.0044450.
71. Gabrusiewicz K., Liu D., Cortes-Santiago N., Hossain M.B., Conrad C.A., Aldape K.D., Fuller G.N., Marini F.C., Alonso M.M., Idoate M.A., Gilbert M.R., Fueyo J., Go- mez-Manzano C. Anti-vascular endothelial growth factor therapy-induced glioma invasion is associated with accumulation of Tie2-expressing monocytes. Oncotarget. 2014; 5 (8): 2208-2220. DOI: 10.18632/oncotarget.1893.
72. Venneri M.A., De Palma M., Ponzoni M., Pucci F., Scielzo C., Zonari E., Mazzieri R., Doglioni C., Nald- ini L. Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood. 2007; 109 (12): 5276-5285. DOI: 10.1182/ blood-2006-10-053504.
73. Goede V., Coutelle O., Shimabukuro-Vornhagen A., Holtick U., Neuneier J., Koslowsky T.C., Weihrauch M.R., von Bergwelt-Baildon M., Hacker U.T. Analysis of Tie2-expressing monocytes (TEM) in patients with colorectal cancer. Cancer Invest. 2012; 30 (3): 225-230. DOI: 10.3109/07357907.2011.636114.
74. De Palma M., Murdoch C., Venneri M.A., Naldini L., Lewis C.E. Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol. 2007; 28 (12): 519-524. DOI: 10.1016/j. it.2007.09.004.
75. Sainz B.J., Carron E., Vallespinys M., Machado H.L. Cancer stem cells and macrophages: implications in tumor biology and therapeutic strategies. Mediators Inflamm. 2016; 2016: 1-15. DOI: 10.1155/2016/9012369.
76. Gasteiger G., D'Osualdo A., Schubert D.A., Weber A., Bruscia E.M., Hartl D. Cellular Innate Immunity: An old game with new players. J. Innate Immun. 2017; 9 (2): 111-125. DOI: 10.1159/000453397.
77. Saeed S., Quintin J., Kerstens H.H., Rao N.A., Aghajani- refah A., Matarese F., Cheng S.C., Ratter J., Berentsen K., van der Ent M.A., Sharifi N., Janssen-Megens E.M., Ter Huurne M., Mandoli A., van Schaik T., Ng A., Burden F., Downes K., Frontini M., Kumar V., Giamarellos-Bour- boulis E.J., Ouwehand W.H., van der Meer J.W., Joosten A., Wijmenga C., Martens J.H., Xavier R.J., Logie C., Netea M.G., Stunnenberg H.G. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science. 2014; 345 (6204): 1251086. DOI: 10.1126/science.1251086.
78. Hoeksema M.A., de Winther M.P. Epigenetic regulation of monocyte and macrophage function. Antioxid Redox Signal. 2016; 25 (14): 758-774. DOI: 10.1089/ ars.2016.6695.
79. Netea M.G., Joosten L.A., Latz E., Mills K.H., Natoli G., Stunnenberg H.G., O'Neill L.A., Xavier R.J. Trained immunity: A program of innate immune memory in health and disease. Science. 2016; 352 (6284): aaf1098. DOI: 10.1126/science.aaf1098.
80. Bekkering S., Joosten L.A., van der Meer J.W., Netea M.G., Riksen N.P. The epigenetic memory of monocytes and macrophages as a novel drug target in atherosclerosis. Clin. Ther. 2015; 37 (4): 914-923. DOI: 10.1016/j. clinthera.2015.01.008.
81. van Diepen J.A., Thiem K., Stienstra R., Riksen N.P., Tack C.J., Netea M.G. Diabetes propels the risk for cardiovascular disease: sweet monocytes becoming aggressive? Cell Mol. Life Sci. 2016; 73 (24): 4675-4684. DOI: 10.1007/s00018-016-2316-9.
82. Almatroodi S.A., McDonald C.F., Collins A.L., Darby I.A., Pouniotis D.S. Blood classical monocytes phenotype is not altered in primary non-small cell lung cancer. World J. Clin. Oncol. 2014; 5 (5): 1078-1087. DOI: 10.5306/wjco.v5.i5.1078.
83. Hanna R.N., Cekic C., Sag D., Tacke R., Thomas G.D., Nowyhed H., Herrley E., Rasquinha N., McArdle S., Wu R., Peluso E., Metzger D., Ichinose H., Shaked I., Cho- daczek G., Biswas S.K., Hedrick C.C. Patrolling monocytes control tumor metastasis to the lung. Science. 2015; 350 (6263): 985-990. DOI: 10.1126/science.aac9407.
84. Zhang B., Cao M., He Y., Liu Y., Zhang G., Yang C., Du Y., Xu J., Hu J., Gao F. Increased circulating M2- like monocytes in patients with breast cancer. Tumour Biol. 2017; 39 (6): 1010428317711571. DOI: 10.1177/1010428317711571.
85. Adams D.L., Martin S.S., Alpaugh R.K., Charpentier M., Tsai S., Bergan R.C., Ogden I.M., Catalona W., Chumsri S. , Tang C.M., Cristofanilli M. Circulating giant macrophages as a potential biomarker of solid tumors. Proceedings of the National Academy of Sciences. 2014; 111 (9): 3514-3519. DOI: 10.1073/pnas.1320198111.
86. Adams D.L., Adams D.K., Alpaugh R.K., Cristofanilli M., Martin S.S., Chumsri S., Tang C.M., Marks J.R. Circulating cancer-associated macrophage-like cells differentiate malignant breast cancer and benign breast conditions. Cancer Epidemiol. Biomarkers Prev. 2016; 25 (7): 10371042. DOI: 10.1158/1055-9965.
87. Biswas S.K., Mantovani A. Macrophages: biology and role in the pathology of diseases. New York: Springer, 2014: 7-11. DOI: 10.1007/978-1-4939-1311-4.
88. Zhao L., Shao Q., Zhang Y., Zhang L., He Y., Wang L., Kong B., Qu X. Human monocytes undergo functional re-programming during differentiation to dendritic cell mediated by human extravillous trophoblasts. Sci. Rep. 2016; 6 (1): 20409. DOI: 10.1038/srep20409.
89. Baj-Krzyworzeka M., Baran J., Szatanek R., Mytar B., Siedlar M., Zembala M. Interactions of human monocytes with TMVs (tumour-derived microvesicles). Bio- chem. Soc. Trans. 2013; 41 (1): 268-272. DOI: 10.1042/ BST20120244.
90. Dimitrov S., Shaikh F., Pruitt C., Green M., Wilson K., Beg N., Hong S. Differential TNF production by monocyte subsets under physical stress: blunted mobilization of proinflammatory monocytes in prehypertensive individuals. Brain Behav. Immun. 2013; 27 (1): 101-108. DOI: 10.1016/j.bbi.2012.10.003.
91. van Furth R., Cohn Z.A., Hirsch J.G., Humphrey J.H., Spector W.G., Langevoort H.L. Mononuclear phagocytic system: new classification of macrophages, monocytes and of their cell line. Bull World Health Organ. 1972; 47: 651-658.
92. Guilliams M., van de Laar L.. A hitchhiker's guide to myeloid cell subsets: practical implementation of a novel mononuclear phagocyte classification system. Front. Immunol. 2015; 6. DOI: 10.3389/fimmu.2015.00406.
93. Чердынцева Н.В., Митрофанова И.В., Булдаков М.А., Стахеева М.Н., Патышева М.Р., Завьялова М.В., Кжы- шковска Ю.Г. Макрофаги и опухолевая прогрессия: на пути к макрофаг-специфичной терапии. юл- летень сибирской медицины. 2017; 16 (4): 61-74. [Cherdyntseva N.V., Mitrofanova I.V., Buldakov M.A., Stakheeva M.N., Patysheva M.R., Zavjalova M.V., Kzhyshkowska J.G. Macrophages and tumor progression: on the way to macrophage-specific therapy. Bulletin of Siberian Medicine. 2017; 16 (4): 61-74 (in Russ.)]. DOI: 10.20538/1682-0363-2017-4-61-74.
94. Wynn T.A., Chawla A., Pollard J.W. Macrophage biology in development, homeostasis and disease. Nature. 2013; 496 (7446): 445-455. DOI: 10.1038/nature12034.
95. Movahedi K., Laoui D., Gysemans C., Baeten M., Stange G., Van den Bossche J., Mack M., Pipeleers D., In't Veld P., e Baetselier P. Van Ginderachter J.A. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 2010; 70 (14): 5728-5739. DOI: 10.1158/0008- 5472.CAN-09-4672.
96. Franklin R.A., Liao W., Sarkar A., Kim M.V., Bivona M.R., Liu K., Pamer E.G., Li M.O. The cellular and molecular origin of tumor-associated macrophages. Science. 2014; 344 (6186): 921-925. DOI: 10.1126/science.1252510.
97. Qian B.Z., Li J., Zhang H., Kitamura T., Zhang J., Campion L.R., Kaiser E.A., Snyder L.A., Pollard J.W. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011; 475 (7355): 222-225. DOI: 10.1038/nature10138.
98. Shand F.H., Ueha S., Otsuji M., Koid S.S., Shichino S., Tsukui T., Kosugi-Kanaya M., Abe J., Tomura M., Zio- gas J., Matsushima K. Tracking of intertissue migration reveals the origins of tumor-infiltrating monocytes. Proceedings of the National Academy of Sciences. 2014; 111 (21): 7771-7776. DOI: 10.1073/pnas.1402914111.
99. Harney A.S., Arwert E.N., Entenberg D., Wang Y., Guo P., Qian B.Z., Oktay M.H., Pollard J.W., Jones J.G., Cond- eelis J.S. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov. 2015; 5 (9): 932-943. DOI: 10.1158/2159-8290. CD-15-0012.
100. Sawanobori Y., Ueha S., Kurachi M., Shimaoka T., Tal- madge J.E., Abe J., Shono Y., Kitabatake M., Kakimi K., Mukaida N., Matsushima K. Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood. 2008; 111 (12): 5457-5466. DOI: 10.1182/blood-2008-01-136895.
101. Bogels M., Braster R., Nijland P.G., Gul N., van de Lui- jtgaarden W., Fijneman R.J., Meijer G.A., Jimenez C.R., Beelen R.H., van Egmond M. Carcinoma origin dictates differential skewing of monocyte function. Oncolmmu- nology. 2012; 1 (6): 798-809. DOI: 10.4161/onci.20427.
102. Baron S., Finbloom J., Horowitz J., Bekisz J., Morrow A., Zhao T., Fey S., Schmeisser H., Balinsky C., Miyake K., Clark C., Zoon K. Near eradication of clinically relevant concentrations of human tumor cells by interferon-activated monocytes in vitro. J. Interferon. Cytokine Res. 2011; 31 (7): 569-573. DOI: 10.1089/jir.2010. 0153.
103. КжышковскаЮ.Г., Митрофанова И.В., ЗавьяловаМ.В., Слонимская Е.М., Чердынцева Н.В. Опухолеассоциированные макрофаги. М.: Наука, 2017: 224. [Kzhyshkowska J.G., Mitrofanova I.V., Zavyalova M.V., Slonimskaya E.M., Cherdyntseva N.V. Tumor-associated macrophages. Moscow: Nauka Publ., 2017: 224 (in Russ)].
104. Hettinger J., Richards D.M., Hansson J., Barra M.M., Joschko A.C., Krijgsveld J., Feuerer M. Origin of monocytes and macrophages in a committed progenitor. Nat. Immunl. 2013; 14 (8): 821-830. DOI: 10.1038/ni.2638.
105. Segura E., Amigorena S. Inflammatory dendritic cells in mice and humans. Trends immunol. 2013; 34 (9): 440445. DOI: 10.1016/j.it.2013.06.001.
106. Maeng H., Terabe M., Berzofsky J.A. Cancer vaccines: translation from mice to human clinical trials. Curr. Opin Immunol. 2018; 51: 111-122. DOI: 10.1016/j. coi.2018.03.001.
107. Kongsted P., Borch T.H., Ellebaek E., Iversen T.Z., Andersen R., Met O., Hansen M., Lindberg H., Sengelov L., Svane I.M. Dendritic cell vaccination in combination with docetaxel for patients with metastatic castration-resistant prostate cancer: A randomized phase II study. Cytotherapy. 2017; 19 (4): 500-513. DOI: 10.1016/j. jcyt.2017.01.007.
108. Vuk-Pavlovic S., Bulur P.A., Lin Y., Qin R., Szumlanski C.L., Zhao X., Dietz A.B. Immunosuppressive CD14+H- LA-DRlow/-monocytes in prostate cancer. Prostate. 2010; 70 (4): 443-455. DOI: 10.1002/pros.21078.
109. Laborde R.R., Lin Y., Gustafson M.P., Bulur P.A., Dietz A.B. Cancer vaccines in the world of immune suppressive monocytes (CD14+HLA-DRlo/neg cells): the gateway to improved responses. Frontiers in Immunology. 2014; 5: 147. DOI: 10.3389/fimmu.2014.00147.
110. Yu J., Du W., Yan F., Wang Y., Li H., Cao S, Yu W, Shen C, Liu J, Ren X. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol. 2013; 190 (7): 3783-3797. DOI:10.4049/jimmunol.1201449.
111. Mougiakakos D., Jitschin R., von Bahr L., Poschke I., Gary R., Sundberg B., Gerbitz A, Ljungman P, Le Blanc K. Immunosuppressive CD14+HLA-DRlow/neg IDO+ myeloid cells in patients following allogeneic hematopoietic stem cell transplantation. Leukemia. 2013; 27 (2): 377-388. DOI: 10.1038/leu.2012.215.
112. Maeda A., Kawamura T., Ueno T., Usui N., Miyaga- wa S. Monocytic suppressor cells derived from human peripheral blood suppress xenogenic immune reactions. Xenotransplantation. 2014; 21 (1): 46-56. DOI: 10.1111/ xen.12067.
113. Poschke I., Mao Y., Adamson L., Salazar-Onfray F., Masucci G., Kiessling R. Myeloid-derived suppressor cells impair the quality of dendritic cell vaccines. Cancer Immunol. Immunother. 2012; 61 (6): 827-838. DOI: 10.1007/s00262-011-1143-y.
114. Gustafson M.P., Lin Y., New K.C., Bulur P.A., O'Neill B.P., Gastineau D.A., Dietz AB. Systemic immune suppression in glioblastoma: the interplay between CD14+HLADRlo/neg monocytes, tumor factors, and dexamethasone. Neuro Oncol. 2010; 12 (7): 631-644. DOI:10.1093/neuonc/noq001.
115. Engblom C., Pfirschke C., Pittet M.J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer. 2016; 16 (7): 447-462. DOI: 10.1038/nrc.2016.54.
116. Bonapace L., Coissieux M.M., Wyckoff J., Mertz K.D., Varga Z., Junt T., Bentires-Alj M. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 2014; 515 (7525): 130-133. DOI: 10.1038/nature13862.
117. Germano G., Frapolli R., Belgiovine C., Anselmo A., Pesce S., Liguori M., Erba E., Uboldi S., Zucchetti M., Pasqualini F. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell. 2013; 23 (2): 249-262. DOI: 10.1016/j.ccr.2013.01.008.
Размещено на Allbest.ru
...Подобные документы
Функции клеточных элементов миелопоэза. Нарушение системы гемостаза. Гемостазиопатии и коагулопатии. Основные функции эритроцитов, тромбоцитов, нейтрофилов, эозинофилов, базофилов, моноцитов и лимфоцитов. Лейкоцитарная формула крови здорового человека.
курсовая работа [45,9 K], добавлен 22.03.2019Структура заболеваемости злокачественными новообразованиями желудочно-кишечного тракта в России в 2001 году. Международная гистологическая классификация злокачественных опухолей поджелудочной железы. Ультразвуковое и рентгенологическое исследование.
презентация [3,2 M], добавлен 18.12.2013Изучение различий в составе периферической крови до и после физических нагрузок. Оценка влияния интенсивности нагрузки и стажа тренировок на показатели периферической крови и адаптивные резервы организма человека. Техника проведения общего анализа крови.
курсовая работа [1,3 M], добавлен 23.09.2016Острое сдавление спинного мозга. Обструкция верхних дыхательных путей. Злокачественный выпот в полость перикарда с тампонадой сердца. Синдром верхней полой вены. Гиперкальциемия при злокачественных новообразованиях. Синдром повышенной вязкости крови.
реферат [21,9 K], добавлен 24.05.2009Статистика заболеваемости населения злокачественными новообразованиями. Факторы риска и классификация колоректального рака, его клинические проявления и методы диагностики. Особенности хирургического лечения и химиотерапии. Алгоритм ведения пациента.
реферат [52,2 K], добавлен 21.10.2012Гетерогенное опухолевое заболевание системы крови, характеризующееся клональной экспансией миелобластов в костном мозге, периферической крови и других тканях и органах. Показания для плановой и экстренной госпитализации. Критерии постановки диагноза.
презентация [225,1 K], добавлен 03.10.2016Лабораторное исследование периферической крови у детей. Функции эритроцитов, лейкоцитов, тромбоцитов. Качественные изменения нейтрофилов. Скорость оседания эритроцитов. Белковый состав плазмы крови. Нормальные показатели у детей различного возраста.
презентация [3,2 M], добавлен 22.09.2016Определение противобластомных средств как лекарственных веществ, задерживающих развитие злокачественных опухолей (рак, саркома, меланома) и злокачественных поражений крови (лейкемии). Химическая мутагенность и канцерогенность лекарственных средств.
реферат [17,8 K], добавлен 29.04.2012Мутация клетки - предшественника миелопоэза, как основная причина патологического роста клеток. Синдром, обусловленный осложнениями, и его основные виды. Исследование периферической крови. Характеристика клинической картины миелолейкоза и лимфолейкоза.
презентация [94,2 K], добавлен 24.09.2014Заболевания, приводящие к увеличению лимфатических узлов, их дифференциальная диагностика на амбулаторном уровне. Отдельные нозологические формы, проявляющиеся симптомом лимфаденопатии. Протоколы диагностики и лечения злокачественных новообразований.
презентация [3,0 M], добавлен 06.06.2017Клиническая картина и эпидемиология хронического миелолейкоза как опухолевого заболевания крови, возникающего на уровне стволовой клетки гемопоэза. Параметры биопсии костного мозга и периферической крови при различных фазах хронического миелолейкоза.
презентация [18,3 M], добавлен 26.03.2015Функции, состав и форменные элементы крови. Характеристика, формирование и патология эритроцитов. Виды и главная сфера действия лейкоцитов. Основные клетки иммунной системы: эозинофилы, моноциты, лимфоциты, тромбоциты. Возрастные изменения крови.
презентация [897,9 K], добавлен 30.04.2014Периферическая кровь и ее элементы. Средняя продолжительность жизни тромбоцита в крови. Моноциты и макрофаги. Ключевая роль Т-лимфоцитов в клеточном иммунитете. Механизм поддержания постоянства состава крови. Органы кроветворения и кроверазрушения.
курсовая работа [305,9 K], добавлен 16.06.2012Изучение сущности и причин переливания крови - введения с лечебной целью в сосудистое русло больного (реципиента) крови другого человека (донора), а в некоторых случаях плацентарной крови. Физиологический анализ механизма действия переливания крови.
реферат [21,5 K], добавлен 21.05.2010Анализ форменных элементов крови: эритроцитов, лейкоцитов, тромбоцитов. Гемоглобин и его функции в работе организма. Гранулоциты, моноциты и лимфоциты как составлющие лейкоцитов. Паталогии в составе крови, их влияние на функции организма человека.
реферат [31,4 K], добавлен 06.10.2008Анализ онкологических заболеваний как злокачественных опухолей, возникающих из клеток эпителия, в органах и тканях организма. Механизм образования и классификация злокачественных новообразований. Симптомы и причины образования раковых заболеваний.
презентация [1,3 M], добавлен 06.03.2014Описания особенностей железодефицитной анемии, которая развивается после кровопотери. Острая и хроническая постгеморрагические анемии. Картина периферической крови. Симптомы анемии. Изучение компенсаторно-приспособительных механизмов организма человека.
презентация [147,0 K], добавлен 26.11.2014Жалобы пациента при поступлении, описание основных симптомов. Постановка диагноза - саркоидоз, его обоснование. Анализ туберкулинограммы больного. Дифференциальная диагностика туберкулеза лимфатических узлов со злокачественными новообразованиями.
контрольная работа [26,3 K], добавлен 19.01.2015Статистика заболеваемости и смертности населения территорий России злокачественными новообразованиями трахеи, бронхов, легкого. Факторы риска. Классификация видов рака легкого, их описание и диагностика. Лечение заболевания и проведение эндоскопии.
презентация [6,1 M], добавлен 18.12.2013Анализ заболеваемости злокачественными новообразованиями у населения г. Давлеканово. Статистика рака, причины его появления. Классификация нарушений тканевого роста. Злокачественные и доброкачественные опухоли. Факторы противоопухолевой резистентности.
реферат [110,1 K], добавлен 14.11.2010